///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////
// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
-// Version 2.0.1
+// Version 4.4.0
// https://github.com/martinus/unordered_dense
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
-// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
+// Copyright (c) 2022-2023 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
#define ANKERL_UNORDERED_DENSE_H
// see https://semver.org/spec/v2.0.0.html
-#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 2 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes
-#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality
-#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 1 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes
+#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 4 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes
+#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 4 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality
+#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes
// API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/
+
+// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch
+// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ANKERL_UNORDERED_DENSE_VERSION_CONCAT(major, minor, patch) ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch)
#define ANKERL_UNORDERED_DENSE_NAMESPACE \
ANKERL_UNORDERED_DENSE_VERSION_CONCAT( \
# define ANKERL_UNORDERED_DENSE_PACK(decl) __pragma(pack(push, 1)) decl __pragma(pack(pop))
#endif
+// exceptions
+#if defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)
+# define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 1 // NOLINT(cppcoreguidelines-macro-usage)
+#else
+# define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 0 // NOLINT(cppcoreguidelines-macro-usage)
+#endif
+#ifdef _MSC_VER
+# define ANKERL_UNORDERED_DENSE_NOINLINE __declspec(noinline)
+#else
+# define ANKERL_UNORDERED_DENSE_NOINLINE __attribute__((noinline))
+#endif
+
+// defined in unordered_dense.cpp
+#if !defined(ANKERL_UNORDERED_DENSE_EXPORT)
+# define ANKERL_UNORDERED_DENSE_EXPORT
+#endif
+
#if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L
# error ankerl::unordered_dense requires C++17 or higher
#else
# include <iterator> // for pair, distance
# include <limits> // for numeric_limits
# include <memory> // for allocator, allocator_traits, shared_ptr
+# include <optional> // for optional
# include <stdexcept> // for out_of_range
# include <string> // for basic_string
# include <string_view> // for basic_string_view, hash
# include <type_traits> // for enable_if_t, declval, conditional_t, ena...
# include <utility> // for forward, exchange, pair, as_const, piece...
# include <vector> // for vector
+# if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() == 0
+# include <cstdlib> // for abort
+# endif
-# define ANKERL_UNORDERED_DENSE_PMR 0 // NOLINT(cppcoreguidelines-macro-usage)
# if defined(__has_include)
# if __has_include(<memory_resource>)
-# undef ANKERL_UNORDERED_DENSE_PMR
-# define ANKERL_UNORDERED_DENSE_PMR 1 // NOLINT(cppcoreguidelines-macro-usage)
-# include <memory_resource> // for polymorphic_allocator
+# define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage)
+# include <memory_resource> // for polymorphic_allocator
+# elif __has_include(<experimental/memory_resource>)
+# define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage)
+# include <experimental/memory_resource> // for polymorphic_allocator
# endif
# endif
namespace ankerl::unordered_dense {
inline namespace ANKERL_UNORDERED_DENSE_NAMESPACE {
+namespace detail {
+
+# if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS()
+
+// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
+// inlinings more difficult. Throws are also generally the slow path.
+[[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_key_not_found() {
+ throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found");
+}
+[[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_bucket_overflow() {
+ throw std::overflow_error("ankerl::unordered_dense: reached max bucket size, cannot increase size");
+}
+[[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_too_many_elements() {
+ throw std::out_of_range("ankerl::unordered_dense::map::replace(): too many elements");
+}
+
+# else
+
+[[noreturn]] inline void on_error_key_not_found() {
+ abort();
+}
+[[noreturn]] inline void on_error_bucket_overflow() {
+ abort();
+}
+[[noreturn]] inline void on_error_too_many_elements() {
+ abort();
+}
+
+# endif
+
+} // namespace detail
+
// hash ///////////////////////////////////////////////////////////////////////
// This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash
// No big-endian support (because different values on different machines don't matter),
-// hardcodes seed and the secret, reformattes the code, and clang-tidy fixes.
+// hardcodes seed and the secret, reformats the code, and clang-tidy fixes.
namespace detail::wyhash {
-static inline void mum(uint64_t* a, uint64_t* b) {
+inline void mum(uint64_t* a, uint64_t* b) {
# if defined(__SIZEOF_INT128__)
__uint128_t r = *a;
r *= *b;
}
// multiply and xor mix function, aka MUM
-[[nodiscard]] static inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
+[[nodiscard]] inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
mum(&a, &b);
return a ^ b;
}
// read functions. WARNING: we don't care about endianness, so results are different on big endian!
