# Rspamd Dependency Info
-| Name | Version | License | Patched | Notes |
-| --- |---------| --- | --- | --- |
-| aho-corasick | ? | LGPL-3.0 | YES | lowercase support |
-| cdb | 1.1.0 | Public Domain / CC0 | NO | |
-| hiredis | 0.13.3 | BSD-3-Clause | YES | many changes |
-| libev | 4.33 | BSD-2-Clause | YES | many changes |
-| lc-btrie | ? | BSD-3-Clause | YES | mempool support |
-| libottery | ? | Public Domain / CC0 | YES | many changes |
-| librdns | ? | BSD-2-Clause | YES | |
-| libucl | ? | BSD-2-Clause | YES | |
-| replxx | 6d93360 | BSD-2-Clause | YES | libicu usage |
-| lua-argparse | 0.7.1 | MIT | NO | |
-| lua-bit | 1.0.2 | MIT | YES | build fixes |
-| lua-fun | ? | MIT | YES | rspamd text |
-| lua-lpeg | 1.0 | MIT | YES | rspamd text + alloc|
-| lua-moses | ? | MIT | NO | |
-| lua-lupa | ? | MIT | NO | |
-| lua-tableshape | ae67256 | MIT | NO | |
-| mumhash | ? | MIT | NO | |
-| ngx-http-parser | 2.2.0 | MIT | YES | spamc support |
-| Mozilla-PublicSuffix | ? | MIT | NO | |
-| snowball | ? | BSD-3-Clause | NO | |
-| t1ha | ? | Zlib | NO | |
-| uthash | 1.9.8 | BSD | YES | |
-| xxhash | 0.8.1 | BSD | NO | |
-| zstd | 1.4.5 | BSD | NO | |
-| google-ced | 37529e6 | Apache 2 | YES | build fixes |
-| kann | ? | MIT | YES | blas/lapack changes|
-| fpconv | ? | Boost | YES | many changes |
-| fastutf8 | ? | MIT | YES | many changes |
-| expected | v1.0 | Public Domain / CC0 | NO | |
-| robin-hood | 3.9.1 | MIT | NO | |
-| frozen | 1.0.1 | Apache 2 | NO | |
-| fmt | 8.1.1 | MIT | NO | |
-| doctest | 2.4.6 | MIT | NO | |
-| function2 | 4.1.0 | Boost | NO | |
+| Name | Version | License | Patched | Notes |
+|------------------------|---------|---------------------| --- | --- |
+| aho-corasick | ? | LGPL-3.0 | YES | lowercase support |
+| cdb | 1.1.0 | Public Domain / CC0 | NO | |
+| hiredis | 0.13.3 | BSD-3-Clause | YES | many changes |
+| libev | 4.33 | BSD-2-Clause | YES | many changes |
+| lc-btrie | ? | BSD-3-Clause | YES | mempool support |
+| libottery | ? | Public Domain / CC0 | YES | many changes |
+| librdns | ? | BSD-2-Clause | YES | |
+| libucl | ? | BSD-2-Clause | YES | |
+| replxx | 6d93360 | BSD-2-Clause | YES | libicu usage |
+| lua-argparse | 0.7.1 | MIT | NO | |
+| lua-bit | 1.0.2 | MIT | YES | build fixes |
+| lua-fun | ? | MIT | YES | rspamd text |
+| lua-lpeg | 1.0 | MIT | YES | rspamd text + alloc|
+| lua-moses | ? | MIT | NO | |
+| lua-lupa | ? | MIT | NO | |
+| lua-tableshape | ae67256 | MIT | NO | |
+| mumhash | ? | MIT | NO | |
+| ngx-http-parser | 2.2.0 | MIT | YES | spamc support |
+| Mozilla-PublicSuffix | ? | MIT | NO | |
+| snowball | ? | BSD-3-Clause | NO | |
+| t1ha | ? | Zlib | NO | |
+| uthash | 1.9.8 | BSD | YES | |
+| xxhash | 0.8.1 | BSD | NO | |
+| zstd | 1.4.5 | BSD | NO | |
+| google-ced | 37529e6 | Apache 2 | YES | build fixes |
+| kann | ? | MIT | YES | blas/lapack changes|
+| fpconv | ? | Boost | YES | many changes |
+| fastutf8 | ? | MIT | YES | many changes |
+| expected | v1.0 | Public Domain / CC0 | NO | |
+| frozen | 1.0.1 | Apache 2 | NO | |
+| fmt | 8.1.1 | MIT | NO | |
+| doctest | 2.4.6 | MIT | NO | |
+| function2 | 4.1.0 | Boost | NO | |
+| ankerl/svector | 1.0.0 | MIT | NO | |
+| ankerl/unordered_dense | 1.0.2 | MIT | NO | |
\ No newline at end of file
--- /dev/null
+MIT License
+
+Copyright (c) 2022 Martin Leitner-Ankerl
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
--- /dev/null
+// ┌─┐┬ ┬┌─┐┌─┐┌┬┐┌─┐┬─┐ Compact SVO optimized vector C++17 or higher
+// └─┐└┐┌┘├┤ │ │ │ │├┬┘ Version 1.0.0
+// └─┘ └┘ └─┘└─┘ ┴ └─┘┴└─ https://github.com/martinus/svector
+//
+// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
+// SPDX-License-Identifier: MIT
+// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ANKERL_SVECTOR_H
+#define ANKERL_SVECTOR_H
+
+// see https://semver.org/spec/v2.0.0.html
+#define ANKERL_SVECTOR_VERSION_MAJOR 1 // incompatible API changes
+#define ANKERL_SVECTOR_VERSION_MINOR 0 // add functionality in a backwards compatible manner
+#define ANKERL_SVECTOR_VERSION_PATCH 0 // backwards compatible bug fixes
+
+// API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/
+#define ANKERL_SVECTOR_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch
+#define ANKERL_SVECTOR_VERSION_CONCAT(major, minor, patch) ANKERL_SVECTOR_VERSION_CONCAT1(major, minor, patch)
+#define ANKERL_SVECTOR_NAMESPACE \
+ ANKERL_SVECTOR_VERSION_CONCAT(ANKERL_SVECTOR_VERSION_MAJOR, ANKERL_SVECTOR_VERSION_MINOR, ANKERL_SVECTOR_VERSION_PATCH)
+
+#include <algorithm>
+#include <array>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <new>
+#include <stdexcept>
+#include <type_traits>
+#include <utility>
+
+namespace ankerl {
+inline namespace ANKERL_SVECTOR_NAMESPACE {
+namespace detail {
+
+template <typename Condition, typename T = void>
+using enable_if_t = typename std::enable_if<Condition::value, T>::type;
+
+template <typename It>
+using is_input_iterator = std::is_base_of<std::input_iterator_tag, typename std::iterator_traits<It>::iterator_category>;
+
+constexpr auto round_up(size_t n, size_t multiple) -> size_t {
+ return ((n + (multiple - 1)) / multiple) * multiple;
+}
+
+template <typename T>
+constexpr auto cx_min(T a, T b) -> T {
+ return a < b ? a : b;
+}
+
+template <typename T>
+constexpr auto cx_max(T a, T b) -> T {
+ return a > b ? a : b;
+}
+
+template <typename T>
+constexpr auto alignment_of_svector() -> size_t {
+ return cx_max(sizeof(void*), std::alignment_of_v<T>);
+}
+
+/**
+ * @brief Calculates sizeof(svector<T, N>) for a given type and inline capacity
+ */
+template <typename T>
+constexpr auto size_of_svector(size_t min_inline_capacity) -> size_t {
+ // + 1 for one byte size in direct mode
+ return round_up(sizeof(T) * min_inline_capacity + 1, alignment_of_svector<T>());
+}
+
+/**
+ * @brief Calculates how many T we can actually store inside of an svector without increasing its sizeof().
+ *
+ * E.g. svector<char, 1> could store 7 bytes even though 1 is specified. This makes sure we don't waste any
+ * of the padding.
+ */
+template <typename T>
+constexpr auto automatic_capacity(size_t min_inline_capacity) -> size_t {
+ return cx_min((size_of_svector<T>(min_inline_capacity) - 1U) / sizeof(T), size_t(127));
+}
+
+/**
+ * Holds size & capacity, a glorified struct.
+ */
+class header {
+ size_t m_size{};
+ size_t const m_capacity;
+
+public:
+ inline explicit header(size_t capacity)
+ : m_capacity{capacity} {}
+
+ [[nodiscard]] inline auto size() const -> size_t {
+ return m_size;
+ }
+
+ [[nodiscard]] inline auto capacity() const -> size_t {
+ return m_capacity;
+ }
+
+ inline void size(size_t s) {
+ m_size = s;
+ }
+};
+
+/**
+ * @brief Holds header (size+capacity) plus an arbitrary number of T.
+ *
+ * To make storage compact, we don't actually store a pointer to T. We don't have to
+ * because we know exactly at which location it begins.
+ */
+template <typename T>
+struct storage : public header {
+ static constexpr auto alignment_of_t = std::alignment_of_v<T>;
+ static constexpr auto max_alignment = std::max(std::alignment_of_v<header>, std::alignment_of_v<T>);
+ static constexpr auto offset_to_data = detail::round_up(sizeof(header), alignment_of_t);
+ static_assert(max_alignment <= __STDCPP_DEFAULT_NEW_ALIGNMENT__);
+
+ explicit storage(size_t capacity)
+ : header(capacity) {}
+
+ auto data() -> T* {
+ auto ptr_to_data = reinterpret_cast<std::byte*>(this) + offset_to_data;
+ return std::launder(reinterpret_cast<T*>(ptr_to_data));
+ }
+
+ /**
+ * @brief Allocates space for storage plus capacity*T objects.
+ *
+ * Checks to make sure that allocation won't overflow.
+ *
+ * @param capacity Number of T to allocate.
+ * @return storage<T>*
+ */
+ static auto alloc(size_t capacity) -> storage<T>* {
+ // make sure we don't overflow!
+ auto mem = sizeof(T) * capacity;
+ if (mem < capacity) {
+ throw std::bad_alloc();
+ }
+ if (offset_to_data + mem < mem) {
+ throw std::bad_alloc();
+ }
+ mem += offset_to_data;
+ if (static_cast<uint64_t>(mem) > static_cast<uint64_t>(std::numeric_limits<std::ptrdiff_t>::max())) {
+ throw std::bad_alloc();
+ }
+
+ void* ptr = ::operator new(offset_to_data + sizeof(T) * capacity);
+ if (nullptr == ptr) {
+ throw std::bad_alloc();
+ }
+ // use void* to ensure we don't use an overload for T*
+ return new (ptr) storage<T>(capacity);
+ }
+};
+
+} // namespace detail
+
+template <typename T, size_t MinInlineCapacity>
+class svector {
+ static_assert(MinInlineCapacity <= 127, "sorry, can't have more than 127 direct elements");
+ static constexpr auto N = detail::automatic_capacity<T>(MinInlineCapacity);
+
+ enum class direction { direct, indirect };
+
+ /**
+ * A buffer to hold the data of the svector Depending on direct/indirect mode, the content it holds is like so:
+ *
+ * direct:
+ * m_data[0] & 1: lowest bit is 1 for direct mode.
+ * m_data[0] >> 1: size for direct mode
+ * Then 0-X bytes unused (padding), and then the actual inline T data.
+ * indirect:
+ * m_data[0] & 1: lowest bit is 0 for indirect mode
+ * m_data[0..7]: stores an uintptr_t, which points to the indirect data.
+ */
+ alignas(detail::alignment_of_svector<T>()) std::array<uint8_t, detail::size_of_svector<T>(MinInlineCapacity)> m_data;
+
+ // direct mode ///////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto is_direct() const -> bool {
+ return (m_data[0] & 1U) != 0U;
+ }
+
+ [[nodiscard]] auto direct_size() const -> size_t {
+ return m_data[0] >> 1U;
+ }
+
+ // sets size of direct mode and mode to direct too.
+ constexpr void set_direct_and_size(size_t s) {
+ m_data[0] = (s << 1U) | 1U;
+ }
+
+ [[nodiscard]] auto direct_data() -> T* {
+ return std::launder(reinterpret_cast<T*>(m_data.data() + std::alignment_of_v<T>));
+ }
+
+ // indirect mode /////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto indirect() -> detail::storage<T>* {
+ detail::storage<T>* ptr; // NOLINT(cppcoreguidelines-init-variables)
+ std::memcpy(&ptr, m_data.data(), sizeof(ptr));
+ return ptr;
+ }
+
+ [[nodiscard]] auto indirect() const -> detail::storage<T> const* {
+ return const_cast<svector*>(this)->indirect(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ void set_indirect(detail::storage<T>* ptr) {
+ std::memcpy(m_data.data(), &ptr, sizeof(ptr));
+
+ // safety check to guarantee the lowest bit is 0
+ if (is_direct()) {
+ throw std::bad_alloc(); // LCOV_EXCL_LINE
+ }
+ }
+
+ // helpers ///////////////////////////////////////////////////////////////
+
+ /**
+ * @brief Moves size objects from source_ptr to target_ptr, and destroys what remains in source_ptr.
