+<!--<!DOCTYPE chapter SYSTEM "file:/C:/Documents%20and%20Settings/colyer/My%20Documents/projects/aspectjdev/lib/docbook/docbook-dtd/docbookx.dtd"> -->
<chapter id="generics" xreflabel="Generics">
<title>Generics</title>
</para>
<sect2>
- <title>Declaring Parameterized Types</title>
+ <title>Declaring Generic Types</title>
+ <para>
+ A generic type is declared with one or more type parameters following the type name.
+ By convention formal type parameters are named using a single letter, though this is not required.
+ A simple generic list type
+ (that can contain elements of any type <literal>E</literal>) could be declared:
+ </para>
+
+ <programlisting><![CDATA[
+ interface List<E> {
+ Iterator<E> iterator();
+ void add(E anItem);
+ E remove(E anItem);
+ }
+ ]]></programlisting>
+
+
+ <para>
+ It is important to understand that unlike template mechanisms there will only be one type, and one class file, corresponding to
+ the <literal>List</literal> interface, regardless of how many different instantiations of the <literal>List</literal> interface a program
+ has (each potentially providing a different value for the type parameter <literal>E</literal>). A consequence of this
+ is that you cannot refer to the type parameters of a type declaration in a static method or initializer, or in the declaration or
+ initializer of a static variable.
+ </para>
+ <para>
+ A <emphasis>parameterized type</emphasis>
+ is an invocation of a generic type with concrete values supplied for
+ all of its type parameters (for example, <literal>List<String></literal> or <literal>List<Food></literal>).
+ </para>
+
+ <para>A generic type may be declared with multiple type parameters. In addition to simple type parameter names, type
+ parameter declarations can also constrain the set of types allowed by using the <literal>extends</literal>
+ keyword. Some examples follow:</para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>class Foo<T> {...}</term>
+ <listitem>
+ <para>A class <literal>Foo</literal> with one type parameter, <literal>T</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Foo<T,S> {...}</term>
+ <listitem>
+ <para>A class <literal>Foo</literal> with two type parameters, <literal>T</literal> and <literal>S</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Foo<T extends Number> {...}</term>
+ <listitem>
+ <para>A class <literal>Foo</literal> with one type parameter <literal>T</literal>, where <literal>T</literal> must be
+ instantiated as the type <literal>Number</literal> or a subtype of <literal>Number</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Foo<T, S extends T> {...}</term>
+ <listitem>
+ <para>A class <literal>Foo</literal> with two type parameters, <literal>T</literal> and <literal>S</literal>. <literal>Foo</literal>
+ must be instantiated with a type <literal>S</literal> that is a subtype of the type specified for parameter <literal>T</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Foo<T extends Number & Comparable> {...}</term>
+ <listitem>
+ <para>A class <literal>Foo</literal> with one type parameter, <literal>T</literal>. <literal>Foo</literal>
+ must be instantiated with a type that is a subtype of <literal>Number</literal> and that implements <literal>Comparable</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ </sect2>
+
+ <sect2>
+ <title>Using Generic and Parameterized Types</title>
+
+ <para>You declare a variable (or a method/constructor argument) of a parameterized type by specifying a concrete type specfication for each type parameter in
+ the generic type. The following example declares a list of strings and a list of numbers:</para>
+
+ <programlisting><![CDATA[
+ List<String> strings;
+ List<Number> numbers;
+ ]]></programlisting>
+
+ <para>It is also possible to declare a variable of a generic type without specifying any values for the type
+ parameters (a <emphasis>raw</emphasis> type). For example, <literal>List strings</literal>.
+ In this case, unchecked warnings may be issued by the compiler
+ when the referenced object is passed as a parameter to a method expecting a parameterized type such as a
+ <literal>List<String></literal>. New code written in the Java 5 language would not be expected to use
+ raw types.</para>
+
+ <para>Parameterized types are instantiated by specifying type parameter values in the constructor call expression as in
+ the following examples:</para>
+
+ <programlisting><![CDATA[
+ List<String> strings = new MyListImpl<String>();
+ List<Number> numbers = new MyListImpl<Number>();
+ ]]></programlisting>
+
+ <para>
+ When declaring parameterized types, the <literal>?</literal> wildcard may be used, which stands for "some type".