-[[nodiscard]] static inline auto r8(const uint8_t* p) -> uint64_t {
+[[nodiscard]] inline auto r8(const uint8_t* p) -> uint64_t {
uint64_t v{};
std::memcpy(&v, p, 8U);
return v;
}
-[[nodiscard]] static inline auto r4(const uint8_t* p) -> uint64_t {
+[[nodiscard]] inline auto r4(const uint8_t* p) -> uint64_t {
uint32_t v{};
std::memcpy(&v, p, 4);
return v;
}
// reads 1, 2, or 3 bytes
-[[nodiscard]] static inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
+[[nodiscard]] inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
}
-[[maybe_unused]] [[nodiscard]] static inline auto hash(void const* key, size_t len) -> uint64_t {
+[[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, size_t len) -> uint64_t {
static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f),
UINT64_C(0xe7037ed1a0b428db),
UINT64_C(0x8ebc6af09c88c6e3),
return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed));
}
-[[nodiscard]] static inline auto hash(uint64_t x) -> uint64_t {
+[[nodiscard]] inline auto hash(uint64_t x) -> uint64_t {
return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15));
}
} // namespace detail::wyhash
-template <typename T, typename Enable = void>
+ANKERL_UNORDERED_DENSE_EXPORT template <typename T, typename Enable = void>
struct hash {
auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
-> uint64_t {
}
};
+template <typename... Args>
+struct tuple_hash_helper {
+ // Converts the value into 64bit. If it is an integral type, just cast it. Mixing is doing the rest.
+ // If it isn't an integral we need to hash it.
+ template <typename Arg>
+ [[nodiscard]] constexpr static auto to64(Arg const& arg) -> uint64_t {
+ if constexpr (std::is_integral_v<Arg> || std::is_enum_v<Arg>) {
+ return static_cast<uint64_t>(arg);
+ } else {
+ return hash<Arg>{}(arg);
+ }
+ }
+
+ [[nodiscard]] static auto mix64(uint64_t state, uint64_t v) -> uint64_t {
+ return detail::wyhash::mix(state + v, uint64_t{0x9ddfea08eb382d69});
+ }
+
+ // Creates a buffer that holds all the data from each element of the tuple. If possible we memcpy the data directly. If
+ // not, we hash the object and use this for the array. Size of the array is known at compile time, and memcpy is optimized
+ // away, so filling the buffer is highly efficient. Finally, call wyhash with this buffer.
+ template <typename T, std::size_t... Idx>
+ [[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...>) noexcept -> uint64_t {
+ auto h = uint64_t{};
+ ((h = mix64(h, to64(std::get<Idx>(t)))), ...);
+ return h;
+ }
+};
+
+template <typename... Args>
+struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> {
+ using is_avalanching = void;
+ auto operator()(std::tuple<Args...> const& t) const noexcept -> uint64_t {
+ return tuple_hash_helper<Args...>::calc_hash(t, std::index_sequence_for<Args...>{});
+ }
+};
+
+template <typename A, typename B>
+struct hash<std::pair<A, B>> : tuple_hash_helper<A, B> {
+ using is_avalanching = void;
+ auto operator()(std::pair<A, B> const& t) const noexcept -> uint64_t {
+ return tuple_hash_helper<A, B>::calc_hash(t, std::index_sequence_for<A, B>{});
+ }
+};
+
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
# define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \
template <> \
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char);
-# if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L
+# if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L && defined(__cpp_char8_t)
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t);
# endif
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t);
template <typename Mapped>
constexpr bool is_map_v = !std::is_void_v<Mapped>;
+// clang-format off
template <typename Hash, typename KeyEqual>
-constexpr bool is_transparent_v = is_detected_v<detect_is_transparent, Hash>&& is_detected_v<detect_is_transparent, KeyEqual>;
+constexpr bool is_transparent_v = is_detected_v<detect_is_transparent, Hash> && is_detected_v<detect_is_transparent, KeyEqual>;
+// clang-format on
template <typename From, typename To1, typename To2>
constexpr bool is_neither_convertible_v = !std::is_convertible_v<From, To1> && !std::is_convertible_v<From, To2>;
template <typename T>
constexpr bool has_reserve = is_detected_v<detect_reserve, T>;
+// base type for map has mapped_type
+template <class T>
+struct base_table_type_map {
+ using mapped_type = T;
+};
+
+// base type for set doesn't have mapped_type
+struct base_table_type_set {};
+
+} // namespace detail
+
+// Very much like std::deque, but faster for indexing (in most cases). As of now this doesn't implement the full std::vector
+// API, but merely what's necessary to work as an underlying container for ankerl::unordered_dense::{map, set}.
+// It allocates blocks of equal size and puts them into the m_blocks vector. That means it can grow simply by adding a new
+// block to the back of m_blocks, and doesn't double its size like an std::vector. The disadvantage is that memory is not
+// linear and thus there is one more indirection necessary for indexing.