+ *
+ * Assumes data is not overlapping
+ */
+ static void uninitialized_move_and_destroy(T* source_ptr, T* target_ptr, size_t size) {
+ if constexpr (std::is_trivially_copyable_v<T>) {
+ std::memcpy(target_ptr, source_ptr, size * sizeof(T));
+ } else {
+ std::uninitialized_move_n(source_ptr, size, target_ptr);
+ std::destroy_n(source_ptr, size);
+ }
+ }
+
+ /**
+ * @brief Reallocates all data when capacity changes.
+ *
+ * if new_capacity <= N chooses direct memory, otherwise indirect.
+ */
+ void realloc(size_t new_capacity) {
+ if (new_capacity <= N) {
+ // put everything into direct storage
+ if (is_direct()) {
+ // direct -> direct: nothing to do!
+ return;
+ }
+
+ // indirect -> direct
+ auto* storage = indirect();
+ uninitialized_move_and_destroy(storage->data(), direct_data(), storage->size());
+ set_direct_and_size(storage->size());
+ delete storage;
+ } else {
+ // put everything into indirect storage
+ auto* storage = detail::storage<T>::alloc(new_capacity);
+ if (is_direct()) {
+ // direct -> indirect
+ uninitialized_move_and_destroy(data<direction::direct>(), storage->data(), size<direction::direct>());
+ storage->size(size<direction::direct>());
+ } else {
+ // indirect -> indirect
+ uninitialized_move_and_destroy(data<direction::indirect>(), storage->data(), size<direction::indirect>());
+ storage->size(size<direction::indirect>());
+ delete indirect();
+ }
+ set_indirect(storage);
+ }
+ }
+
+ /**
+ * @brief Doubles starting_capacity until it is >= size_to_fit.
+ */
+ [[nodiscard]] static auto calculate_new_capacity(size_t size_to_fit, size_t starting_capacity) -> size_t {
+ if (size_to_fit > max_size()) {
+ // not enough space
+ throw std::bad_alloc();
+ }
+
+ if (size_to_fit == 0) {
+ // special handling for 0 so N==0 works
+ return starting_capacity;
+ }
+ // start with at least 1, so N==0 works
+ auto new_capacity = std::max<size_t>(1, starting_capacity);
+
+ // double capacity until its large enough, but make sure we don't overflow
+ while (new_capacity < size_to_fit && new_capacity * 2 > new_capacity) {
+ new_capacity *= 2;
+ }
+ if (new_capacity < size_to_fit) {
+ // got an overflow, set capacity to max
+ new_capacity = max_size();
+ }
+ return std::min(new_capacity, max_size());
+ }
+
+ template <direction D>
+ [[nodiscard]] auto capacity() const -> size_t {
+ if constexpr (D == direction::direct) {
+ return N;
+ } else {
+ return indirect()->capacity();
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto size() const -> size_t {
+ if constexpr (D == direction::direct) {
+ return direct_size();
+ } else {
+ return indirect()->size();
+ }
+ }
+
+ template <direction D>
+ void set_size(size_t s) {
+ if constexpr (D == direction::direct) {
+ set_direct_and_size(s);
+ } else {
+ indirect()->size(s);
+ }
+ }
+
+ void set_size(size_t s) {
+ if (is_direct()) {
+ set_size<direction::direct>(s);
+ } else {
+ set_size<direction::indirect>(s);
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto data() -> T* {
+ if constexpr (D == direction::direct) {
+ return direct_data();
+ } else {
+ return indirect()->data();
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto data() const -> T const* {
+ return const_cast<svector*>(this)->data<D>(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <direction D>
+ void pop_back() {
+ if constexpr (std::is_trivially_destructible_v<T>) {
+ set_size<D>(size<D>() - 1);
+ } else {
+ auto s = size<D>() - 1;
+ (data<D>() + s)->~T();
+ set_size<D>(s);
+ }
+ }
+
+ /**
+ * @brief We need variadic arguments so we can either use copy ctor or default ctor
+ */
+ template <direction D, class... Args>
+ void resize_after_reserve(size_t count, Args&&... args) {
+ auto current_size = size<D>();
+ if (current_size > count) {
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ auto* d = data<D>();
+ std::destroy(d + count, d + current_size);
+ }
+ } else {
+ auto* d = data<D>();
+ for (auto ptr = d + current_size, end = d + count; ptr != end; ++ptr) {
+ new (static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
+ }
+ }
+ set_size<D>(count);
+ }
+
+ // Makes sure that to is not past the end iterator
+ template <direction D>
+ auto erase_checked_end(T const* cfrom, T const* to) -> T* {
+ auto* const erase_begin = const_cast<T*>(cfrom); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ auto* const container_end = data<D>() + size<D>();
+ auto* const erase_end = std::min(const_cast<T*>(to), container_end); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+
+ std::move(erase_end, container_end, erase_begin);
+ auto const num_erased = std::distance(erase_begin, erase_end);
+ std::destroy(container_end - num_erased, container_end);
+ set_size<D>(size<D>() - num_erased);
+ return erase_begin;
+ }
+
+ template <typename It>
+ void assign(It first, It last, std::input_iterator_tag /*unused*/) {
+ clear();
+
+ // TODO this can be made faster, e.g. by setting size only when finished.
+ while (first != last) {
+ push_back(*first);
+ ++first;
+ }
+ }
+
+ template <typename It>
+ void assign(It first, It last, std::forward_iterator_tag /*unused*/) {
+ clear();
+
+ auto s = std::distance(first, last);
+ reserve(s);
+ std::uninitialized_copy(first, last, data());
+ set_size(s);
+ }
+
+ // precondition: all uninitialized
+ void do_move_assign(svector&& other) {
+ if (!other.is_direct()) {
+ // take other's memory, even when empty
+ set_indirect(other.indirect());
+ } else {
+ auto* other_ptr = other.data<direction::direct>();
+ auto s = other.size<direction::direct>();
+ auto* other_end = other_ptr + s;
+
+ std::uninitialized_move(other_ptr, other_end, data<direction::direct>());
+ std::destroy(other_ptr, other_end);
+ set_size(s);
+ }
+ other.set_direct_and_size(0);
+ }
+
+ /**
+ * @brief Shifts data [source_begin, source_end( to the right, starting on target_begin.
+ *
+ * Preconditions:
+ * * contiguous memory
+ * * source_begin <= target_begin
+ * * source_end onwards is uninitialized memory
+ *
+ * Destroys then empty elements in [source_begin, source_end(
+ */
+ static auto shift_right(T* source_begin, T* source_end, T* target_begin) {
+ // 1. uninitialized moves
+ auto const num_moves = std::distance(source_begin, source_end);
+ auto const target_end = target_begin + num_moves;
+ auto const num_uninitialized_move = std::min(num_moves, std::distance(source_end, target_end));
+ std::uninitialized_move(source_end - num_uninitialized_move, source_end, target_end - num_uninitialized_move);
+ std::move_backward(source_begin, source_end - num_uninitialized_move, target_end - num_uninitialized_move);
+ std::destroy(source_begin, std::min(source_end, target_begin));
+ }
+
+ template <direction D>
+ [[nodiscard]] auto make_uninitialized_space_new(size_t s, T* p, size_t count) -> T* {
+ auto target = svector();
+ // we know target is indirect because we're increasing capacity
+ target.reserve(s + count);
+
+ // move everything [begin, pos[
+ auto* target_pos = std::uninitialized_move(data<D>(), p, target.template data<direction::indirect>());
+
+ // move everything [pos, end]
+ std::uninitialized_move(p, data<D>() + s, target_pos + count);
+
+ target.template set_size<direction::indirect>(s + count);
+ *this = std::move(target);
+ return target_pos;
+ }
+
+ template <direction D>
+ [[nodiscard]] auto make_uninitialized_space(T const* pos, size_t count) -> T* {
+ auto* const p = const_cast<T*>(pos); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ auto s = size<D>();
+ if (s + count > capacity<D>()) {
+ return make_uninitialized_space_new<D>(s, p, count);
+ }
+
+ shift_right(p, data<D>() + s, p + count);
+ set_size<D>(s + count);
+ return p;
+ }
+
+ // makes space for uninitialized data of cout elements. Also updates size.
+ [[nodiscard]] auto make_uninitialized_space(T const* pos, size_t count) -> T* {
+ if (is_direct()) {
+ return make_uninitialized_space<direction::direct>(pos, count);
+ }
+ return make_uninitialized_space<direction::indirect>(pos, count);
+ }
+
+ void destroy() {
+ auto const is_dir = is_direct();
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ T* ptr = nullptr;
+ size_t s = 0;
+ if (is_dir) {
+ ptr = data<direction::direct>();
+ s = size<direction::direct>();
+ } else {
+ ptr = data<direction::indirect>();
+ s = size<direction::indirect>();
+ }
+ std::destroy_n(ptr, s);
+ }
+ if (!is_dir) {
+ delete indirect();
+ }
+ }
+
+ // performs a const_cast so we don't need this implementation twice
+ template <direction D>
+ auto at(size_t idx) -> T& {
+ if (idx >= size<D>()) {
+ throw std::out_of_range{"svector: idx out of range"};
+ }
+ auto* ptr = const_cast<T*>(data<D>() + idx); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ return *ptr;
+ } // LCOV_EXCL_LINE why is this single } marked as not covered? gcov bug?