+ The <literal>extends</literal> and <literal>super</literal> keywords may be used in conjunction with the wildcard
+ to provide upper and lower bounds on the types that may satisfy the type constraints. For example:
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>List<?></term>
+ <listitem>
+ <para>A list containing elements of some type, the type of the elements in the list is unknown.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<? extends Number></term>
+ <listitem>
+ <para>A list containing elements of some type that extends Number, the exact type of the elements in the list is unknown.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<? super Double></term>
+ <listitem>
+ <para>A list containing elements of some type that is a super-type of Double, the exact type of the elements in the list is unknown.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>
+ A generic type may be extended as any other type. Given a generic type <literal>Foo<T></literal> then
+ a subtype <literal>Goo</literal> may be declared in one of the following ways:
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>class Goo extends Foo</term>
+ <listitem>
+ <para>Here <literal>Foo</literal> is used as a raw type, and the appropriate warning messages will be
+ issued by the compiler on attempting to invoke methods in <literal>Foo</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Goo<E> extends Foo</term>
+ <listitem>
+ <para><literal>Goo</literal> is a generic type, but the super-type <literal>Foo</literal> is used as a raw
+ type and the appropriate warning messages will be
+ issued by the compiler on attempting to invoke methods defined by <literal>Foo</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Goo<E> extends Foo<E></term>
+ <listitem>
+ <para>This is the most usual form. <literal>Goo</literal> is a generic type with one parameter that extends
+ the generic type <literal>Foo</literal> with that same parameter. So <literal>Goo<String<</literal> is
+ a subclass of <literal>Foo<String></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Goo<E,F> extends Foo<E></term>
+ <listitem>
+ <para><literal>Goo</literal> is a generic type with two parameters that extends
+ the generic type <literal>Foo</literal> with the first type parameter of <literal>Goo</literal> being used
+ to parameterize <literal>Foo</literal>. So <literal>Goo<String,Integer<</literal> is
+ a subclass of <literal>Foo<String></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>class Goo extends Foo<String></term>
+ <listitem>
+ <para><literal>Goo</literal> is a type that extends
+ the parameterized type <literal>Foo<String></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>A generic type may implement one or more generic interfaces, following the type binding
+ rules given above. A type may also implement one or more parameterized interfaces (for example,
+ <literal>class X implements List<String></literal>, however a type may not at the same time
+ be a subtype of two interface types which are different parameterizations of the same interface.</para>
</sect2>
<sect2>
- <title>Using Parameterized Types</title>
+ <title>Subtypes, Supertypes, and Assignability</title>
+
+ <para>
+ The supertype of a generic type <literal>C</literal> is the type given in the extends clause of
+ <literal>C</literal>, or <literal>Object</literal> if no extends clause is present. Given the type declaration
+ </para>
+
+ <programlisting><![CDATA[
+ public interface List<E> extends Collection<E> {... }
+ ]]></programlisting>
+
+ <para>
+ then the supertype of <literal>List<E></literal> is <literal>Collection<E></literal>.
+ </para>
+
+ <para>
+ The supertype of a parameterized type <literal>P</literal> is the type given in the extends clause of
+ <literal>P</literal>, or <literal>Object</literal> if no extends clause is present. Any type parameters in
+ the supertype are substituted in accordance with the parameterization of <literal>P</literal>. An example
+ will make this much clearer: Given the type <literal>List<Double></literal> and the definition of
+ the <literal>List</literal> given above, the direct supertype is
+ <literal>Collection<Double></literal>. <literal>List<Double></literal> is <emphasis>not</emphasis>
+ considered to be a subtype of <literal>List<Number></literal>.
+ </para>
+
+ <para>
+ An instance of a parameterized type <literal>P<T1,T2,...Tn></literal>may be assigned to a variable of
+ the same type or a supertype
+ without casting. In addition it may be assigned to a variable <literal>R<S1,S2,...Sm></literal> where
+ <literal>R</literal> is a supertype of <literal>P</literal> (the supertype relationship is reflexive),
+ <literal>m <= n</literal>, and for all type parameters <literal>S1..m</literal>, <literal>Tm</literal> equals
+ <literal>Sm</literal> <emphasis>or</emphasis> <literal>Sm</literal> is a wildcard type specification and
+ <literal>Tm</literal> falls within the bounds of the wildcard. For example, <literal>List<String></literal>
+ can be assigned to a variable of type <literal>Collection<?></literal>, and <literal>List<Double></literal>
+ can be assigned to a variable of type <literal>List<? extends Number></literal>.