+template <typename T, typename Allocator = std::allocator<T>, size_t MaxSegmentSizeBytes = 4096>
+class segmented_vector {
+ template <bool IsConst>
+ class iter_t;
+
+public:
+ using allocator_type = Allocator;
+ using pointer = typename std::allocator_traits<allocator_type>::pointer;
+ using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
+ using difference_type = typename std::allocator_traits<allocator_type>::difference_type;
+ using value_type = T;
+ using size_type = std::size_t;
+ using reference = T&;
+ using const_reference = T const&;
+ using iterator = iter_t<false>;
+ using const_iterator = iter_t<true>;
+
+private:
+ using vec_alloc = typename std::allocator_traits<Allocator>::template rebind_alloc<pointer>;
+ std::vector<pointer, vec_alloc> m_blocks{};
+ size_t m_size{};
+
+ // Calculates the maximum number for x in (s << x) <= max_val
+ static constexpr auto num_bits_closest(size_t max_val, size_t s) -> size_t {
+ auto f = size_t{0};
+ while (s << (f + 1) <= max_val) {
+ ++f;
+ }
+ return f;
+ }
+
+ using self_t = segmented_vector<T, Allocator, MaxSegmentSizeBytes>;
+ static constexpr auto num_bits = num_bits_closest(MaxSegmentSizeBytes, sizeof(T));
+ static constexpr auto num_elements_in_block = 1U << num_bits;
+ static constexpr auto mask = num_elements_in_block - 1U;
+
+ /**
+ * Iterator class doubles as const_iterator and iterator
+ */
+ template <bool IsConst>
+ class iter_t {
+ using ptr_t = typename std::conditional_t<IsConst, segmented_vector::const_pointer const*, segmented_vector::pointer*>;
+ ptr_t m_data{};
+ size_t m_idx{};
+
+ template <bool B>
+ friend class iter_t;
+
+ public:
+ using difference_type = segmented_vector::difference_type;
+ using value_type = T;
+ using reference = typename std::conditional_t<IsConst, value_type const&, value_type&>;
+ using pointer = typename std::conditional_t<IsConst, segmented_vector::const_pointer, segmented_vector::pointer>;
+ using iterator_category = std::forward_iterator_tag;
+
+ iter_t() noexcept = default;
+
+ template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
+ // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions)
+ constexpr iter_t(iter_t<OtherIsConst> const& other) noexcept
+ : m_data(other.m_data)
+ , m_idx(other.m_idx) {}
+
+ constexpr iter_t(ptr_t data, size_t idx) noexcept
+ : m_data(data)
+ , m_idx(idx) {}
+
+ template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
+ constexpr auto operator=(iter_t<OtherIsConst> const& other) noexcept -> iter_t& {
+ m_data = other.m_data;
+ m_idx = other.m_idx;
+ return *this;
+ }
+
+ constexpr auto operator++() noexcept -> iter_t& {
+ ++m_idx;
+ return *this;
+ }
+
+ constexpr auto operator+(difference_type diff) noexcept -> iter_t {
+ return {m_data, static_cast<size_t>(static_cast<difference_type>(m_idx) + diff)};
+ }
+
+ template <bool OtherIsConst>
+ constexpr auto operator-(iter_t<OtherIsConst> const& other) noexcept -> difference_type {
+ return static_cast<difference_type>(m_idx) - static_cast<difference_type>(other.m_idx);
+ }
+
+ constexpr auto operator*() const noexcept -> reference {
+ return m_data[m_idx >> num_bits][m_idx & mask];
+ }
+
+ constexpr auto operator->() const noexcept -> pointer {
+ return &m_data[m_idx >> num_bits][m_idx & mask];
+ }
+
+ template <bool O>
+ constexpr auto operator==(iter_t<O> const& o) const noexcept -> bool {
+ return m_idx == o.m_idx;
+ }
+
+ template <bool O>
+ constexpr auto operator!=(iter_t<O> const& o) const noexcept -> bool {
+ return !(*this == o);
+ }
+ };
+
+ // slow path: need to allocate a new segment every once in a while
+ void increase_capacity() {
+ auto ba = Allocator(m_blocks.get_allocator());
+ pointer block = std::allocator_traits<Allocator>::allocate(ba, num_elements_in_block);
+ m_blocks.push_back(block);
+ }
+
+ // Moves everything from other
+ void append_everything_from(segmented_vector&& other) {
+ reserve(size() + other.size());
+ for (auto&& o : other) {
+ emplace_back(std::move(o));
+ }
+ }
+
+ // Copies everything from other
+ void append_everything_from(segmented_vector const& other) {
+ reserve(size() + other.size());
+ for (auto const& o : other) {
+ emplace_back(o);
+ }
+ }
+
+ void dealloc() {
+ auto ba = Allocator(m_blocks.get_allocator());
+ for (auto ptr : m_blocks) {
+ std::allocator_traits<Allocator>::deallocate(ba, ptr, num_elements_in_block);
+ }
+ }
+
+ [[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(size_t capacity) {
+ return (capacity + num_elements_in_block - 1U) / num_elements_in_block;
+ }
+
+public:
+ segmented_vector() = default;
+
+ // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions)
+ segmented_vector(Allocator alloc)
+ : m_blocks(vec_alloc(alloc)) {}
+
+ segmented_vector(segmented_vector&& other, Allocator alloc)
+ : segmented_vector(alloc) {
+ *this = std::move(other);
+ }
+
+ segmented_vector(segmented_vector const& other, Allocator alloc)
+ : m_blocks(vec_alloc(alloc)) {
+ append_everything_from(other);
+ }
+
+ segmented_vector(segmented_vector&& other) noexcept
+ : segmented_vector(std::move(other), get_allocator()) {}
+
+ segmented_vector(segmented_vector const& other) {
+ append_everything_from(other);
+ }
+
+ auto operator=(segmented_vector const& other) -> segmented_vector& {
+ if (this == &other) {
+ return *this;
+ }
+ clear();
+ append_everything_from(other);
+ return *this;
+ }
+
+ auto operator=(segmented_vector&& other) noexcept -> segmented_vector& {
+ clear();
+ dealloc();
+ if (other.get_allocator() == get_allocator()) {
+ m_blocks = std::move(other.m_blocks);
+ m_size = std::exchange(other.m_size, {});
+ } else {
+ // make sure to construct with other's allocator!