+
+public:
+ using value_type = T;
+ using size_type = size_t;
+ using difference_type = std::ptrdiff_t;
+ using reference = value_type&;
+ using const_reference = value_type const&;
+ using pointer = T*;
+ using const_pointer = T const*;
+ using iterator = T*;
+ using const_iterator = T const*;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+
+ svector() {
+ set_direct_and_size(0);
+ }
+
+ svector(size_t count, T const& value)
+ : svector() {
+ resize(count, value);
+ }
+
+ explicit svector(size_t count)
+ : svector() {
+ reserve(count);
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count);
+ } else {
+ resize_after_reserve<direction::indirect>(count);
+ }
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ svector(InputIt first, InputIt last)
+ : svector() {
+ assign(first, last);
+ }
+
+ svector(svector const& other)
+ : svector() {
+ auto s = other.size();
+ reserve(s);
+ std::uninitialized_copy(other.begin(), other.end(), begin());
+ set_size(s);
+ }
+
+ svector(svector&& other) noexcept
+ : svector() {
+ do_move_assign(std::move(other));
+ }
+
+ svector(std::initializer_list<T> init)
+ : svector(init.begin(), init.end()) {}
+
+ ~svector() {
+ destroy();
+ }
+
+ void assign(size_t count, T const& value) {
+ clear();
+ resize(count, value);
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ void assign(InputIt first, InputIt last) {
+ assign(first, last, typename std::iterator_traits<InputIt>::iterator_category());
+ }
+
+ void assign(std::initializer_list<T> l) {
+ assign(l.begin(), l.end());
+ }
+
+ auto operator=(svector const& other) -> svector& {
+ if (&other == this) {
+ return *this;
+ }
+
+ assign(other.begin(), other.end());
+ return *this;
+ }
+
+ auto operator=(svector&& other) noexcept -> svector& {
+ if (&other == this) {
+ // It doesn't seem to be required to do self-check, but let's do it anyways to be safe
+ return *this;
+ }
+ destroy();
+ do_move_assign(std::move(other));
+ return *this;
+ }
+
+ auto operator=(std::initializer_list<T> l) -> svector& {
+ assign(l.begin(), l.end());
+ return *this;
+ }
+
+ void resize(size_t count) {
+ if (count > capacity()) {
+ reserve(count);
+ }
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count);
+ } else {
+ resize_after_reserve<direction::indirect>(count);
+ }
+ }
+
+ void resize(size_t count, T const& value) {
+ if (count > capacity()) {
+ reserve(count);
+ }
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count, value);
+ } else {
+ resize_after_reserve<direction::indirect>(count, value);
+ }
+ }
+
+ auto reserve(size_t s) {
+ auto old_capacity = capacity();
+ auto new_capacity = calculate_new_capacity(s, old_capacity);
+ if (new_capacity > old_capacity) {
+ realloc(new_capacity);
+ }
+ }
+
+ [[nodiscard]] auto capacity() const -> size_t {
+ if (is_direct()) {
+ return capacity<direction::direct>();
+ }
+ return capacity<direction::indirect>();
+ }
+
+ [[nodiscard]] auto size() const -> size_t {
+ if (is_direct()) {
+ return size<direction::direct>();
+ }
+ return size<direction::indirect>();
+ }
+
+ [[nodiscard]] auto data() -> T* {
+ if (is_direct()) {
+ return direct_data();
+ }
+ return indirect()->data();
+ }
+
+ [[nodiscard]] auto data() const -> T const* {
+ return const_cast<svector*>(this)->data(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <class... Args>
+ auto emplace_back(Args&&... args) -> T& {
+ size_t c; // NOLINT(cppcoreguidelines-init-variables)
+ size_t s; // NOLINT(cppcoreguidelines-init-variables)
+ bool is_dir = is_direct();
+ if (is_dir) {
+ c = capacity<direction::direct>();
+ s = size<direction::direct>();
+ } else {
+ c = capacity<direction::indirect>();
+ s = size<direction::indirect>();
+ }
+
+ if (s == c) {
+ auto new_capacity = calculate_new_capacity(s + 1, c);
+ realloc(new_capacity);
+ // reallocation happened, so we definitely are now in indirect mode
+ is_dir = false;
+ }
+
+ T* ptr; // NOLINT(cppcoreguidelines-init-variables)
+ if (is_dir) {
+ ptr = data<direction::direct>() + s;
+ set_size<direction::direct>(s + 1);
+ } else {
+ ptr = data<direction::indirect>() + s;
+ set_size<direction::indirect>(s + 1);
+ }
+ return *new (static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
+ }
+
+ void push_back(T const& value) {
+ emplace_back(value);
+ }
+
+ void push_back(T&& value) {
+ emplace_back(std::move(value));
+ }
+
+ [[nodiscard]] auto operator[](size_t idx) const -> T const& {
+ return *(data() + idx);
+ }
+
+ [[nodiscard]] auto operator[](size_t idx) -> T& {
+ return *(data() + idx);
+ }
+
+ auto at(size_t idx) -> T& {
+ if (is_direct()) {
+ return at<direction::direct>(idx);
+ }
+ return at<direction::indirect>(idx);
+ }
+
+ auto at(size_t idx) const -> T const& {
+ return const_cast<svector*>(this)->at(idx); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ [[nodiscard]] auto begin() const -> T const* {
+ return data();
+ }
+
+ [[nodiscard]] auto cbegin() const -> T const* {
+ return begin();
+ }
+
+ [[nodiscard]] auto begin() -> T* {
+ return data();
+ }
+
+ [[nodiscard]] auto end() -> T* {
+ if (is_direct()) {
+ return data<direction::direct>() + size<direction::direct>();
+ }
+ return data<direction::indirect>() + size<direction::indirect>();
+ }
+
+ [[nodiscard]] auto end() const -> T const* {
+ return const_cast<svector*>(this)->end(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ [[nodiscard]] auto cend() const -> T const* {
+ return end();
+ }
+
+ [[nodiscard]] auto rbegin() -> reverse_iterator {
+ return reverse_iterator{end()};
+ }
+
+ [[nodiscard]] auto rbegin() const -> const_reverse_iterator {
+ return crbegin();
+ }
+
+ [[nodiscard]] auto crbegin() const -> const_reverse_iterator {
+ return const_reverse_iterator{end()};
+ }
+
+ [[nodiscard]] auto rend() -> reverse_iterator {
+ return reverse_iterator{begin()};
+ }
+
+ [[nodiscard]] auto rend() const -> const_reverse_iterator {
+ return crend();
+ }
+
+ [[nodiscard]] auto crend() const -> const_reverse_iterator {
+ return const_reverse_iterator{begin()};
+ }
+
+ [[nodiscard]] auto front() const -> T const& {
+ return *data();
+ }
+
+ [[nodiscard]] auto front() -> T& {
+ return *data();
+ }
+
+ [[nodiscard]] auto back() -> T& {
+ if (is_direct()) {
+ return *(data<direction::direct>() + size<direction::direct>() - 1);
+ }
+ return *(data<direction::indirect>() + size<direction::indirect>() - 1);
+ }
+
+ [[nodiscard]] auto back() const -> T const& {
+ return const_cast<svector*>(this)->back(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ void clear() {
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ std::destroy(begin(), end());
+ }
+
+ if (is_direct()) {
+ set_size<direction::direct>(0);
+ } else {
+ set_size<direction::indirect>(0);
+ }
+ }
+
+ [[nodiscard]] auto empty() const -> bool {
+ return 0U == size();
+ }
+
+ void pop_back() {
+ if (is_direct()) {
+ pop_back<direction::direct>();
+ } else {
+ pop_back<direction::indirect>();
+ }
+ }
+
+ [[nodiscard]] static auto max_size() -> size_t {
+ return std::numeric_limits<std::ptrdiff_t>::max();
+ }
+
+ void swap(svector& other) {
+ // TODO we could try to do the minimum number of moves
+ std::swap(*this, other);
+ }
+
+ void shrink_to_fit() {
+ // per the standard we wouldn't need to do anything here. But since we are so nice,
+ // let's do the shrink.
+ auto const c = capacity();
+ auto const s = size();
+ if (s >= c) {
+ return;
+ }
+
+ auto new_capacity = calculate_new_capacity(s, N);
+ if (new_capacity == c) {
+ // nothing change!
+ return;
+ }
+
+ realloc(new_capacity);
+ }
+
+ template <class... Args>
+ auto emplace(const_iterator pos, Args&&... args) -> iterator {
+ auto* p = make_uninitialized_space(pos, 1);
+ return new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
+ }
+
+ auto insert(const_iterator pos, T const& value) -> iterator {
+ return emplace(pos, value);
+ }
+
+ auto insert(const_iterator pos, T&& value) -> iterator {
+ return emplace(pos, std::move(value));
+ }
+
+ auto insert(const_iterator pos, size_t count, T const& value) -> iterator {
+ auto* p = make_uninitialized_space(pos, count);
+ std::uninitialized_fill_n(p, count, value);
+ return p;
+ }
+
+ template <typename It>
+ auto insert(const_iterator pos, It first, It last, std::input_iterator_tag /*unused*/) {
+ if (!(first != last)) {
+ return const_cast<T*>(pos); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ // just input_iterator_tag makes this very slow. Let's do the same as the STL.
+ if (pos == end()) {
+ auto s = size();
+ while (first != last) {
+ emplace_back(*first);
+ ++first;
+ }
+ return begin() + s;
+ }
+
+ auto tmp = svector(first, last);
+ return insert(pos, std::make_move_iterator(tmp.begin()), std::make_move_iterator(tmp.end()));
+ }
+
+ template <typename It>
+ auto insert(const_iterator pos, It first, It last, std::forward_iterator_tag /*unused*/) {
+ auto* p = make_uninitialized_space(pos, std::distance(first, last));
+ std::uninitialized_copy(first, last, p);
+ return p;
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ auto insert(const_iterator pos, InputIt first, InputIt last) -> iterator {
+ return insert(pos, first, last, typename std::iterator_traits<InputIt>::iterator_category());
+ }
+
+ auto insert(const_iterator pos, std::initializer_list<T> l) -> iterator {
+ return insert(pos, l.begin(), l.end());
+ }
+
+ auto erase(const_iterator pos) -> iterator {
+ return erase(pos, pos + 1);
+ }
+
+ auto erase(const_iterator first, const_iterator last) -> iterator {
+ if (is_direct()) {
+ return erase_checked_end<direction::direct>(first, last);
+ }
+ return erase_checked_end<direction::indirect>(first, last);
+ }
+};
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator==(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::equal(a.begin(), a.end(), b.begin(), b.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator!=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a == b);
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator<(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator>=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a < b);
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator>(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::lexicographical_compare(b.begin(), b.end(), a.begin(), a.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator<=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a > b);
+}
+
+} // namespace ANKERL_SVECTOR_NAMESPACE
+} // namespace ankerl
+
+// NOLINTNEXTLINE(cert-dcl58-cpp)
+namespace std {
+inline namespace ANKERL_SVECTOR_NAMESPACE {
+
+template <class T, size_t N, class U>
+constexpr auto erase(ankerl::svector<T, N>& sv, U const& value) -> typename ankerl::svector<T, N>::size_type {
+ auto* removed_begin = std::remove(sv.begin(), sv.end(), value);
+ auto num_removed = std::distance(removed_begin, sv.end());
+ sv.erase(removed_begin, sv.end());
+ return num_removed;
+}
+
+template <class T, size_t N, class Pred>
+constexpr auto erase_if(ankerl::svector<T, N>& sv, Pred pred) -> typename ankerl::svector<T, N>::size_type {
+ auto* removed_begin = std::remove_if(sv.begin(), sv.end(), pred);
+ auto num_removed = std::distance(removed_begin, sv.end());
+ sv.erase(removed_begin, sv.end());
+ return num_removed;
+}
+
+} // namespace ANKERL_SVECTOR_NAMESPACE
+} // namespace std
+
+#endif
--- /dev/null
+///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////
+
+// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
+// Version 1.0.2
+// https://github.com/martinus/unordered_dense
+//
+// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
+// SPDX-License-Identifier: MIT
+// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ANKERL_UNORDERED_DENSE_H
+#define ANKERL_UNORDERED_DENSE_H
+
+// see https://semver.org/spec/v2.0.0.html
+#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 1 // incompatible API changes
+#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 0 // add functionality in a backwards compatible manner
+#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 2 // backwards compatible bug fixes
+
+#if __cplusplus < 201703L
+# error ankerl::unordered_dense requires C++17 or higher
+#else
+
+# include <array> // for array
+# include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C
+# include <cstring> // for size_t, memcpy, memset
+# include <functional> // for equal_to, hash
+# include <initializer_list> // for initializer_list
+# include <iterator> // for pair, distance
+# include <limits> // for numeric_limits
+# include <memory> // for allocator, allocator_traits, shared_ptr
+# include <stdexcept> // for out_of_range
+# include <string> // for basic_string
+# include <string_view> // for basic_string_view, hash
+# include <tuple> // for forward_as_tuple
+# include <type_traits> // for enable_if_t, declval, conditional_t, ena...
+# include <utility> // for forward, exchange, pair, as_const, piece...
+# include <vector> // for vector
+
+# define ANKERL_UNORDERED_DENSE_PMR 0
+# if defined(__has_include)
+# if __has_include(<memory_resource>)
+# undef ANKERL_UNORDERED_DENSE_PMR
+# define ANKERL_UNORDERED_DENSE_PMR 1
+# include <memory_resource> // for polymorphic_allocator
+# endif
+# endif
+
+# if defined(_MSC_VER) && defined(_M_X64)
+# include <intrin.h>
+# pragma intrinsic(_umul128)
+# endif
+
+# if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
+# define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1)
+# define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0)
+# else
+# define ANKERL_UNORDERED_DENSE_LIKELY(x) (x)
+# define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x)
+# endif
+
+namespace ankerl::unordered_dense {
+
+// hash ///////////////////////////////////////////////////////////////////////
+
+// This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash
+// No big-endian support (because different values on different machines don't matter),
+// hardcodes seed and the secret, reformattes the code, and clang-tidy fixes.
+namespace detail::wyhash {
+
+static inline void mum(uint64_t* a, uint64_t* b) {
+# if defined(__SIZEOF_INT128__)
+ __uint128_t r = *a;
+ r *= *b;
+ *a = static_cast<uint64_t>(r);
+ *b = static_cast<uint64_t>(r >> 64U);
+# elif defined(_MSC_VER) && defined(_M_X64)
+ *a = _umul128(*a, *b, b);
+# else
+ uint64_t ha = *a >> 32U;
+ uint64_t hb = *b >> 32U;
+ uint64_t la = static_cast<uint32_t>(*a);
+ uint64_t lb = static_cast<uint32_t>(*b);
+ uint64_t hi{};
+ uint64_t lo{};
+ uint64_t rh = ha * hb;
+ uint64_t rm0 = ha * lb;
+ uint64_t rm1 = hb * la;
+ uint64_t rl = la * lb;
+ uint64_t t = rl + (rm0 << 32U);
+ auto c = static_cast<uint64_t>(t < rl);
+ lo = t + (rm1 << 32U);
+ c += static_cast<uint64_t>(lo < t);
+ hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c;
+ *a = lo;
+ *b = hi;
+# endif
+}
+
+// multiply and xor mix function, aka MUM
+[[nodiscard]] static inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
+ mum(&a, &b);
+ return a ^ b;
+}
+
+// read functions. WARNING: we don't care about endianness, so results are different on big endian!