+ </para>
+
</sect2>
<sect2>
- <title>Assignments and Wildcards</title>
+ <title>Generic Methods and Constructors</title>
+ <para>
+ A static method may be declared with one or more type parameters as in the following declaration:
+ </para>
+
+ <programlisting><![CDATA[
+ static <T> T first(List<T> ts) { ... }
+ ]]></programlisting>
+
+ <para>
+ Such a definition can appear in any type, the type parameter <literal>T</literal> does not need to
+ be declared as a type parameter of the enclosing type.
+ </para>
+
+ <para>
+ Non-static methods may also be declared with one or more type parameters in a similar fashion:
+ </para>
+
+ <programlisting><![CDATA[
+ <T extends Number> T max(T t1, T t2) { ... }
+ ]]></programlisting>
+
+ <para>The same technique can be used to declare a generic constructor.</para>
+
</sect2>
<sect2>
- <title>Generic Methods</title>
+ <title>Erasure</title>
+ <para>Generics in Java are implemented using a technique called <emphasis>erasure</emphasis>. All
+ type parameter information is erased from the run-time type system. Asking an object of a parameterized
+ type for its class will return the class object for the raw type (eg. <literal>List</literal> for an object
+ declared to be of type <literal>List<String></literal>. A consequence of this is that you cannot at
+ runtime ask if an object is an <literal>instanceof</literal> a parameterized type.</para>
</sect2>
</sect1>
<sect1 id="generics-inAspectJ5">
+ <title>Generics in AspectJ 5</title>
<sect2>
- <title>Parameterized Aspect Types</title>
+ <title>Matching generic and parameterized types in type patterns</title>
+
+ <para>
+ The type pattern <literal>"Foo"</literal> matches all types named <literal>Foo</literal>, whether they
+ be simple types, generic types, or parameterized types. So for example, <literal>Foo</literal>,
+ <literal>Foo<T></literal>, and <literal>Foo<String></literal>will all be matched.
+ </para>
+
+ <para>
+ AspectJ 5 also extends the specification of type patterns to allow explicit matching of generic and parameterized
+ types.
+ </para>
+
+ <programlisting><![CDATA[
+ TypePattern := SimpleTypePattern |
+ '!' TypePattern |
+ '(' AnnotationPattern? TypePattern ')'
+ TypePattern '&&' TypePattern |
+ TypePattern '||' TypePattern |
+ TypePattern '<' TypeParameterPatternList '>'
+
+ TypeParameterPatternList ::= TypeParameterPattern (',' TypeParameterPattern)*
+
+ TypeParameterPattern ::= TypePattern |
+ '?' TypeBoundPattern?
+
+ TypeBoundPattern ::= 'extends' TypePattern AdditionalBoundPatternList? |
+ 'super' TypePattern AdditionalBoundPatternList?
+
+ AdditionalBoundPatternList ::= AdditionalBoundPattern AdditionalBoundPatternList |
+ AdditionalBoundPattern
+
+ AdditionalBoundPattern ::= '&' TypePattern
+
+ TypeParameterList ::= '<' TypeParameter (',' TypeParameter)* '>'
+
+ TypeParameter ::= Identifier TypeBound?
+
+ TypeBound ::= 'extends' ReferenceType AdditionBoundList? |
+ 'super' ReferenceType AdditionalBoundList?
+
+ AdditionalBoundList ::= AdditionalBound AdditionalBoundList |
+ AdditionalBound
+
+ AdditionalBound ::= '&' ReferenceType
+
+ ]]></programlisting>
+
+ <para>
+ A simple identifier occuring in a type parameter list will be treated as a type name unless it has previously
+ been declared as a type variable in a <literal>TypeParameterList</literal>. Some simple examples of
+ type patterns follow:
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>List<String></term>
+ <listitem>
+ <para>Matches the parameterized type <literal>List<String></literal>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<? extends Number></term>
+ <listitem>
+ <para>Matches the parameterized type <literal>List<? extends Number></literal>
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<E></term>
+ <listitem>
+ <para>Matches the parameterized type <literal>List<E></literal>. If <literal>E</literal> is not
+ a type then an <literal>invalidAbsoluteTypeName</literal> xlint warning will be issued.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><E> List<E></term>
+ <listitem>
+ <para>Matches the generic type <literal>List<E></literal>. The type parameter name does not
+ have to match the name used in the declaration of <literal>List</literal>, but the bounds must match.