+ m_blocks = std::vector<pointer, vec_alloc>(vec_alloc(other.get_allocator()));
+ append_everything_from(std::move(other));
+ }
+ return *this;
+ }
+
+ ~segmented_vector() {
+ clear();
+ dealloc();
+ }
+
+ [[nodiscard]] constexpr auto size() const -> size_t {
+ return m_size;
+ }
+
+ [[nodiscard]] constexpr auto capacity() const -> size_t {
+ return m_blocks.size() * num_elements_in_block;
+ }
+
+ // Indexing is highly performance critical
+ [[nodiscard]] constexpr auto operator[](size_t i) const noexcept -> T const& {
+ return m_blocks[i >> num_bits][i & mask];
+ }
+
+ [[nodiscard]] constexpr auto operator[](size_t i) noexcept -> T& {
+ return m_blocks[i >> num_bits][i & mask];
+ }
+
+ [[nodiscard]] constexpr auto begin() -> iterator {
+ return {m_blocks.data(), 0U};
+ }
+ [[nodiscard]] constexpr auto begin() const -> const_iterator {
+ return {m_blocks.data(), 0U};
+ }
+ [[nodiscard]] constexpr auto cbegin() const -> const_iterator {
+ return {m_blocks.data(), 0U};
+ }
+
+ [[nodiscard]] constexpr auto end() -> iterator {
+ return {m_blocks.data(), m_size};
+ }
+ [[nodiscard]] constexpr auto end() const -> const_iterator {
+ return {m_blocks.data(), m_size};
+ }
+ [[nodiscard]] constexpr auto cend() const -> const_iterator {
+ return {m_blocks.data(), m_size};
+ }
+
+ [[nodiscard]] constexpr auto back() -> reference {
+ return operator[](m_size - 1);
+ }
+ [[nodiscard]] constexpr auto back() const -> const_reference {
+ return operator[](m_size - 1);
+ }
+
+ void pop_back() {
+ back().~T();
+ --m_size;
+ }
+
+ [[nodiscard]] auto empty() const {
+ return 0 == m_size;
+ }
+
+ void reserve(size_t new_capacity) {
+ m_blocks.reserve(calc_num_blocks_for_capacity(new_capacity));
+ while (new_capacity > capacity()) {
+ increase_capacity();
+ }
+ }
+
+ [[nodiscard]] auto get_allocator() const -> allocator_type {
+ return allocator_type{m_blocks.get_allocator()};
+ }
+
+ template <class... Args>
+ auto emplace_back(Args&&... args) -> reference {
+ if (m_size == capacity()) {
+ increase_capacity();
+ }
+ auto* ptr = static_cast<void*>(&operator[](m_size));
+ auto& ref = *new (ptr) T(std::forward<Args>(args)...);
+ ++m_size;
+ return ref;
+ }
+
+ void clear() {
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ for (size_t i = 0, s = size(); i < s; ++i) {
+ operator[](i).~T();
+ }
+ }
+ m_size = 0;
+ }
+
+ void shrink_to_fit() {
+ auto ba = Allocator(m_blocks.get_allocator());
+ auto num_blocks_required = calc_num_blocks_for_capacity(m_size);
+ while (m_blocks.size() > num_blocks_required) {
+ std::allocator_traits<Allocator>::deallocate(ba, m_blocks.back(), num_elements_in_block);
+ m_blocks.pop_back();
+ }
+ m_blocks.shrink_to_fit();
+ }
+};
+
+namespace detail {
+
// This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set.
template <class Key,
class T, // when void, treat it as a set.