+[[nodiscard]] static inline auto r8(const uint8_t* p) -> uint64_t {
+ uint64_t v{};
+ std::memcpy(&v, p, 8);
+ return v;
+}
+
+[[nodiscard]] static inline auto r4(const uint8_t* p) -> uint64_t {
+ uint32_t v{};
+ std::memcpy(&v, p, 4);
+ return v;
+}
+
+// reads 1, 2, or 3 bytes
+[[nodiscard]] static inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
+ return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
+}
+
+[[nodiscard]] static inline auto hash(void const* key, size_t len) -> uint64_t {
+ static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f),
+ UINT64_C(0xe7037ed1a0b428db),
+ UINT64_C(0x8ebc6af09c88c6e3),
+ UINT64_C(0x589965cc75374cc3)};
+
+ auto const* p = static_cast<uint8_t const*>(key);
+ uint64_t seed = secret[0];
+ uint64_t a{};
+ uint64_t b{};
+ if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) {
+ if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) {
+ a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U));
+ b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U));
+ } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) {
+ a = r3(p, len);
+ b = 0;
+ } else {
+ a = 0;
+ b = 0;
+ }
+ } else {
+ size_t i = len;
+ if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) {
+ uint64_t see1 = seed;
+ uint64_t see2 = seed;
+ do {
+ seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
+ see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1);
+ see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2);
+ p += 48;
+ i -= 48;
+ } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48));
+ seed ^= see1 ^ see2;
+ }
+ while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) {
+ seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
+ i -= 16;
+ p += 16;
+ }
+ a = r8(p + i - 16);
+ b = r8(p + i - 8);
+ }
+
+ return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed));
+}
+
+[[nodiscard]] static inline auto hash(uint64_t x) -> uint64_t {
+ return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15));
+}
+
+} // namespace detail::wyhash
+
+template <typename T, typename Enable = void>
+struct hash : public std::hash<T> {
+ using is_avalanching = void;
+ auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
+ -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(std::hash<T>::operator()(obj)));
+ }
+};
+
+template <typename CharT>
+struct hash<std::basic_string<CharT>> {
+ using is_avalanching = void;
+ auto operator()(std::basic_string<CharT> const& str) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()));
+ }
+};
+
+template <typename CharT>
+struct hash<std::basic_string_view<CharT>> {
+ using is_avalanching = void;
+ auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()));
+ }
+};
+
+template <class T>
+struct hash<T*> {
+ using is_avalanching = void;
+ auto operator()(T* ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)));
+ }
+};
+
+template <class T>
+struct hash<std::unique_ptr<T>> {
+ using is_avalanching = void;
+ auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
+ }
+};
+
+template <class T>
+struct hash<std::shared_ptr<T>> {
+ using is_avalanching = void;
+ auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
+ }
+};
+
+template <typename Enum>
+struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
+ using is_avalanching = void;
+ auto operator()(Enum e) const noexcept -> size_t {
+ using Underlying = typename std::underlying_type_t<Enum>;
+ return static_cast<size_t>(detail::wyhash::hash(static_cast<Underlying>(e)));
+ }
+};
+
+# define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \
+ template <> \
+ struct hash<T> { \
+ using is_avalanching = void; \
+ auto operator()(T const& obj) const noexcept -> size_t { \
+ return static_cast<size_t>(detail::wyhash::hash(static_cast<uint64_t>(obj))); \
+ } \
+ }
+
+# if defined(__GNUC__) && !defined(__clang__)
+# pragma GCC diagnostic push
+# pragma GCC diagnostic ignored "-Wuseless-cast"
+# endif
+// see https://en.cppreference.com/w/cpp/utility/hash
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char);
+# if __cplusplus >= 202002L
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t);
+# endif
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long);
+
+# if defined(__GNUC__) && !defined(__clang__)
+# pragma GCC diagnostic pop
+# endif
+
+namespace detail {
+
+struct nonesuch {};
+
+template <class Default, class AlwaysVoid, template <class...> class Op, class... Args>
+struct detector {
+ using value_t = std::false_type;
+ using type = Default;
+};
+
+template <class Default, template <class...> class Op, class... Args>
+struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> {
+ using value_t = std::true_type;
+ using type = Op<Args...>;
+};
+
+template <template <class...> class Op, class... Args>
+using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t;
+
+template <template <class...> class Op, class... Args>
+constexpr bool is_detected_v = is_detected<Op, Args...>::value;
+
+template <typename T>
+using detect_avalanching = typename T::is_avalanching;
+
+template <typename T>
+using detect_is_transparent = typename T::is_transparent;
+
+template <typename H, typename KE>
+using is_transparent =
+ std::enable_if_t<is_detected_v<detect_is_transparent, H> && is_detected_v<detect_is_transparent, KE>, bool>;
+
+// This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set.
+template <class Key,
+ class T, // when void, treat it as a set.
+ class Hash,
+ class KeyEqual,
+ class Allocator>
+class table {
+ struct Bucket;
+ using ValueContainer =
+ typename std::vector<typename std::conditional_t<std::is_void_v<T>, Key, std::pair<Key, T>>, Allocator>;
+ using BucketAlloc = typename std::allocator_traits<Allocator>::template rebind_alloc<Bucket>;
+ using BucketAllocTraits = std::allocator_traits<BucketAlloc>;
+
+ static constexpr uint32_t BUCKET_DIST_INC = 1U << 8U; // skip 1 byte fingerprint
+ static constexpr uint32_t BUCKET_FINGERPRINT_MASK = BUCKET_DIST_INC - 1; // mask for 1 byte of fingerprint
+ static constexpr uint8_t INITIAL_SHIFTS = 64 - 3; // 2^(64-m_shift) number of buckets
+ static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.8F;
+
+public:
+ using key_type = Key;
+ using mapped_type = T;
+ using value_type = typename ValueContainer::value_type;
+ using size_type = typename ValueContainer::size_type;
+ using difference_type = typename ValueContainer::difference_type;
+ using hasher = Hash;
+ using key_equal = KeyEqual;
+ using allocator_type = typename ValueContainer::allocator_type;
+ using reference = typename ValueContainer::reference;
+ using const_reference = typename ValueContainer::const_reference;
+ using pointer = typename ValueContainer::pointer;
+ using const_pointer = typename ValueContainer::const_pointer;
+ using iterator = typename ValueContainer::iterator;
+ using const_iterator = typename ValueContainer::const_iterator;
+
+private:
+ struct Bucket {
+ uint32_t dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
+ uint32_t value_idx; // index into the m_values vector.
+ };
+ static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy");
+ static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy");
+
+ ValueContainer m_values{}; // Contains all the key-value pairs in one densely stored container. No holes.
+ Bucket* m_buckets_start = nullptr;
+ Bucket* m_buckets_end = nullptr;
+ uint32_t m_max_bucket_capacity = 0;
+ float m_max_load_factor = DEFAULT_MAX_LOAD_FACTOR;
+ Hash m_hash{};
+ KeyEqual m_equal{};
+ uint8_t m_shifts = INITIAL_SHIFTS;
+
+ [[nodiscard]] auto next(Bucket const* bucket) const -> Bucket const* {
+ return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
+ }
+
+ [[nodiscard]] auto next(Bucket* bucket) -> Bucket* {
+ return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
+ }
+
+ template <typename K>
+ [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t {
+ if constexpr (is_detected_v<detect_avalanching, Hash>) {
+ return m_hash(key);
+ } else {
+ return wyhash::hash(m_hash(key));
+ }
+ }
+
+ [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> uint32_t {
+ return BUCKET_DIST_INC | (hash & BUCKET_FINGERPRINT_MASK);
+ }
+
+ [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) const -> Bucket const* {
+ return m_buckets_start + (hash >> m_shifts);
+ }
+
+ [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) -> Bucket* {
+ return m_buckets_start + (hash >> m_shifts);
+ }
+
+ [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& {
+ if constexpr (std::is_void_v<T>) {
+ return vt;
+ } else {
+ return vt.first;
+ }
+ }
+
+ template <typename K>
+ [[nodiscard]] auto next_while_less(K const& key) -> std::pair<uint32_t, Bucket*> {
+ auto const& pair = std::as_const(*this).next_while_less(key);
+ return {pair.first, const_cast<Bucket*>(pair.second)}; // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <typename K>
+ [[nodiscard]] auto next_while_less(K const& key) const -> std::pair<uint32_t, Bucket const*> {
+ auto hash = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto const* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint < bucket->dist_and_fingerprint) {
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+ return {dist_and_fingerprint, bucket};
+ }
+
+ void place_and_shift_up(Bucket bucket, Bucket* place) {
+ while (0 != place->dist_and_fingerprint) {
+ bucket = std::exchange(*place, bucket);
+ bucket.dist_and_fingerprint += BUCKET_DIST_INC;
+ place = next(place);
+ }
+ *place = bucket;
+ }
+
+ [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> uint64_t {
+ return UINT64_C(1) << (64U - shifts);
+ }
+
+ [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t {
+ auto shifts = INITIAL_SHIFTS;
+ while (shifts > 0 && static_cast<uint64_t>(calc_num_buckets(shifts) * max_load_factor()) < s) {
+ --shifts;
+ }
+ return shifts;
+ }
+
+ // assumes m_values has data, m_buckets_start=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS
+ void copy_buckets(table const& other) {
+ if (!empty()) {
+ m_shifts = other.m_shifts;
+ allocate_buckets_from_shift();
+ std::memcpy(m_buckets_start, other.m_buckets_start, sizeof(Bucket) * bucket_count());
+ }
+ }
+
+ /**
+ * True when no element can be added any more without increasing the size
+ */
+ [[nodiscard]] auto is_full() const -> bool {
+ return size() >= m_max_bucket_capacity;
+ }
+
+ void deallocate_buckets() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
+ m_buckets_start = nullptr;
+ m_buckets_end = nullptr;
+ m_max_bucket_capacity = 0;
+ }
+
+ void allocate_buckets_from_shift() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ auto num_buckets = calc_num_buckets(m_shifts);
+ m_buckets_start = BucketAllocTraits::allocate(bucket_alloc, num_buckets);
+ m_buckets_end = m_buckets_start + num_buckets;
+ m_max_bucket_capacity = static_cast<uint64_t>(num_buckets * max_load_factor());
+ }
+
+ void clear_buckets() {
+ if (m_buckets_start != nullptr) {
+ std::memset(m_buckets_start, 0, sizeof(Bucket) * bucket_count());
+ }
+ }
+
+ void clear_and_fill_buckets_from_values() {
+ clear_buckets();
+ for (uint32_t value_idx = 0, end_idx = static_cast<uint32_t>(m_values.size()); value_idx < end_idx; ++value_idx) {
+ auto const& key = get_key(m_values[value_idx]);
+ auto [dist_and_fingerprint, bucket] = next_while_less(key);
+
+ // we know for certain that key has not yet been inserted, so no need to check it.
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+ }
+ }
+
+ void increase_size() {
+ --m_shifts;
+ deallocate_buckets();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+
+ void do_erase(Bucket* bucket) {
+ auto const value_idx_to_remove = bucket->value_idx;
+
+ // shift down until either empty or an element with correct spot is found
+ auto* next_bucket = next(bucket);
+ while (next_bucket->dist_and_fingerprint >= BUCKET_DIST_INC * 2) {
+ *bucket = {next_bucket->dist_and_fingerprint - BUCKET_DIST_INC, next_bucket->value_idx};
+ bucket = std::exchange(next_bucket, next(next_bucket));
+ }
+ *bucket = {};
+
+ // update m_values
+ if (value_idx_to_remove != m_values.size() - 1) {
+ // no luck, we'll have to replace the value with the last one and update the index accordingly
+ auto& val = m_values[value_idx_to_remove];
+ val = std::move(m_values.back());
+
+ // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx
+ auto mh = mixed_hash(get_key(val));
+ bucket = bucket_from_hash(mh);
+
+ auto const values_idx_back = static_cast<uint32_t>(m_values.size() - 1);
+ while (values_idx_back != bucket->value_idx) {
+ bucket = next(bucket);
+ }
+ bucket->value_idx = value_idx_to_remove;
+ }
+ m_values.pop_back();
+ }
+
+ template <typename K>
+ auto do_erase_key(K&& key) -> size_t {
+ if (empty()) {
+ return 0;
+ }
+
+ auto [dist_and_fingerprint, bucket] = next_while_less(key);
+
+ while (dist_and_fingerprint == bucket->dist_and_fingerprint && !m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ if (dist_and_fingerprint != bucket->dist_and_fingerprint) {
+ return 0;
+ }
+ do_erase(bucket);
+ return 1;
+ }
+
+ template <class K, class M>
+ auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> {
+ auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped));
+ if (!it_isinserted.second) {
+ it_isinserted.first->second = std::forward<M>(mapped);
+ }
+ return it_isinserted;
+ }
+
+ template <typename K, typename... Args>
+ auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> {
+ if (is_full()) {
+ increase_size();
+ }
+
+ auto hash = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, m_values[bucket->value_idx].first)) {
+ return {begin() + bucket->value_idx, false};
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ // emplace the new value. If that throws an exception, no harm done; index is still in a valid state
+ m_values.emplace_back(std::piecewise_construct,
+ std::forward_as_tuple(std::forward<K>(key)),
+ std::forward_as_tuple(std::forward<Args>(args)...));
+
+ // place element and shift up until we find an empty spot
+ uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+ return {begin() + value_idx, true};
+ }
+
+ template <typename K>
+ auto do_find(K const& key) -> iterator {
+ if (empty()) {
+ return end();
+ }
+
+ auto mh = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh);
+ auto const* bucket = bucket_from_hash(mh);
+
+ // unrolled loop. *Always* check a few directly, then enter the loop. This is faster.