+ Also matches any parameterization of <literal>List</literal> that satisfies the bounds of the type variable
+ (for example, <literal>List<String></literal>).
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>
+ The <literal>*</literal>, <literal>+</literal>, and <literal>..</literal> wildcards may be used in type patterns
+ matching against generic and parameterized types (just as in any other type pattern). The <literal>+</literal>
+ wildcard matches all subtypes. Recalling the discussion on subtypes and supertypes in the previous section, note
+ that the pattern <literal>List<Number>+</literal> will match <literal>List<Number></literal> and
+ <literal>LinkedList<Number></literal>, but not <literal>List<Double></literal>. To match lists of
+ any number type use the pattern <literal>List<Number+></literal> which will match
+ <literal>List<Number></literal>, <literal>List<Double></literal>, <literal>List<Float></literal>
+ and so on.
+ </para>
+
+ <para>
+ The generics wildcard <literal>?</literal> is considered part of the signature of a parameterized type, and
+ is <emphasis>not</emphasis> used as an AspectJ wildcard in type matching. For example:
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>List<*></term>
+ <listitem>
+ <para>Matches any parameterized <literal>List</literal>type (<literal>List<String></literal>,
+ <literal>List<Integer></literal> and so on).
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<?></term>
+ <listitem>
+ <para>Matches the parameterized type <literal>List<?></literal> (and does
+ <emphasis>not</emphasis> match <literal>List<String></literal>,
+ <literal>List<Integer></literal> and so on)
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>List<? extends Number+></term>
+ <listitem>
+ <para>Matches <literal>List<? extends Number></literal>, <literal>List<? extends Double></literal>,
+ and so on, but does not match <literal>List<Double></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
</sect2>
<sect2>
- <title></title>
+ <title>Signature patterns</title>
+
+ <para>
+ Signature patterns are extended to allow matching of generic methods and constructors, and of
+ members of generic types and parameterized types.
+ </para>
+
+ <para>To match members in generic types, the type variables are declared at the start of the
+ signature pattern as in the following examples:</para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term><T> T *<T>.*</term>
+ <listitem>
+ <para>Matches a field of the type of type parameter <literal>T</literal> in any generic type with a single
+ unbounded type parameter. The field may be of any name. The similar looking pattern <literal><T> T *.*</literal> is
+ not valid as the type parameter <literal>T</literal> must be bound in the field pattern body.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><T extends Number,S> T Util<T,S>.someFunction(List<S>)</term>
+ <listitem>
+ <para>Matches the method <literal>someFunction</literal> in a generic type <literal>Util</literal> with
+ two type parameters, the first type parameter having an upper bound of <literal>Number</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><E> LinkedList<E>.new()</term>
+ <listitem>
+ <para>Matches the no-argument constructor of the generic type <literal>LinkedList</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>Matching of members of parameterized types is straightforward. For example,
+ <literal>void List<String>.add(String)</literal> matches the add method in the
+ parameterized type <literal>List<String></literal>.</para>
+
+ <para>
+ To match a generic method simply omit the binding of the type variable(s) in the declaring type
+ pattern. For example:
+ </para>
+
+ <programlisting><![CDATA[
+ <T> List<T> *.favourites(List<T>)
+ ]]></programlisting>
+
+ <para>matches a generic method <literal>favourites</literal> declared in any type. To match a
+ static generic method simply include the <literal>static</literal> modifier in the type pattern.</para>
+
</sect2>
+
+ <sect2>
+ <title>Pointcuts</title>
+ <para>
+ In this section we discuss how type patterns and signature patterns matching on generic and
+ parameterized types, methods, and constructors can be used in pointcut expressions. We distinguish
+ between pointcuts that match based on static type information, and pointcuts that match based on
+ runtime type information (<literal>this, target, args</literal>).
+ </para>
+
+ can have execution jps for parameterized interface types?
+
+ <programlisting><![CDATA[
+
+ execution(* List<T>.*(..))