class Hash,
class KeyEqual,
class AllocatorOrContainer,
- class Bucket>
-class table {
+ class Bucket,
+ bool IsSegmented>
+class table : public std::conditional_t<is_map_v<T>, base_table_type_map<T>, base_table_type_set> {
+ using underlying_value_type = typename std::conditional_t<is_map_v<T>, std::pair<Key, T>, Key>;
+ using underlying_container_type = std::conditional_t<IsSegmented,
+ segmented_vector<underlying_value_type, AllocatorOrContainer>,
+ std::vector<underlying_value_type, AllocatorOrContainer>>;
+
public:
- using value_container_type = std::conditional_t<
- is_detected_v<detect_iterator, AllocatorOrContainer>,
- AllocatorOrContainer,
- typename std::vector<typename std::conditional_t<std::is_void_v<T>, Key, std::pair<Key, T>>, AllocatorOrContainer>>;
+ using value_container_type = std::
+ conditional_t<is_detected_v<detect_iterator, AllocatorOrContainer>, AllocatorOrContainer, underlying_container_type>;
private:
using bucket_alloc =
typename std::allocator_traits<typename value_container_type::allocator_type>::template rebind_alloc<Bucket>;
using bucket_alloc_traits = std::allocator_traits<bucket_alloc>;
- static constexpr uint8_t initial_shifts = 64 - 3; // 2^(64-m_shift) number of buckets
+ static constexpr uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets
static constexpr float default_max_load_factor = 0.8F;
public:
using key_type = Key;
- using mapped_type = T;
using value_type = typename value_container_type::value_type;
using size_type = typename value_container_type::size_type;
using difference_type = typename value_container_type::difference_type;
using const_reference = typename value_container_type::const_reference;
using pointer = typename value_container_type::pointer;
using const_pointer = typename value_container_type::const_pointer;
- using iterator = typename value_container_type::iterator;
using const_iterator = typename value_container_type::const_iterator;
+ using iterator = std::conditional_t<is_map_v<T>, typename value_container_type::iterator, const_iterator>;
using bucket_type = Bucket;
private:
static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy");
value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes.
- typename std::allocator_traits<bucket_alloc>::pointer m_buckets{};
+ using bucket_pointer = typename std::allocator_traits<bucket_alloc>::pointer;
+ bucket_pointer m_buckets{};
size_t m_num_buckets = 0;
size_t m_max_bucket_capacity = 0;
float m_max_load_factor = default_max_load_factor;
}
// Helper to access bucket through pointer types
- [[nodiscard]] static constexpr auto at(typename std::allocator_traits<bucket_alloc>::pointer bucket_ptr, size_t offset)
- -> Bucket& {
+ [[nodiscard]] static constexpr auto at(bucket_pointer bucket_ptr, size_t offset) -> Bucket& {
return *(bucket_ptr + static_cast<typename std::allocator_traits<bucket_alloc>::difference_type>(offset));
}
}
[[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& {
- if constexpr (std::is_void_v<T>) {
- return vt;
- } else {
+ if constexpr (is_map_v<T>) {
return vt.first;
+ } else {
+ return vt;
}
}
}
[[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t {
- return std::min(max_bucket_count(), size_t{1} << (64U - shifts));
+ return (std::min)(max_bucket_count(), size_t{1} << (64U - shifts));
}
[[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t {
// assumes m_values has data, m_buckets=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS
void copy_buckets(table const& other) {
- if (!empty()) {
+ // assumes m_values has already the correct data copied over.
+ if (empty()) {
+ // when empty, at least allocate an initial buckets and clear them.
+ allocate_buckets_from_shift();
+ clear_buckets();
+ } else {
m_shifts = other.m_shifts;
allocate_buckets_from_shift();
std::memcpy(m_buckets, other.m_buckets, sizeof(Bucket) * bucket_count());
* True when no element can be added any more without increasing the size
*/
[[nodiscard]] auto is_full() const -> bool {
- return size() >= m_max_bucket_capacity;
+ return size() > m_max_bucket_capacity;
}
void deallocate_buckets() {
auto ba = bucket_alloc(m_values.get_allocator());
if (nullptr != m_buckets) {
bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count());
+ m_buckets = nullptr;
}
- m_buckets = nullptr;
m_num_buckets = 0;
m_max_bucket_capacity = 0;
}
}
void increase_size() {
- if (ANKERL_UNORDERED_DENSE_UNLIKELY(m_max_bucket_capacity == max_bucket_count())) {
- throw std::overflow_error("ankerl::unordered_dense: reached max bucket size, cannot increase size");
+ if (m_max_bucket_capacity == max_bucket_count()) {
+ // remove the value again, we can't add it!
