learning_spawned = false,
ann_expire = 60 * 60 * 24 * 2, -- 2 days
hidden_layer_mult = 1.5, -- number of neurons in the hidden layer
+ -- Check ROC curve and AUC in the ML literature
+ spam_score_threshold = nil, -- neural score threshold for spam (must be 0..1 or nil to disable)
+ ham_score_threshold = nil, -- neural score threshold for ham (must be 0..1 or nil to disable)
symbol_spam = 'NEURAL_SPAM',
symbol_ham = 'NEURAL_HAM',
max_inputs = nil, -- when PCA is used
if score > 0 then
local result = score
- task:insert_result(rule.symbol_spam, result, symscore)
+
+ if not rule.spam_score_threshold or result >= rule.spam_score_threshold then
+ task:insert_result(rule.symbol_spam, result, symscore)
+ else
+ lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (spam_score_threshold)',
+ rule.prefix, set.name, set.ann.version, symscore,
+ rule.spam_score_threshold)
+ end
else
local result = -(score)
- task:insert_result(rule.symbol_ham, result, symscore)
+
+ if not rule.ham_score_threshold or result >= rule.ham_score_threshold then
+ task:insert_result(rule.symbol_ham, result, symscore)
+ else
+ lua_util.debugm(N, task, '%s:%s:%s ann score: %s < %s (ham_score_threshold)',
+ rule.prefix, set.name, set.ann.version, result,
+ rule.ham_score_threshold)
+ end
end
end
end