+ call(* List<String>.*(..))
+ execution(T List<T>.*(..))
+ execution(* List<T>.*(T))
+ execution(<T> * *(..))
+ execution(<T> T *.*(T,T))
+ execution(<T extends Number> T *.*(T,T))
+ execution(static<T> T *.*(T))
+ call(* List<?>.*(..))
+ call(* List<? extends Number>.*(..))
+ call(* List<? super Double>.*(..))
+
+ this/target/args
+ examples with "+"
+ ]]></programlisting>
+
+ declaring pointcuts in generic classes.
+
+ </sect2>
+
+ <sect2>
+ <title>Inter-type Declarations</title>
+
+ <para>
+ AspectJ 5 allows type parameters to be used in inter-type declarations - either for declaring generic
+ methods and constructors, or for declaring members on generic types. The syntax for declaring generic
+ methods and constructors follows the regular AspectJ convention of simply qualifying the member name with
+ the target type.
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term><T extends Number> T Utils.max(T first, T second) {...}</term>
+ <listitem>
+ <para>Declares a generic instance method <literal>max</literal> on the class <literal>Util</literal>.
+ The <literal>max</literal> method takes two arguments, <literal>first</literal> and <literal>second</literal> which must
+ both be of the same type (and that type must be Number or a subtype of Number) and returns an instance
+ of that type.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>static <E> E Utils.first(List<E> elements) {...}</term>
+ <listitem>
+ <para>Declares a static generic method <literal>first</literal> on the class <literal>Util</literal>.
+ The <literal>first</literal> method takes a list of elements of some type, and returns an instance
+ of that type.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term><T> Sorter.new(List<T> elements,Comparator<? super T> comparator) {...}</term>
+ <listitem>
+ <para>Declares a constructor on the class <literal>Sorter</literal>.
+ The constructor takes a list of elements of some type, and a comparator that can compare instances
+ of the element type.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>
+ A generic type may be the target of an inter-type declaration, used either in its raw form or with
+ type parameters specified. If type parameters are specified, then the number of type parameters and
+ their bounds given in the inter-type declararation must be compatible with type parameter definitions in
+ the generic type declaration. Type parameter <emphasis>names</emphasis> do not have to match.
+ For example, given the generic type <literal>Foo<T,S extends Number></literal> then:
+ </para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>String Foo.getName() {...}</term>
+ <listitem>
+ <para>Declares a <literal>getName</literal> method on behalf of the raw type <literal>Foo</literal>. It is
+ not possible to refer to the type parameters of Foo in such a declaration.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>R Foo<Q, R extends Number>.getMagnitude() {...}</term>
+ <listitem>
+ <para>Declares a method <literal>getMagnitude</literal> on the generic class <literal>Foo</literal>.
+ The method returns an instance of the type substituted for the second type parameter in an invocation
+ of <literal>Foo</literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>R Foo<Q, R>.getMagnitude() {...}</term>
+ <listitem>
+ <para>Results in a compilation error since the generic type <literal>Foo</literal> with two unbounded
+ type parameters cannot be found.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>A parameterized type may not be the target of an inter-type declaration. This is because
+ there is only one type (the generic type) regardless of how many different invocations (parameterizations) of
+ that generic type are made in a program. Therefore it does not make sense to try and declare a member
+ on behalf of (say) <literal>Foo<String></literal>, you can only declare members on the generic
+ type <literal>Foo<T></literal>.
+ </para>
+
+ <para>
+ If an inter-type member is declared inside a generic aspect, then the type parameter names from the
+ aspect declaration may be used in the signature specification of the inter-type declaration, but
+ <emphasis>not</emphasis> as type parameter names for a generic target type. In other words the example
+ that follows is legal:
+ </para>
+
+ <programlisting><![CDATA[
+ public abstract aspect A<T> {
+
+ private T Foo.data;
+
+ public T Foo.getData(T defaultValue) {
+ return (this.data != null ? data : defaultValue);
+ }
+
+ }
+ ]]></programlisting>
+
+ <para>
+ Whereas the following example is not allowed and will report an error that a parameterized type may not be the
+ target of an inter-type declaration (since when the type parameter <literal>T</literal> in the aspect is subsituted with
+ say, <literal>String</literal>, then the target of the inter-type declaration becomes <literal>Goo<String></literal>).