+ m_values.pop_back();
+ on_error_bucket_overflow();
}
--m_shifts;
deallocate_buckets();
clear_and_fill_buckets_from_values();
}
- void do_erase(value_idx_type bucket_idx) {
+ template <typename Op>
+ void do_erase(value_idx_type bucket_idx, Op handle_erased_value) {
auto const value_idx_to_remove = at(m_buckets, bucket_idx).m_value_idx;
// shift down until either empty or an element with correct spot is found
bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx));
}
at(m_buckets, bucket_idx) = {};
+ handle_erased_value(std::move(m_values[value_idx_to_remove]));
// update m_values
if (value_idx_to_remove != m_values.size() - 1) {
m_values.pop_back();
}
- template <typename K>
- auto do_erase_key(K&& key) -> size_t {
+ template <typename K, typename Op>
+ auto do_erase_key(K&& key, Op handle_erased_value) -> size_t {
if (empty()) {
return 0;
}
if (dist_and_fingerprint != at(m_buckets, bucket_idx).m_dist_and_fingerprint) {
return 0;
}
- do_erase(bucket_idx);
+ do_erase(bucket_idx, handle_erased_value);
return 1;
}
return it_isinserted;
}
- template <typename K, typename... Args>
- auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, value_idx_type bucket_idx, K&& key, Args&&... args)
+ template <typename... Args>
+ auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, value_idx_type bucket_idx, Args&&... args)
-> std::pair<iterator, bool> {
// emplace the new value. If that throws an exception, no harm done; index is still in a valid state
- m_values.emplace_back(std::piecewise_construct,
- std::forward_as_tuple(std::forward<K>(key)),
- std::forward_as_tuple(std::forward<Args>(args)...));
+ m_values.emplace_back(std::forward<Args>(args)...);
- // place element and shift up until we find an empty spot
auto value_idx = static_cast<value_idx_type>(m_values.size() - 1);
- place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
+ if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) {
+ increase_size();
+ } else {
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
+ }
+
+ // place element and shift up until we find an empty spot
return {begin() + static_cast<difference_type>(value_idx), true};
}
template <typename K, typename... Args>
auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> {
- if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) {
- increase_size();
- }
-
auto hash = mixed_hash(key);
auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
auto bucket_idx = bucket_idx_from_hash(hash);
while (true) {
auto* bucket = &at(m_buckets, bucket_idx);
if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) {
- if (m_equal(key, m_values[bucket->m_value_idx].first)) {
+ if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) {
return {begin() + static_cast<difference_type>(bucket->m_value_idx), false};
}
} else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) {
- return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key), std::forward<Args>(args)...);
+ return do_place_element(dist_and_fingerprint,
+ bucket_idx,
+ std::piecewise_construct,
+ std::forward_as_tuple(std::forward<K>(key)),
+ std::forward_as_tuple(std::forward<Args>(args)...));
}
dist_and_fingerprint = dist_inc(dist_and_fingerprint);
bucket_idx = next(bucket_idx);
template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true>
auto do_at(K const& key) -> Q& {
- if (auto it = find(key); end() != it) {
+ if (auto it = find(key); ANKERL_UNORDERED_DENSE_LIKELY(end() != it)) {
return it->second;
}
- throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found");
+ on_error_key_not_found();
}
template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true>
}
public:
- table()
- : table(0) {}
-
explicit table(size_t bucket_count,
Hash const& hash = Hash(),
KeyEqual const& equal = KeyEqual(),
, m_equal(equal) {
if (0 != bucket_count) {
reserve(bucket_count);
+ } else {
+ allocate_buckets_from_shift();
+ clear_buckets();
}
}
+ table()
+ : table(0) {}
+
table(size_t bucket_count, allocator_type const& alloc)
: table(bucket_count, Hash(), KeyEqual(), alloc) {}
: table(std::move(other), other.m_values.get_allocator()) {}
table(table&& other, allocator_type const& alloc) noexcept
- : m_values(std::move(other.m_values), alloc)
- , m_buckets(std::exchange(other.m_buckets, nullptr))
- , m_num_buckets(std::exchange(other.m_num_buckets, 0))
- , m_max_bucket_capacity(std::exchange(other.m_max_bucket_capacity, 0))
- , m_max_load_factor(std::exchange(other.m_max_load_factor, default_max_load_factor))
- , m_hash(std::exchange(other.m_hash, {}))
- , m_equal(std::exchange(other.m_equal, {}))
- , m_shifts(std::exchange(other.m_shifts, initial_shifts)) {
- other.m_values.clear();
+ : m_values(alloc) {
+ *this = std::move(other);
}
table(std::initializer_list<value_type> ilist,
: table(init, bucket_count, hash, KeyEqual(), alloc) {}
~table() {
- auto ba = bucket_alloc(m_values.get_allocator());
- bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count());
+ if (nullptr != m_buckets) {
+ auto ba = bucket_alloc(m_values.get_allocator());
+ bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count());
+ }
}
auto operator=(table const& other) -> table& {
return *this;
}
- auto operator=(table&& other) noexcept(
- noexcept(std::is_nothrow_move_assignable_v<value_container_type>&& std::is_nothrow_move_assignable_v<Hash>&&
- std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& {
+ auto operator=(table&& other) noexcept(noexcept(std::is_nothrow_move_assignable_v<value_container_type> &&
+ std::is_nothrow_move_assignable_v<Hash> &&
+ std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& {
if (&other != this) {
deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
m_values = std::move(other.m_values);
- m_buckets = std::exchange(other.m_buckets, nullptr);
- m_num_buckets = std::exchange(other.m_num_buckets, 0);
- m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0);
- m_max_load_factor = std::exchange(other.m_max_load_factor, default_max_load_factor);
- m_hash = std::exchange(other.m_hash, {});
- m_equal = std::exchange(other.m_equal, {});
- m_shifts = std::exchange(other.m_shifts, initial_shifts);
other.m_values.clear();
+
+ // we can only reuse m_buckets when both maps have the same allocator!