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+
+ do {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ } while (dist_and_fingerprint <= bucket->dist_and_fingerprint);
+ return end();
+ }
+
+ template <typename K>
+ auto do_find(K const& key) const -> const_iterator {
+ return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+public:
+ table()
+ : table(0) {}
+
+ explicit table(size_t /*bucket_count*/,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : m_values(alloc)
+ , m_hash(hash)
+ , m_equal(equal) {}
+
+ table(size_t bucket_count, Allocator const& alloc)
+ : table(bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ table(size_t bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(bucket_count, hash, KeyEqual(), alloc) {}
+
+ explicit table(Allocator const& alloc)
+ : table(0, Hash(), KeyEqual(), alloc) {}
+
+ template <class InputIt>
+ table(InputIt first,
+ InputIt last,
+ size_type bucket_count = 0,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : table(bucket_count, hash, equal, alloc) {
+ insert(first, last);
+ }
+
+ template <class InputIt>
+ table(InputIt first, InputIt last, size_type bucket_count, Allocator const& alloc)
+ : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ template <class InputIt>
+ table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(first, last, bucket_count, hash, KeyEqual(), alloc) {}
+
+ table(table const& other)
+ : table(other, other.m_values.get_allocator()) {}
+
+ table(table const& other, Allocator const& alloc)
+ : m_values(other.m_values, alloc)
+ , m_max_load_factor(other.m_max_load_factor)
+ , m_hash(other.m_hash)
+ , m_equal(other.m_equal) {
+ copy_buckets(other);
+ }
+
+ table(table&& other) noexcept
+ : table(std::move(other), other.m_values.get_allocator()) {}
+
+ table(table&& other, Allocator const& alloc) noexcept
+ : m_values(std::move(other.m_values), alloc)
+ , m_buckets_start(std::exchange(other.m_buckets_start, nullptr))
+ , m_buckets_end(std::exchange(other.m_buckets_end, nullptr))
+ , m_max_bucket_capacity(std::exchange(other.m_max_bucket_capacity, 0))
+ , m_max_load_factor(std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR))
+ , m_hash(std::exchange(other.m_hash, {}))
+ , m_equal(std::exchange(other.m_equal, {}))
+ , m_shifts(std::exchange(other.m_shifts, INITIAL_SHIFTS)) {
+ other.m_values.clear();
+ }
+
+ table(std::initializer_list<value_type> ilist,
+ size_t bucket_count = 0,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : table(bucket_count, hash, equal, alloc) {
+ insert(ilist);
+ }
+
+ table(std::initializer_list<value_type> ilist, size_type bucket_count, const Allocator& alloc)
+ : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(init, bucket_count, hash, KeyEqual(), alloc) {}
+
+ ~table() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
+ }
+
+ auto operator=(table const& other) -> table& {
+ if (&other != this) {
+ deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
+ m_values = other.m_values;
+ m_max_load_factor = other.m_max_load_factor;
+ m_hash = other.m_hash;
+ m_equal = other.m_equal;
+ m_shifts = INITIAL_SHIFTS;
+ copy_buckets(other);
+ }
+ return *this;
+ }
+
+ auto operator=(table&& other) noexcept(
+ noexcept(std::is_nothrow_move_assignable_v<ValueContainer>&& std::is_nothrow_move_assignable_v<Hash>&&
+ std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& {
+ if (&other != this) {
+ deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
+ m_values = std::move(other.m_values);
+ m_buckets_start = std::exchange(other.m_buckets_start, nullptr);
+ m_buckets_end = std::exchange(other.m_buckets_end, nullptr);
+ m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0);
+ m_max_load_factor = std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR);
+ m_hash = std::exchange(other.m_hash, {});
+ m_equal = std::exchange(other.m_equal, {});
+ m_shifts = std::exchange(other.m_shifts, INITIAL_SHIFTS);
+ other.m_values.clear();
+ }
+ return *this;
+ }
+
+ auto operator=(std::initializer_list<value_type> ilist) -> table& {
+ clear();
+ insert(ilist);
+ return *this;
+ }
+
+ auto get_allocator() const noexcept -> allocator_type {
+ return m_values.get_allocator();
+ }
+
+ // iterators //////////////////////////////////////////////////////////////
+
+ auto begin() noexcept -> iterator {
+ return m_values.begin();
+ }
+
+ auto begin() const noexcept -> const_iterator {
+ return m_values.begin();
+ }
+
+ auto cbegin() const noexcept -> const_iterator {
+ return m_values.cbegin();
+ }
+
+ auto end() noexcept -> iterator {
+ return m_values.end();
+ }
+
+ auto cend() const noexcept -> const_iterator {
+ return m_values.cend();
+ }
+
+ auto end() const noexcept -> const_iterator {
+ return m_values.end();
+ }
+
+ // capacity ///////////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto empty() const noexcept -> bool {
+ return m_values.empty();
+ }
+
+ [[nodiscard]] auto size() const noexcept -> size_t {
+ return m_values.size();
+ }
+
+ [[nodiscard]] auto max_size() const noexcept -> size_t {
+ return std::numeric_limits<uint32_t>::max();
+ }
+
+ // modifiers //////////////////////////////////////////////////////////////
+
+ void clear() {
+ m_values.clear();
+ clear_buckets();
+ }
+
+ auto insert(value_type const& value) -> std::pair<iterator, bool> {
+ return emplace(value);
+ }
+
+ auto insert(value_type&& value) -> std::pair<iterator, bool> {
+ return emplace(std::move(value));
+ }
+
+ template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
+ auto insert(P&& value) -> std::pair<iterator, bool> {
+ return emplace(std::forward<P>(value));
+ }
+
+ auto insert(const_iterator /*hint*/, value_type const& value) -> iterator {
+ return insert(value).first;
+ }
+
+ auto insert(const_iterator /*hint*/, value_type&& value) -> iterator {
+ return insert(std::move(value)).first;
+ }
+
+ template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
+ auto insert(const_iterator /*hint*/, P&& value) -> iterator {
+ return insert(std::forward<P>(value)).first;
+ }
+
+ template <class InputIt>
+ void insert(InputIt first, InputIt last) {
+ while (first != last) {
+ insert(*first);
+ ++first;
+ }
+ }
+
+ void insert(std::initializer_list<value_type> ilist) {
+ insert(ilist.begin(), ilist.end());
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> {
+ return do_insert_or_assign(key, std::forward<M>(mapped));
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> {
+ return do_insert_or_assign(std::move(key), std::forward<M>(mapped));
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator {
+ return do_insert_or_assign(key, std::forward<M>(mapped)).first;
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator {
+ return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first;
+ }
+
+ template <class... Args>
+ auto emplace(Args&&... args) -> std::pair<iterator, bool> {
+ if (is_full()) {
+ increase_size();
+ }
+
+ // first emplace_back the object so it is constructed. If the key is already there, pop it.
+ auto& val = m_values.emplace_back(std::forward<Args>(args)...);
+ auto hash = mixed_hash(get_key(val));
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint &&
+ m_equal(get_key(val), get_key(m_values[bucket->value_idx]))) {
+ m_values.pop_back(); // value was already there, so get rid of it
+ return {begin() + bucket->value_idx, false};
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ // value is new, place the bucket and shift up until we find an empty spot
+ uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+
+ return {begin() + value_idx, true};
+ }
+
+ template <class... Args>
+ auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator {
+ return emplace(std::forward<Args>(args)...).first;
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> {
+ return do_try_emplace(key, std::forward<Args>(args)...);
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> {
+ return do_try_emplace(std::move(key), std::forward<Args>(args)...);
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator {
+ return do_try_emplace(key, std::forward<Args>(args)...).first;
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator {
+ return do_try_emplace(std::move(key), std::forward<Args>(args)...).first;
+ }
+
+ auto erase(iterator it) -> iterator {
+ auto hash = mixed_hash(get_key(*it));
+ auto* bucket = bucket_from_hash(hash);
+
+ auto const value_idx_to_remove = static_cast<uint32_t>(it - cbegin());
+ while (bucket->value_idx != value_idx_to_remove) {
+ bucket = next(bucket);
+ }
+
+ do_erase(bucket);
+ return begin() + value_idx_to_remove;
+ }
+
+ auto erase(const_iterator it) -> iterator {
+ return erase(begin() + (it - cbegin()));
+ }
+
+ auto erase(const_iterator first, const_iterator last) -> iterator {
+ auto const idx_first = first - cbegin();
+ auto const idx_last = last - cbegin();
+ auto const first_to_last = std::distance(first, last);
+ auto const last_to_end = std::distance(last, cend());
+
+ // remove elements from left to right which moves elements from the end back
+ auto const mid = idx_first + std::min(first_to_last, last_to_end);
+ auto idx = idx_first;
+ while (idx != mid) {
+ erase(begin() + idx);
+ ++idx;
+ }
+
+ // all elements from the right are moved, now remove the last element until all done
+ idx = idx_last;
+ while (idx != mid) {
+ --idx;
+ erase(begin() + idx);
+ }
+
+ return begin() + idx_first;
+ }
+
+ auto erase(Key const& key) -> size_t {
+ return do_erase_key(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto erase(K&& key) -> size_t {
+ return do_erase_key(std::forward<K>(key));
+ }
+
+ void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<ValueContainer>&& std::is_nothrow_swappable_v<Hash>&&
+ std::is_nothrow_swappable_v<KeyEqual>)) {
+ using std::swap;
+ swap(other, *this);
+ }
+
+ // lookup /////////////////////////////////////////////////////////////////
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto at(key_type const& key) -> Q& {
+ if (auto it = find(key); end() != it) {
+ return it->second;
+ }
+ throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found");
+ } // LCOV_EXCL_LINE is this a gcov/lcov bug? this method is fully tested.