+ </para>
+
+ <programlisting><![CDATA[
+ public abstract aspect A<T> {
+
+ private T Goo<T>.data;
+
+ public T Goo<T>.getData(T defaultValue) {
+ return (this.data != null ? data : defaultValue);
+ }
+
+ }
+ ]]></programlisting>
+
+ </sect2>
+
+ <sect2>
+ <title>Declare Parents</title>
+
+ <para>Both generic and parameterized types can be used as the parent type in a <literal>declare parents</literal>
+ statement (as long as the resulting type hierarchy would be well-formed in accordance with Java's sub-typing
+ rules). Generic types may also be used as the target type of a <literal>declare parents</literal> statement:
+ a type variable specification preceeds the type pattern in these cases.
+ Some examples follow:</para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>declare parents: Foo implements List<String></term>
+ <listitem>
+ <para>The <literal>Foo</literal> type implements the <literal>List<String></literal> interface. If
+ <literal>Foo</literal> already implements some other parameterization of the <literal>List</literal>
+ interface (for example, <literal>List<Integer></literal> then a compilation error will result since a
+ type cannot implement multiple parameterizations of the same generic interface type.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>declare parents: <T> org.xyz..*<T> extends Base<T></term>
+ <listitem>
+ <para>All generic types declared in a package beginning with <literal>org.xyz</literal> and with a
+ single unbounded type parameter, extend the generic type <literal>Base<T></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>declare parents: <T> org.xyz..*<T> extends Base<S></term>
+ <listitem>
+ <para>Results in a compilation error (unless <literal>S</literal> is a type) since <literal>S</literal> is
+ not bound in the type pattern.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ </sect2>
+
<sect2>
- <title></title>
+ <title>Declare Soft</title>
+ <para>It is an error to use a generic or parameterized type as the softened exception type in a declare soft statement. Java 5 does
+ not permit a generic class to be a direct or indirect subtype of <literal>Throwable</literal> (JLS 8.1.2).</para>
</sect2>
<sect2>
- <title></title>
+ <title>Parameterized Aspects</title>
+
+ <para>
+ AspectJ 5 allows an <emphasis>abstract</emphasis> aspect to be declared as a generic type. Any concrete
+ aspect extending a generic abstract aspect must extend a parameterized version of the abstract aspect.
+ Wildcards are not permitted in this parameterization.
+ </para>
+
+ <para>Given the aspect declaration:</para>
+
+ <programlisting><![CDATA[
+ public abstract aspect ParentChildRelationship<P,C> {
+ ...
+ }
+ ]]></programlisting>
+
+ <para>then</para>
+
+ <variablelist>
+
+ <varlistentry>
+ <term>public aspect FilesInFolders extends ParentChildRelationship<Folder,File> {...</term>
+ <listitem>
+ <para>declares a concrete sub-aspect, <literal>FilesInFolders</literal> which extends the
+ parameterized abstract aspect <literal>ParentChildRelationship<Folder,File></literal>.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>public aspect FilesInFolders extends ParentChildRelationship {...</term>
+ <listitem>
+ <para>results in a compilation error since the <literal>ParentChildRelationship</literal> aspect must
+ be fully parameterized.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>public aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T></term>
+ <listitem>
+ <para>results in a compilation error since concrete aspects may not have type parameters.
+ </para>
+ </listitem>
+ </varlistentry>
+
+ <varlistentry>
+ <term>public abstract aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T></term>
+ <listitem>
+ <para>declares a sub-aspect of <literal>ParentChildRelationship</literal> in which <literal>Folder</literal>
+ plays the role of parent (is bound to the type variable <literal>P</literal>).