+ if (get_allocator() == other.get_allocator()) {
+ m_buckets = std::exchange(other.m_buckets, nullptr);
+ m_num_buckets = std::exchange(other.m_num_buckets, 0);
+ m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0);
+ m_shifts = std::exchange(other.m_shifts, initial_shifts);
+ m_max_load_factor = std::exchange(other.m_max_load_factor, default_max_load_factor);
+ m_hash = std::exchange(other.m_hash, {});
+ m_equal = std::exchange(other.m_equal, {});
+ other.allocate_buckets_from_shift();
+ other.clear_buckets();
+ } else {
+ // set max_load_factor *before* copying the other's buckets, so we have the same
+ // behavior
+ m_max_load_factor = other.m_max_load_factor;
+
+ // copy_buckets sets m_buckets, m_num_buckets, m_max_bucket_capacity, m_shifts
+ copy_buckets(other);
+ // clear's the other's buckets so other is now already usable.
+ other.clear_buckets();
+ m_hash = other.m_hash;
+ m_equal = other.m_equal;
+ }
+ // map "other" is now already usable, it's empty.
}
return *this;
}
}
[[nodiscard]] static constexpr auto max_size() noexcept -> size_t {
- if constexpr (std::numeric_limits<value_idx_type>::max() == std::numeric_limits<size_t>::max()) {
+ if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<size_t>::max)()) {
return size_t{1} << (sizeof(value_idx_type) * 8 - 1);
} else {
return size_t{1} << (sizeof(value_idx_type) * 8);
// nonstandard API:
// Discards the internally held container and replaces it with the one passed. Erases non-unique elements.
auto replace(value_container_type&& container) {
- if (container.size() > max_size()) {
- throw std::out_of_range("ankerl::unordered_dense::map::replace(): too many elements");
+ if (ANKERL_UNORDERED_DENSE_UNLIKELY(container.size() > max_size())) {
+ on_error_too_many_elements();
}
-
auto shifts = calc_shifts_for_size(container.size());
if (0 == m_num_buckets || shifts < m_shifts || container.get_allocator() != m_values.get_allocator()) {
m_shifts = shifts;
break;
}
if (dist_and_fingerprint == bucket.m_dist_and_fingerprint &&
- m_equal(key, m_values[bucket.m_value_idx].first)) {
+ m_equal(key, get_key(m_values[bucket.m_value_idx]))) {
key_found = true;
break;
}
typename KE = KeyEqual,
std::enable_if_t<!is_map_v<Q> && is_transparent_v<H, KE>, bool> = true>
auto emplace(K&& key) -> std::pair<iterator, bool> {
- if (is_full()) {
- increase_size();
- }
-
auto hash = mixed_hash(key);
auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
auto bucket_idx = bucket_idx_from_hash(hash);
}
// value is new, insert element first, so when exception happens we are in a valid state
- m_values.emplace_back(std::forward<K>(key));
- // now place the bucket and shift up until we find an empty spot
- auto value_idx = static_cast<value_idx_type>(m_values.size() - 1);
- place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
- return {begin() + static_cast<difference_type>(value_idx), true};
+ return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key));
}
template <class... Args>
auto emplace(Args&&... args) -> std::pair<iterator, bool> {
- if (is_full()) {
- increase_size();
- }
-
// we have to instantiate the value_type to be able to access the key.
// 1. emplace_back the object so it is constructed. 2. If the key is already there, pop it later in the loop.
auto& key = get_key(m_values.emplace_back(std::forward<Args>(args)...));
// value is new, place the bucket and shift up until we find an empty spot
auto value_idx = static_cast<value_idx_type>(m_values.size() - 1);
- place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
-
+ if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) {
+ // increase_size just rehashes all the data we have in m_values
+ increase_size();
+ } else {
+ // place element and shift up until we find an empty spot
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
+ }
return {begin() + static_cast<difference_type>(value_idx), true};
}
bucket_idx = next(bucket_idx);
}
- do_erase(bucket_idx);
+ do_erase(bucket_idx, [](value_type&& /*unused*/) {
+ });
return begin() + static_cast<difference_type>(value_idx_to_remove);
}
+ auto extract(iterator it) -> value_type {
+ auto hash = mixed_hash(get_key(*it));
+ auto bucket_idx = bucket_idx_from_hash(hash);
+
+ auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin());
+ while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) {
+ bucket_idx = next(bucket_idx);
+ }
+
+ auto tmp = std::optional<value_type>{};
+ do_erase(bucket_idx, [&tmp](value_type&& val) {
+ tmp = std::move(val);
+ });
+ return std::move(tmp).value();
+ }
+
+ template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true>
auto erase(const_iterator it) -> iterator {
return erase(begin() + (it - cbegin()));
}
+ template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true>
+ auto extract(const_iterator it) -> value_type {
+ return extract(begin() + (it - cbegin()));
+ }
+
auto erase(const_iterator first, const_iterator last) -> iterator {
auto const idx_first = first - cbegin();
auto const idx_last = last - cbegin();
auto const last_to_end = std::distance(last, cend());
// remove elements from left to right which moves elements from the end back
- auto const mid = idx_first + std::min(first_to_last, last_to_end);
+ auto const mid = idx_first + (std::min)(first_to_last, last_to_end);
auto idx = idx_first;
while (idx != mid) {
erase(begin() + idx);
}
auto erase(Key const& key) -> size_t {
- return do_erase_key(key);
+ return do_erase_key(key, [](value_type&& /*unused*/) {
+ });
+ }
+
+ auto extract(Key const& key) -> std::optional<value_type> {