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto at(key_type const& key) const -> Q const& {
+ return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto operator[](Key const& key) -> Q& {
+ return try_emplace(key).first->second;
+ }
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto operator[](Key&& key) -> Q& {
+ return try_emplace(std::move(key)).first->second;
+ }
+
+ auto count(Key const& key) const -> size_t {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto count(K const& key) const -> size_t {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ auto find(Key const& key) -> iterator {
+ return do_find(key);
+ }
+
+ auto find(Key const& key) const -> const_iterator {
+ return do_find(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto find(K const& key) -> iterator {
+ return do_find(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto find(K const& key) const -> const_iterator {
+ return do_find(key);
+ }
+
+ auto contains(Key const& key) const -> size_t {
+ return find(key) != end();
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto contains(K const& key) const -> size_t {
+ return find(key) != end();
+ }
+
+ auto equal_range(Key const& key) -> std::pair<iterator, iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto equal_range(K const& key) -> std::pair<iterator, iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ // bucket interface ///////////////////////////////////////////////////////
+
+ auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
+ return m_buckets_end - m_buckets_start;
+ }
+
+ auto max_bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
+ return std::numeric_limits<uint32_t>::max();
+ }
+
+ // hash policy ////////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto load_factor() const -> float {
+ return bucket_count() ? static_cast<float>(size()) / bucket_count() : 0.0F;
+ }
+
+ [[nodiscard]] auto max_load_factor() const -> float {
+ return m_max_load_factor;
+ }
+
+ void max_load_factor(float ml) {
+ m_max_load_factor = ml;
+ m_max_bucket_capacity = static_cast<uint32_t>(bucket_count() * max_load_factor());
+ }
+
+ void rehash(size_t count) {
+ auto shifts = calc_shifts_for_size(std::max(count, size()));
+ if (shifts != m_shifts) {
+ m_shifts = shifts;
+ deallocate_buckets();
+ m_values.shrink_to_fit();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+ }
+
+ void reserve(size_t capa) {
+ auto shifts = calc_shifts_for_size(std::max(capa, size()));
+ if (shifts < m_shifts) {
+ m_shifts = shifts;
+ deallocate_buckets();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+ }
+
+ // observers //////////////////////////////////////////////////////////////
+
+ auto hash_function() const -> hasher {
+ return m_hash;
+ }
+
+ auto key_eq() const -> key_equal {
+ return m_equal;
+ }
+
+ // non-member functions ///////////////////////////////////////////////////
+
+ friend auto operator==(table const& a, table const& b) -> bool {
+ if (&a == &b) {
+ return true;
+ }
+ if (a.size() != b.size()) {
+ return false;
+ }
+ for (auto const& b_entry : b) {
+ auto it = a.find(get_key(b_entry));
+ if constexpr (std::is_void_v<T>) {
+ // set: only check that the key is here
+ if (a.end() == it) {
+ return false;
+ }
+ } else {
+ // map: check that key is here, then also check that value is the same
+ if (a.end() == it || !(b_entry.second == it->second)) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ friend auto operator!=(table const& a, table const& b) -> bool {
+ return !(a == b);
+ }
+};
+
+} // namespace detail
+
+template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Allocator = std::allocator<std::pair<Key, T>>>
+using map = detail::table<Key, T, Hash, KeyEqual, Allocator>;
+
+template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<Key>>
+using set = detail::table<Key, void, Hash, KeyEqual, Allocator>;
+
+# if ANKERL_UNORDERED_DENSE_PMR
+
+namespace pmr {
+
+template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
+using map = detail::table<Key, T, Hash, KeyEqual, std::pmr::polymorphic_allocator<std::pair<Key, T>>>;
+
+template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
+using set = detail::table<Key, void, Hash, KeyEqual, std::pmr::polymorphic_allocator<Key>>;
+
+} // namespace pmr
+
+# endif
+
+// deduction guides ///////////////////////////////////////////////////////////
+
+// deduction guides for alias templates are only possible since C++20
+// see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
+
+} // namespace ankerl::unordered_dense
+
+// std extensions /////////////////////////////////////////////////////////////
+
+namespace std { // NOLINT(cert-dcl58-cpp)
+
+template <class Key, class T, class Hash, class KeyEqual, class Allocator, class Pred>
+auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, Allocator>& map, Pred pred) -> size_t {
+ // going back to front because erase() invalidates the end iterator
+ auto const old_size = map.size();
+ auto idx = old_size;
+ while (idx) {
+ --idx;
+ auto it = map.begin() + idx;
+ if (pred(*it)) {
+ map.erase(it);
+ }
+ }
+
+ return map.size() - old_size;
+}
+
+} // namespace std
+
+#endif
+#endif
+++ /dev/null
-MIT License
-
-Copyright (c) 2018-2019 Martin Ankerl
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
+++ /dev/null
-// ______ _____ ______ _________
-// ______________ ___ /_ ___(_)_______ ___ /_ ______ ______ ______ /
-// __ ___/_ __ \__ __ \__ / __ __ \ __ __ \_ __ \_ __ \_ __ /
-// _ / / /_/ /_ /_/ /_ / _ / / / _ / / // /_/ // /_/ // /_/ /
-// /_/ \____/ /_.___/ /_/ /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
-// _/_____/
-//
-// Fast & memory efficient hashtable based on robin hood hashing for C++11/14/17/20
-// https://github.com/martinus/robin-hood-hashing
-//
-// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
-// SPDX-License-Identifier: MIT
-// Copyright (c) 2018-2020 Martin Ankerl <http://martin.ankerl.com>
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in all
-// copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-// SOFTWARE.
-
-#ifndef ROBIN_HOOD_H_INCLUDED
-#define ROBIN_HOOD_H_INCLUDED
-
-// see https://semver.org/
-#define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes
-#define ROBIN_HOOD_VERSION_MINOR 9 // for adding functionality in a backwards-compatible manner
-#define ROBIN_HOOD_VERSION_PATCH 1 // for backwards-compatible bug fixes
-
-#include <algorithm>
-#include <cstdlib>
-#include <cstring>
-#include <functional>
-#include <limits>
-#include <memory> // only to support hash of smart pointers
-#include <stdexcept>
-#include <string>
-#include <type_traits>
-#include <utility>
-#if __cplusplus >= 201703L
-# include <string_view>
-#endif
-
-// #define ROBIN_HOOD_LOG_ENABLED
-#ifdef ROBIN_HOOD_LOG_ENABLED
-# include <iostream>
-# define ROBIN_HOOD_LOG(...) \
- std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
-#else
-# define ROBIN_HOOD_LOG(x)
-#endif
-
-// #define ROBIN_HOOD_TRACE_ENABLED
-#ifdef ROBIN_HOOD_TRACE_ENABLED
-# include <iostream>
-# define ROBIN_HOOD_TRACE(...) \
- std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
-#else
-# define ROBIN_HOOD_TRACE(x)
-#endif
-
-// #define ROBIN_HOOD_COUNT_ENABLED
-#ifdef ROBIN_HOOD_COUNT_ENABLED
-# include <iostream>
-# define ROBIN_HOOD_COUNT(x) ++counts().x;
-namespace robin_hood {
-struct Counts {
- uint64_t shiftUp{};
- uint64_t shiftDown{};
-};
-inline std::ostream& operator<<(std::ostream& os, Counts const& c) {
- return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl;
-}
-
-static Counts& counts() {
- static Counts counts{};
- return counts;
-}
-} // namespace robin_hood
-#else
-# define ROBIN_HOOD_COUNT(x)
-#endif
-
-// all non-argument macros should use this facility. See
-// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/
-#define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x()
-
-// mark unused members with this macro
-#define ROBIN_HOOD_UNUSED(identifier)
-
-// bitness
-#if SIZE_MAX == UINT32_MAX
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32
-#elif SIZE_MAX == UINT64_MAX
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64
-#else
-# error Unsupported bitness
-#endif
-
-// endianess
-#ifdef _MSC_VER
-# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \
- (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-#endif
-
-// inline
-#ifdef _MSC_VER
-# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline)
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline))
-#endif
-
-// exceptions
-#if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND)
-# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1
-#endif
-
-// count leading/trailing bits
-#if !defined(ROBIN_HOOD_DISABLE_INTRINSICS)
-# ifdef _MSC_VER
-# if ROBIN_HOOD(BITNESS) == 32
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward
-# else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64
-# endif
-# include <intrin.h>
-# pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD))
-# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \
- [](size_t mask) noexcept -> int { \
- unsigned long index; \
- return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \
- : ROBIN_HOOD(BITNESS); \
- }(x)
-# else
-# if ROBIN_HOOD(BITNESS) == 32
-# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl
-# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl
-# else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll
-# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll
-# endif
-# define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS))
-# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
-# endif
-#endif
-
-// fallthrough
-#ifndef __has_cpp_attribute // For backwards compatibility
-# define __has_cpp_attribute(x) 0
-#endif
-#if __has_cpp_attribute(clang::fallthrough)
-# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]]
-#elif __has_cpp_attribute(gnu::fallthrough)
-# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]]
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH()
-#endif
-
-// likely/unlikely
-#ifdef _MSC_VER
-# define ROBIN_HOOD_LIKELY(condition) condition
-# define ROBIN_HOOD_UNLIKELY(condition) condition
-#else
-# define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1)
-# define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0)
-#endif
-
-// detect if native wchar_t type is availiable in MSVC
-#ifdef _MSC_VER
-# ifdef _NATIVE_WCHAR_T_DEFINED
-# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
-# else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0
-# endif
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
-#endif
-
-// workaround missing "is_trivially_copyable" in g++ < 5.0
-// See https://stackoverflow.com/a/31798726/48181
-#if defined(__GNUC__) && __GNUC__ < 5
-# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
-#else
-# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
-#endif
-
-// helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
-# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]]
-#else
-# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD()
-#endif
-
-namespace robin_hood {
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
-# define ROBIN_HOOD_STD std
-#else
-
-// c++11 compatibility layer
-namespace ROBIN_HOOD_STD {
-template <class T>
-struct alignment_of
- : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {};
-
-template <class T, T... Ints>
-class integer_sequence {
-public:
- using value_type = T;
- static_assert(std::is_integral<value_type>::value, "not integral type");
- static constexpr std::size_t size() noexcept {
- return sizeof...(Ints);
- }
-};
-template <std::size_t... Inds>
-using index_sequence = integer_sequence<std::size_t, Inds...>;
-
-namespace detail_ {
-template <class T, T Begin, T End, bool>
-struct IntSeqImpl {
- using TValue = T;
- static_assert(std::is_integral<TValue>::value, "not integral type");
- static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)");
-
- template <class, class>
- struct IntSeqCombiner;
-
- template <TValue... Inds0, TValue... Inds1>
- struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> {
- using TResult = integer_sequence<TValue, Inds0..., Inds1...>;
- };
-
- using TResult =
- typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2,
- (End - Begin) / 2 == 1>::TResult,
- typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End,
- (End - Begin + 1) / 2 == 1>::TResult>::TResult;
-};
-
-template <class T, T Begin>
-struct IntSeqImpl<T, Begin, Begin, false> {
- using TValue = T;
- static_assert(std::is_integral<TValue>::value, "not integral type");
- static_assert(Begin >= 0, "unexpected argument (Begin<0)");
- using TResult = integer_sequence<TValue>;
-};
-
-template <class T, T Begin, T End>
-struct IntSeqImpl<T, Begin, End, true> {
- using TValue = T;
- static_assert(std::is_integral<TValue>::value, "not integral type");
- static_assert(Begin >= 0, "unexpected argument (Begin<0)");
- using TResult = integer_sequence<TValue, Begin>;
-};
-} // namespace detail_
-
-template <class T, T N>
-using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult;
-
-template <std::size_t N>
-using make_index_sequence = make_integer_sequence<std::size_t, N>;
-
-template <class... T>
-using index_sequence_for = make_index_sequence<sizeof...(T)>;
-
-} // namespace ROBIN_HOOD_STD
-
-#endif
-
-namespace detail {
-
-// make sure we static_cast to the correct type for hash_int
-#if ROBIN_HOOD(BITNESS) == 64
-using SizeT = uint64_t;
-#else
-using SizeT = uint32_t;
-#endif
-
-template <typename T>
-T rotr(T x, unsigned k) {
- return (x >> k) | (x << (8U * sizeof(T) - k));
-}
-
-// This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to
-// 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with
-// care!
-template <typename T>
-inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept {
- return reinterpret_cast<T>(ptr);
-}
-
-template <typename T>
-inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept {
- return reinterpret_cast<T>(ptr);
-}
-
-// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
-// inlinings more difficult. Throws are also generally the slow path.
-template <typename E, typename... Args>
-[[noreturn]] ROBIN_HOOD(NOINLINE)
-#if ROBIN_HOOD(HAS_EXCEPTIONS)
- void doThrow(Args&&... args) {
- // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay)
- throw E(std::forward<Args>(args)...);
-}
-#else
- void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) {
- abort();
-}
-#endif
-
-template <typename E, typename T, typename... Args>
-T* assertNotNull(T* t, Args&&... args) {
- if (ROBIN_HOOD_UNLIKELY(nullptr == t)) {
- doThrow<E>(std::forward<Args>(args)...);
- }
- return t;
-}
-
-template <typename T>
-inline T unaligned_load(void const* ptr) noexcept {
- // using memcpy so we don't get into unaligned load problems.
- // compiler should optimize this very well anyways.
- T t;
- std::memcpy(&t, ptr, sizeof(T));
- return t;
-}
-
-// Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
-// and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
-// pointer.
-template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
-class BulkPoolAllocator {
-public:
- BulkPoolAllocator() noexcept = default;
-
- // does not copy anything, just creates a new allocator.
- BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
- : mHead(nullptr)
- , mListForFree(nullptr) {}
-
- BulkPoolAllocator(BulkPoolAllocator&& o) noexcept
- : mHead(o.mHead)
- , mListForFree(o.mListForFree) {
- o.mListForFree = nullptr;
- o.mHead = nullptr;
- }
-
- BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept {
- reset();
- mHead = o.mHead;
- mListForFree = o.mListForFree;
- o.mListForFree = nullptr;
- o.mHead = nullptr;
- return *this;
- }
-
- BulkPoolAllocator&
- // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
- operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept {
- // does not do anything
- return *this;
- }
-
- ~BulkPoolAllocator() noexcept {
- reset();
- }
-
- // Deallocates all allocated memory.