+ </para>
+ </listitem>
+ </varlistentry>
+
+ </variablelist>
+
+ <para>An exception to the rule that concrete aspects may not be generic is a pertypewithin aspect, which
+ may be declared with a single unbounded type parameter. This is discussed in the chapter on <xref
+ linkend="pertypewithin" />.</para>
+
+ <para>The type parameter variables from a generic aspect declaration may be used in place of a type within any
+ member of the aspect. For example, we can declare a <literal>ParentChildRelationship</literal> aspect to
+ manage the bi-directional relationship between parent and child nodes as follows:
+ </para>
+
+ <programlisting><![CDATA[
+ public abstract aspect ParentChildRelationship<P,C> {
+
+ /**
+ * Parents contain a list of children
+ */
+ private List<C> P.children;
+
+ /**
+ * Each child has a parent
+ */
+ private P C.parent;
+
+ /**
+ * ensure bi-directional navigation on adding a child
+ */
+ public void P.addChild(C child) {
+ if (child.parent != null) {
+ child.parent.removeChild(child);
+ }
+ children.add(child);
+ child.parent = this;
+ }
+
+ /**
+ * ensure bi-directional navigation on removing a child
+ */
+ public void P.removeChild(C child) {
+ if (children.remove(child)) {
+ child.parent = null;
+ }
+ }
+
+ /**
+ * ensure bi-directional navigation on setting parent
+ */
+ public void C.setParent(P parent) {
+ parent.addChild(this);
+ }
+
+ public pointcut addingChild(P p, C c) :
+ execution(* P.addChild(C)) && this(p) && args(c);
+
+ public pointcut removingChild(P p, C c) :
+ execution(* P.removeChild(C)) && this(p) && args(c);
+ }
+ ]]></programlisting>
+
+ <para>
+ Note in the above example how the type parameters <literal>P</literal> and <literal>C</literal> can be
+ used in inter-type declarations, pointcut expressions, and any other member of the aspect type.
+ </para>
+
+ <para>
+ The example aspect captures the protocol for managing a bi-directional parent-child relationship between
+ any two types playing the role of parent and child. In a compiler implementation managing an abstract syntax
+ tree (AST) in which AST nodes may contain other AST nodes we could declare the concrete aspect:
+ </para>
+
+ <programlisting><![CDATA[
+ public aspect ASTNodeContainment extends ParentChildRelationship<ASTNode,ASTNode> {
+
+ before(ASTNode parent, ASTNode child) : addingChild(parent, child) {
+ ...
+ }
+
+ }
+ ]]></programlisting>
+
+ <para>
+ As a result of this declaration, <literal>ASTNode</literal> gains members:
+ </para>
+
+ <simplelist>
+ <member><literal>List<ASTNode> children</literal></member>
+ <member><literal>ASTNode parent</literal></member>
+ <member><literal>void addChild(ASTNode child)</literal></member>
+ <member><literal>void removeChild(ASTNode child)</literal></member>
+ <member><literal>void setParent(ASTNode parent)</literal></member>
+ </simplelist>
+
+ <para>
+ In a system managing files and folders, we could declare the concrete aspect:
+ </para>
+
+ <programlisting><![CDATA[
+ public aspect FilesInFolders extends ParentChildRelationship<Folder,File> {
+
+ }
+ ]]></programlisting>
+
+ <para>
+ As a result of this declaration, <literal>Folder</literal> gains members:
+ </para>
+
+ <simplelist>
+ <member><literal>List<File> children</literal></member>
+ <member><literal>void addChild(File child)</literal></member>
+ <member><literal>void removeChild(File child)</literal></member>
+ </simplelist>
+
+ <para>and <literal>File</literal> gains members:</para>
+
+ <simplelist>
+ <member><literal>Folder parent</literal></member>
+ <member><literal>void setParent(Folder parent)</literal></member>
+ </simplelist>
+
+ <para>When used in this way, the type parameters in a generic abstract aspect declare
+ <emphasis>roles</emphasis>, and the parameterization of the abstract aspect in the <literal>extends</literal>
+ clause binds types to those roles. This is a case where you may consider departing from the standard practice
+ of using a single letter to represent a type parameter, and instead use a role name. It makes no difference
+ to the compiler which option you choose of course.</para>
+
+ <programlisting><![CDATA[
+ public abstract aspect ParentChildRelationship<Parent,Child> {
+
+ /**
+ * Parents contain a list of children
+ */
+ private List<Child> Parent.children;
+
+ /**
+ * Each child has a parent
+ */
+ private Parent Child.parent;
+
+ /**
+ * ensure bi-directional navigation on adding a child
+ */
+ public void Parent.addChild(Child child) {
+ if (child.parent != null) {
+ child.parent.removeChild(child);
+ }
+ children.add(child);
+ child.parent = this;
+ }
+
+ ...
+ ]]></programlisting>
</sect2>
</sect1>