-- Check ROC curve and AUC in the ML literature
spam_score_threshold = nil, -- neural score threshold for spam (must be 0..1 or nil to disable)
ham_score_threshold = nil, -- neural score threshold for ham (must be 0..1 or nil to disable)
+ flat_threshold_curve = false, -- use binary classification 0/1 when threshold is reached
symbol_spam = 'NEURAL_SPAM',
symbol_ham = 'NEURAL_HAM',
max_inputs = nil, -- when PCA is used
local result = score
if not rule.spam_score_threshold or result >= rule.spam_score_threshold then
- task:insert_result(rule.symbol_spam, result, symscore)
+ if rule.flat_threshold_curve then
+ task:insert_result(rule.symbol_spam, 1.0, symscore)
+ else
+ task:insert_result(rule.symbol_spam, result, symscore)
+ end
else
lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (spam_score_threshold)',
rule.prefix, set.name, set.ann.version, symscore,
local result = -(score)
if not rule.ham_score_threshold or result >= rule.ham_score_threshold then
- task:insert_result(rule.symbol_ham, result, symscore)
+ if rule.flat_threshold_curve then
+ task:insert_result(rule.symbol_ham, 1.0, symscore)
+ else
+ task:insert_result(rule.symbol_ham, result, symscore)
+ end
else
lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (ham_score_threshold)',
rule.prefix, set.name, set.ann.version, result,