- void reset() noexcept {
- while (mListForFree) {
- T* tmp = *mListForFree;
- ROBIN_HOOD_LOG("std::free")
- std::free(mListForFree);
- mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp);
- }
- mHead = nullptr;
- }
-
- // allocates, but does NOT initialize. Use in-place new constructor, e.g.
- // T* obj = pool.allocate();
- // ::new (static_cast<void*>(obj)) T();
- T* allocate() {
- T* tmp = mHead;
- if (!tmp) {
- tmp = performAllocation();
- }
-
- mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp);
- return tmp;
- }
-
- // does not actually deallocate but puts it in store.
- // make sure you have already called the destructor! e.g. with
- // obj->~T();
- // pool.deallocate(obj);
- void deallocate(T* obj) noexcept {
- *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead;
- mHead = obj;
- }
-
- // Adds an already allocated block of memory to the allocator. This allocator is from now on
- // responsible for freeing the data (with free()). If the provided data is not large enough to
- // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
- void addOrFree(void* ptr, const size_t numBytes) noexcept {
- // calculate number of available elements in ptr
- if (numBytes < ALIGNMENT + ALIGNED_SIZE) {
- // not enough data for at least one element. Free and return.
- ROBIN_HOOD_LOG("std::free")
- std::free(ptr);
- } else {
- ROBIN_HOOD_LOG("add to buffer")
- add(ptr, numBytes);
- }
- }
-
- void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept {
- using std::swap;
- swap(mHead, other.mHead);
- swap(mListForFree, other.mListForFree);
- }
-
-private:
- // iterates the list of allocated memory to calculate how many to alloc next.
- // Recalculating this each time saves us a size_t member.
- // This ignores the fact that memory blocks might have been added manually with addOrFree. In
- // practice, this should not matter much.
- ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept {
- auto tmp = mListForFree;
- size_t numAllocs = MinNumAllocs;
-
- while (numAllocs * 2 <= MaxNumAllocs && tmp) {
- auto x = reinterpret_cast<T***>(tmp);
- tmp = *x;
- numAllocs *= 2;
- }
-
- return numAllocs;
- }
-
- // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
- void add(void* ptr, const size_t numBytes) noexcept {
- const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;
-
- auto data = reinterpret_cast<T**>(ptr);
-
- // link free list
- auto x = reinterpret_cast<T***>(data);
- *x = mListForFree;
- mListForFree = data;
-
- // create linked list for newly allocated data
- auto* const headT =
- reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);
-
- auto* const head = reinterpret_cast<char*>(headT);
-
- // Visual Studio compiler automatically unrolls this loop, which is pretty cool
- for (size_t i = 0; i < numElements; ++i) {
- *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) =
- head + (i + 1) * ALIGNED_SIZE;
- }
-
- // last one points to 0
- *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) =
- mHead;
- mHead = headT;
- }
-
- // Called when no memory is available (mHead == 0).
- // Don't inline this slow path.
- ROBIN_HOOD(NOINLINE) T* performAllocation() {
- size_t const numElementsToAlloc = calcNumElementsToAlloc();
-
- // alloc new memory: [prev |T, T, ... T]
- size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
- ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE
- << " * " << numElementsToAlloc)
- add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes);
- return mHead;
- }
-
- // enforce byte alignment of the T's
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
- static constexpr size_t ALIGNMENT =
- (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
-#else
- static const size_t ALIGNMENT =
- (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value)
- ? ROBIN_HOOD_STD::alignment_of<T>::value
- : +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround
-#endif
-
- static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;
-
- static_assert(MinNumAllocs >= 1, "MinNumAllocs");
- static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
- static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
- static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
- static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");
-
- T* mHead{nullptr};
- T** mListForFree{nullptr};
-};
-
-template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat>
-struct NodeAllocator;
-
-// dummy allocator that does nothing
-template <typename T, size_t MinSize, size_t MaxSize>
-struct NodeAllocator<T, MinSize, MaxSize, true> {
-
- // we are not using the data, so just free it.
- void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept {
- ROBIN_HOOD_LOG("std::free")
- std::free(ptr);
- }
-};
-
-template <typename T, size_t MinSize, size_t MaxSize>
-struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {};
-
-// dummy hash, unsed as mixer when robin_hood::hash is already used
-template <typename T>
-struct identity_hash {
- constexpr size_t operator()(T const& obj) const noexcept {
- return static_cast<size_t>(obj);
- }
-};
-
-// c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making
-// my own here.
-namespace swappable {
-#if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17)
-using std::swap;
-template <typename T>
-struct nothrow {
- static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>()));
-};
-#else
-template <typename T>
-struct nothrow {
- static const bool value = std::is_nothrow_swappable<T>::value;
-};
-#endif
-} // namespace swappable
-
-} // namespace detail
-
-struct is_transparent_tag {};
-
-// A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
-// which means it would not be allowed to be used in std::memcpy. This struct is copyable, which is
-// also tested.
-template <typename T1, typename T2>
-struct pair {
- using first_type = T1;
- using second_type = T2;
-
- template <typename U1 = T1, typename U2 = T2,
- typename = typename std::enable_if<std::is_default_constructible<U1>::value &&
- std::is_default_constructible<U2>::value>::type>
- constexpr pair() noexcept(noexcept(U1()) && noexcept(U2()))
- : first()
- , second() {}
-
- // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
- explicit constexpr pair(std::pair<T1, T2> const& o) noexcept(
- noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>())))
- : first(o.first)
- , second(o.second) {}
-
- // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
- explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(noexcept(
- T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
- : first(std::move(o.first))
- , second(std::move(o.second)) {}
-
- constexpr pair(T1&& a, T2&& b) noexcept(noexcept(
- T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
- : first(std::move(a))
- , second(std::move(b)) {}
-
- template <typename U1, typename U2>
- constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>(
- std::declval<U1&&>()))) && noexcept(T2(std::forward<U2>(std::declval<U2&&>()))))
- : first(std::forward<U1>(a))
- , second(std::forward<U2>(b)) {}
-
- template <typename... U1, typename... U2>
- constexpr pair(
- std::piecewise_construct_t /*unused*/, std::tuple<U1...> a,
- std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(),
- std::declval<std::tuple<U2...>&>(),
- ROBIN_HOOD_STD::index_sequence_for<U1...>(),
- ROBIN_HOOD_STD::index_sequence_for<U2...>())))
- : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(),
- ROBIN_HOOD_STD::index_sequence_for<U2...>()) {}
-
- // constructor called from the std::piecewise_construct_t ctor
- template <typename... U1, size_t... I1, typename... U2, size_t... I2>
- pair(std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/, ROBIN_HOOD_STD::index_sequence<I2...> /*unused*/) noexcept(
- noexcept(T1(std::forward<U1>(std::get<I1>(
- std::declval<std::tuple<
- U1...>&>()))...)) && noexcept(T2(std::
- forward<U2>(std::get<I2>(
- std::declval<std::tuple<U2...>&>()))...)))
- : first(std::forward<U1>(std::get<I1>(a))...)
- , second(std::forward<U2>(std::get<I2>(b))...) {
- // make visual studio compiler happy about warning about unused a & b.
- // Visual studio's pair implementation disables warning 4100.
- (void)a;
- (void)b;
- }
-
- void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) &&
- (detail::swappable::nothrow<T2>::value)) {
- using std::swap;
- swap(first, o.first);
- swap(second, o.second);
- }
-
- T1 first; // NOLINT(misc-non-private-member-variables-in-classes)
- T2 second; // NOLINT(misc-non-private-member-variables-in-classes)
-};
-
-template <typename A, typename B>
-inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept(
- noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) {
- a.swap(b);
-}
-
-template <typename A, typename B>
-inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y) {
- return (x.first == y.first) && (x.second == y.second);
-}
-template <typename A, typename B>
-inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y) {
- return !(x == y);
-}
-template <typename A, typename B>
-inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(noexcept(
- std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() <
- std::declval<B const&>())) {
- return x.first < y.first || (!(y.first < x.first) && x.second < y.second);
-}
-template <typename A, typename B>
-inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y) {
- return y < x;
-}
-template <typename A, typename B>
-inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y) {
- return !(x > y);
-}
-template <typename A, typename B>
-inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y) {
- return !(x < y);
-}
-
-inline size_t hash_bytes(void const* ptr, size_t len) noexcept {
- static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
- static constexpr uint64_t seed = UINT64_C(0xe17a1465);
- static constexpr unsigned int r = 47;
-
- auto const* const data64 = static_cast<uint64_t const*>(ptr);
- uint64_t h = seed ^ (len * m);
-
- size_t const n_blocks = len / 8;
- for (size_t i = 0; i < n_blocks; ++i) {
- auto k = detail::unaligned_load<uint64_t>(data64 + i);
-
- k *= m;
- k ^= k >> r;
- k *= m;
-
- h ^= k;
- h *= m;
- }
-
- auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
- switch (len & 7U) {
- case 7:
- h ^= static_cast<uint64_t>(data8[6]) << 48U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 6:
- h ^= static_cast<uint64_t>(data8[5]) << 40U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 5:
- h ^= static_cast<uint64_t>(data8[4]) << 32U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 4:
- h ^= static_cast<uint64_t>(data8[3]) << 24U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 3:
- h ^= static_cast<uint64_t>(data8[2]) << 16U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 2:
- h ^= static_cast<uint64_t>(data8[1]) << 8U;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- case 1:
- h ^= static_cast<uint64_t>(data8[0]);
- h *= m;
- ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
- default:
- break;
- }
-
- h ^= h >> r;
- h *= m;
- h ^= h >> r;
- return static_cast<size_t>(h);
-}
-
-inline size_t hash_int(uint64_t x) noexcept {
- // inspired by lemire's strongly universal hashing
- // https://lemire.me/blog/2018/08/15/fast-strongly-universal-64-bit-hashing-everywhere/
- //
- // Instead of shifts, we use rotations so we don't lose any bits.
- //
- // Added a final multiplcation with a constant for more mixing. It is most important that
- // the lower bits are well mixed.
- auto h1 = x * UINT64_C(0xA24BAED4963EE407);
- auto h2 = detail::rotr(x, 32U) * UINT64_C(0x9FB21C651E98DF25);
- auto h = detail::rotr(h1 + h2, 32U);
- return static_cast<size_t>(h);
-}
-
-// A thin wrapper around std::hash, performing an additional simple mixing step of the result.
-template <typename T, typename Enable = void>
-struct hash : public std::hash<T> {
- size_t operator()(T const& obj) const
- noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) {
- // call base hash
- auto result = std::hash<T>::operator()(obj);
- // return mixed of that, to be save against identity has
- return hash_int(static_cast<detail::SizeT>(result));
- }
-};
-
-template <typename CharT>
-struct hash<std::basic_string<CharT>> {
- size_t operator()(std::basic_string<CharT> const& str) const noexcept {
- return hash_bytes(str.data(), sizeof(CharT) * str.size());
- }
-};
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
-template <typename CharT>
-struct hash<std::basic_string_view<CharT>> {
- size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept {
- return hash_bytes(sv.data(), sizeof(CharT) * sv.size());
- }
-};
-#endif
-
-template <class T>
-struct hash<T*> {
- size_t operator()(T* ptr) const noexcept {
- return hash_int(reinterpret_cast<detail::SizeT>(ptr));
- }
-};
-
-template <class T>
-struct hash<std::unique_ptr<T>> {
- size_t operator()(std::unique_ptr<T> const& ptr) const noexcept {
- return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
- }
-};
-
-template <class T>
-struct hash<std::shared_ptr<T>> {
- size_t operator()(std::shared_ptr<T> const& ptr) const noexcept {
- return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
- }
-};
-
-template <typename Enum>
-struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
- size_t operator()(Enum e) const noexcept {
- using Underlying = typename std::underlying_type<Enum>::type;
- return hash<Underlying>{}(static_cast<Underlying>(e));
- }
-};
-
-#define ROBIN_HOOD_HASH_INT(T) \
- template <> \
- struct hash<T> { \
- size_t operator()(T const& obj) const noexcept { \
- return hash_int(static_cast<uint64_t>(obj)); \
- } \
- }
-
-#if defined(__GNUC__) && !defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wuseless-cast"
-#endif
-// see https://en.cppreference.com/w/cpp/utility/hash
-ROBIN_HOOD_HASH_INT(bool);
-ROBIN_HOOD_HASH_INT(char);
-ROBIN_HOOD_HASH_INT(signed char);
-ROBIN_HOOD_HASH_INT(unsigned char);
-ROBIN_HOOD_HASH_INT(char16_t);
-ROBIN_HOOD_HASH_INT(char32_t);
-#if ROBIN_HOOD(HAS_NATIVE_WCHART)
-ROBIN_HOOD_HASH_INT(wchar_t);
-#endif
-ROBIN_HOOD_HASH_INT(short);
-ROBIN_HOOD_HASH_INT(unsigned short);
-ROBIN_HOOD_HASH_INT(int);
-ROBIN_HOOD_HASH_INT(unsigned int);
-ROBIN_HOOD_HASH_INT(long);
-ROBIN_HOOD_HASH_INT(long long);
-ROBIN_HOOD_HASH_INT(unsigned long);
-ROBIN_HOOD_HASH_INT(unsigned long long);
-#if defined(__GNUC__) && !defined(__clang__)
-# pragma GCC diagnostic pop
-#endif
-namespace detail {
-
-template <typename T>
-struct void_type {
- using type = void;
-};
-
-template <typename T, typename = void>
-struct has_is_transparent : public std::false_type {};
-
-template <typename T>
-struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type>
- : public std::true_type {};
-
-// using wrapper classes for hash and key_equal prevents the diamond problem when the same type
-// is used. see https://stackoverflow.com/a/28771920/48181
-template <typename T>
-struct WrapHash : public T {
- WrapHash() = default;
- explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
- : T(o) {}
-};
-
-template <typename T>
-struct WrapKeyEqual : public T {
- WrapKeyEqual() = default;
- explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
- : T(o) {}
-};
-
-// A highly optimized hashmap implementation, using the Robin Hood algorithm.