+ auto tmp = std::optional<value_type>{};
+ do_erase_key(key, [&tmp](value_type&& val) {
+ tmp = std::move(val);
+ });
+ return tmp;
}
template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true>
auto erase(K&& key) -> size_t {
- return do_erase_key(std::forward<K>(key));
+ return do_erase_key(std::forward<K>(key), [](value_type&& /*unused*/) {
+ });
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true>
+ auto extract(K&& key) -> std::optional<value_type> {
+ auto tmp = std::optional<value_type>{};
+ do_erase_key(std::forward<K>(key), [&tmp](value_type&& val) {
+ tmp = std::move(val);
+ });
+ return tmp;
}
- void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type>&&
- std::is_nothrow_swappable_v<Hash>&& std::is_nothrow_swappable_v<KeyEqual>)) {
+ void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type> &&
+ std::is_nothrow_swappable_v<Hash> && std::is_nothrow_swappable_v<KeyEqual>)) {
using std::swap;
swap(other, *this);
}
}
void rehash(size_t count) {
- count = std::min(count, max_size());
- auto shifts = calc_shifts_for_size(std::max(count, size()));
+ count = (std::min)(count, max_size());
+ auto shifts = calc_shifts_for_size((std::max)(count, size()));
if (shifts != m_shifts) {
m_shifts = shifts;
deallocate_buckets();
}
void reserve(size_t capa) {
- capa = std::min(capa, max_size());
+ capa = (std::min)(capa, max_size());
if constexpr (has_reserve<value_container_type>) {
// std::deque doesn't have reserve(). Make sure we only call when available
m_values.reserve(capa);
}
- auto shifts = calc_shifts_for_size(std::max(capa, size()));
+ auto shifts = calc_shifts_for_size((std::max)(capa, size()));
if (0 == m_num_buckets || shifts < m_shifts) {
m_shifts = shifts;
deallocate_buckets();
}
for (auto const& b_entry : b) {
auto it = a.find(get_key(b_entry));
- if constexpr (std::is_void_v<T>) {
- // set: only check that the key is here
- if (a.end() == it) {
+ if constexpr (is_map_v<T>) {
+ // map: check that key is here, then also check that value is the same
+ if (a.end() == it || !(b_entry.second == it->second)) {
return false;
}
} else {
- // map: check that key is here, then also check that value is the same
- if (a.end() == it || !(b_entry.second == it->second)) {
+ // set: only check that the key is here
+ if (a.end() == it) {
return false;
}
}
} // namespace detail
-template <class Key,
- class T,
- class Hash = hash<Key>,
- class KeyEqual = std::equal_to<Key>,
- class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
- class Bucket = bucket_type::standard>
-using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket>;
-
-template <class Key,
- class Hash = hash<Key>,
- class KeyEqual = std::equal_to<Key>,
- class AllocatorOrContainer = std::allocator<Key>,
- class Bucket = bucket_type::standard>
-using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket>;
-
-# if ANKERL_UNORDERED_DENSE_PMR
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
+ class Bucket = bucket_type::standard>
+using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
+ class Bucket = bucket_type::standard>
+using segmented_map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class AllocatorOrContainer = std::allocator<Key>,
+ class Bucket = bucket_type::standard>
+using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class AllocatorOrContainer = std::allocator<Key>,
+ class Bucket = bucket_type::standard>
+using segmented_set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>;
+
+# if defined(ANKERL_UNORDERED_DENSE_PMR)
namespace pmr {
-template <class Key,
- class T,
- class Hash = hash<Key>,
- class KeyEqual = std::equal_to<Key>,
- class Bucket = bucket_type::standard>
-using map = detail::table<Key, T, Hash, KeyEqual, std::pmr::polymorphic_allocator<std::pair<Key, T>>, Bucket>;
-
-template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard>
-using set = detail::table<Key, void, Hash, KeyEqual, std::pmr::polymorphic_allocator<Key>, Bucket>;
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Bucket = bucket_type::standard>
+using map =
+ detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, false>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Bucket = bucket_type::standard>
+using segmented_map =
+ detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, true>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Bucket = bucket_type::standard>
+using set = detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, false>;
+
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Bucket = bucket_type::standard>
+using segmented_set =
+ detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, true>;
} // namespace pmr
namespace std { // NOLINT(cert-dcl58-cpp)
-template <class Key, class T, class Hash, class KeyEqual, class AllocatorOrContainer, class Bucket, class Pred>
-auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket>& map, Pred pred)
- -> size_t {
- using map_t = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket>;
+ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
+ class T,
+ class Hash,
+ class KeyEqual,
+ class AllocatorOrContainer,
+ class Bucket,
+ class Pred,
+ bool IsSegmented>
+// NOLINTNEXTLINE(cert-dcl58-cpp)
+auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>& map,
+ Pred pred) -> size_t {
+ using map_t = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>;
// going back to front because erase() invalidates the end iterator
auto const old_size = map.size();
}
}
- return map.size() - old_size;
+ return old_size - map.size();
}
} // namespace std