-//
-// In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but
-// be about 2x faster in most cases and require much less allocations.
-//
-// This implementation uses the following memory layout:
-//
-// [Node, Node, ... Node | info, info, ... infoSentinel ]
-//
-// * Node: either a DataNode that directly has the std::pair<key, val> as member,
-// or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
-// depends on how fast the swap() operation is. Heuristically, this is automatically choosen
-// based on sizeof(). there are always 2^n Nodes.
-//
-// * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
-// Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
-// corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
-// actually belongs to the previous position and was pushed out because that place is already
-// taken.
-//
-// * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the
-// need for a idx variable.
-//
-// According to STL, order of templates has effect on throughput. That's why I've moved the
-// boolean to the front.
-// https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
-template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash,
- typename KeyEqual>
-class Table
- : public WrapHash<Hash>,
- public WrapKeyEqual<KeyEqual>,
- detail::NodeAllocator<
- typename std::conditional<
- std::is_void<T>::value, Key,
- robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type,
- 4, 16384, IsFlat> {
-public:
- static constexpr bool is_flat = IsFlat;
- static constexpr bool is_map = !std::is_void<T>::value;
- static constexpr bool is_set = !is_map;
- static constexpr bool is_transparent =
- has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value;
-
- using key_type = Key;
- using mapped_type = T;
- using value_type = typename std::conditional<
- is_set, Key,
- robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type;
- using size_type = size_t;
- using hasher = Hash;
- using key_equal = KeyEqual;
- using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
-
-private:
- static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100,
- "MaxLoadFactor100 needs to be >10 && < 100");
-
- using WHash = WrapHash<Hash>;
- using WKeyEqual = WrapKeyEqual<KeyEqual>;
-
- // configuration defaults
-
- // make sure we have 8 elements, needed to quickly rehash mInfo
- static constexpr size_t InitialNumElements = sizeof(uint64_t);
- static constexpr uint32_t InitialInfoNumBits = 5;
- static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits;
- static constexpr size_t InfoMask = InitialInfoInc - 1U;
- static constexpr uint8_t InitialInfoHashShift = 0;
- using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>;
-
- // type needs to be wider than uint8_t.
- using InfoType = uint32_t;
-
- // DataNode ////////////////////////////////////////////////////////
-
- // Primary template for the data node. We have special implementations for small and big
- // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these
- // on the heap so swap merely swaps a pointer.
- template <typename M, bool>
- class DataNode {};
-
- // Small: just allocate on the stack.
- template <typename M>
- class DataNode<M, true> final {
- public:
- template <typename... Args>
- explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept(
- noexcept(value_type(std::forward<Args>(args)...)))
- : mData(std::forward<Args>(args)...) {}
-
- DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept(
- std::is_nothrow_move_constructible<value_type>::value)
- : mData(std::move(n.mData)) {}
-
- // doesn't do anything
- void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {}
- void destroyDoNotDeallocate() noexcept {}
-
- value_type const* operator->() const noexcept {
- return &mData;
- }
- value_type* operator->() noexcept {
- return &mData;
- }
-
- const value_type& operator*() const noexcept {
- return mData;
- }
-
- value_type& operator*() noexcept {
- return mData;
- }
-
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
- return mData.first;
- }
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
- return mData;
- }
-
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, typename VT::first_type const&>::type
- getFirst() const noexcept {
- return mData.first;
- }
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
- return mData;
- }
-
- template <typename MT = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
- return mData.second;
- }
-
- template <typename MT = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept {
- return mData.second;
- }
-
- void swap(DataNode<M, true>& o) noexcept(
- noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) {
- mData.swap(o.mData);
- }
-
- private:
- value_type mData;
- };
-
- // big object: allocate on heap.
- template <typename M>
- class DataNode<M, false> {
- public:
- template <typename... Args>
- explicit DataNode(M& map, Args&&... args)
- : mData(map.allocate()) {
- ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
- }
-
- DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept
- : mData(std::move(n.mData)) {}
-
- void destroy(M& map) noexcept {
- // don't deallocate, just put it into list of datapool.
- mData->~value_type();
- map.deallocate(mData);
- }
-
- void destroyDoNotDeallocate() noexcept {
- mData->~value_type();
- }
-
- value_type const* operator->() const noexcept {
- return mData;
- }
-
- value_type* operator->() noexcept {
- return mData;
- }
-
- const value_type& operator*() const {
- return *mData;
- }
-
- value_type& operator*() {
- return *mData;
- }
-
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
- return mData->first;
- }
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
- return *mData;
- }
-
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, typename VT::first_type const&>::type
- getFirst() const noexcept {
- return mData->first;
- }
- template <typename VT = value_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
- return *mData;
- }
-
- template <typename MT = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
- return mData->second;
- }
-
- template <typename MT = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept {
- return mData->second;
- }
-
- void swap(DataNode<M, false>& o) noexcept {
- using std::swap;
- swap(mData, o.mData);
- }
-
- private:
- value_type* mData;
- };
-
- using Node = DataNode<Self, IsFlat>;
-
- // helpers for doInsert: extract first entry (only const required)
- ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept {
- return n.getFirst();
- }
-
- // in case we have void mapped_type, we are not using a pair, thus we just route k through.
- // No need to disable this because it's just not used if not applicable.
- ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept {
- return k;
- }
-
- // in case we have non-void mapped_type, we have a standard robin_hood::pair
- template <typename Q = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type
- getFirstConst(value_type const& vt) const noexcept {
- return vt.first;
- }
-
- // Cloner //////////////////////////////////////////////////////////
-
- template <typename M, bool UseMemcpy>
- struct Cloner;
-
- // fast path: Just copy data, without allocating anything.
- template <typename M>
- struct Cloner<M, true> {
- void operator()(M const& source, M& target) const {
- auto const* const src = reinterpret_cast<char const*>(source.mKeyVals);
- auto* tgt = reinterpret_cast<char*>(target.mKeyVals);
- auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1);
- std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt);
- }
- };
-
- template <typename M>
- struct Cloner<M, false> {
- void operator()(M const& s, M& t) const {
- auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1);
- std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo);
-
- for (size_t i = 0; i < numElementsWithBuffer; ++i) {
- if (t.mInfo[i]) {
- ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]);
- }
- }
- }
- };
-
- // Destroyer ///////////////////////////////////////////////////////
-
- template <typename M, bool IsFlatAndTrivial>
- struct Destroyer {};
-
- template <typename M>
- struct Destroyer<M, true> {
- void nodes(M& m) const noexcept {
- m.mNumElements = 0;
- }
-
- void nodesDoNotDeallocate(M& m) const noexcept {
- m.mNumElements = 0;
- }
- };
-
- template <typename M>
- struct Destroyer<M, false> {
- void nodes(M& m) const noexcept {
- m.mNumElements = 0;
- // clear also resets mInfo to 0, that's sometimes not necessary.
- auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
-
- for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
- if (0 != m.mInfo[idx]) {
- Node& n = m.mKeyVals[idx];
- n.destroy(m);
- n.~Node();
- }
- }
- }
-
- void nodesDoNotDeallocate(M& m) const noexcept {
- m.mNumElements = 0;
- // clear also resets mInfo to 0, that's sometimes not necessary.
- auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
- for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
- if (0 != m.mInfo[idx]) {
- Node& n = m.mKeyVals[idx];
- n.destroyDoNotDeallocate();
- n.~Node();
- }
- }
- }
- };
-
- // Iter ////////////////////////////////////////////////////////////
-
- struct fast_forward_tag {};
-
- // generic iterator for both const_iterator and iterator.
- template <bool IsConst>
- // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions)
- class Iter {
- private:
- using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;
-
- public:
- using difference_type = std::ptrdiff_t;
- using value_type = typename Self::value_type;
- using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
- using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
- using iterator_category = std::forward_iterator_tag;
-
- // default constructed iterator can be compared to itself, but WON'T return true when
- // compared to end().
- Iter() = default;
-
- // Rule of zero: nothing specified. The conversion constructor is only enabled for
- // iterator to const_iterator, so it doesn't accidentally work as a copy ctor.
-
- // Conversion constructor from iterator to const_iterator.
- template <bool OtherIsConst,
- typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
- // NOLINTNEXTLINE(hicpp-explicit-conversions)
- Iter(Iter<OtherIsConst> const& other) noexcept
- : mKeyVals(other.mKeyVals)
- , mInfo(other.mInfo) {}
-
- Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept
- : mKeyVals(valPtr)
- , mInfo(infoPtr) {}
-
- Iter(NodePtr valPtr, uint8_t const* infoPtr,
- fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept
- : mKeyVals(valPtr)
- , mInfo(infoPtr) {
- fastForward();
- }
-
- template <bool OtherIsConst,
- typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
- Iter& operator=(Iter<OtherIsConst> const& other) noexcept {
- mKeyVals = other.mKeyVals;
- mInfo = other.mInfo;
- return *this;
- }
-
- // prefix increment. Undefined behavior if we are at end()!
- Iter& operator++() noexcept {
- mInfo++;
- mKeyVals++;
- fastForward();
- return *this;
- }
-
- Iter operator++(int) noexcept {
- Iter tmp = *this;
- ++(*this);
- return tmp;
- }
-
- reference operator*() const {
- return **mKeyVals;
- }
-
- pointer operator->() const {
- return &**mKeyVals;
- }
-
- template <bool O>
- bool operator==(Iter<O> const& o) const noexcept {
- return mKeyVals == o.mKeyVals;
- }
-
- template <bool O>
- bool operator!=(Iter<O> const& o) const noexcept {
- return mKeyVals != o.mKeyVals;
- }
-
- private:
- // fast forward to the next non-free info byte
- // I've tried a few variants that don't depend on intrinsics, but unfortunately they are
- // quite a bit slower than this one. So I've reverted that change again. See map_benchmark.
- void fastForward() noexcept {
- size_t n = 0;
- while (0U == (n = detail::unaligned_load<size_t>(mInfo))) {
- mInfo += sizeof(size_t);
- mKeyVals += sizeof(size_t);
- }
-#if defined(ROBIN_HOOD_DISABLE_INTRINSICS)
- // we know for certain that within the next 8 bytes we'll find a non-zero one.
- if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo))) {
- mInfo += 4;
- mKeyVals += 4;
- }
- if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo))) {
- mInfo += 2;
- mKeyVals += 2;
- }
- if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) {
- mInfo += 1;
- mKeyVals += 1;
- }
-#else
-# if ROBIN_HOOD(LITTLE_ENDIAN)
- auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
-# else
- auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
-# endif
- mInfo += inc;
- mKeyVals += inc;
-#endif
- }
-
- friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
- NodePtr mKeyVals{nullptr};
- uint8_t const* mInfo{nullptr};
- };
-
- ////////////////////////////////////////////////////////////////////
-
- // highly performance relevant code.
- // Lower bits are used for indexing into the array (2^n size)
- // The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
- template <typename HashKey>
- void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const {
- // for a user-specified hash that is *not* robin_hood::hash, apply robin_hood::hash as
- // an additional mixing step. This serves as a bad hash prevention, if the given data is
- // badly mixed.
- using Mix =
- typename std::conditional<std::is_same<::robin_hood::hash<key_type>, hasher>::value,
- ::robin_hood::detail::identity_hash<size_t>,
- ::robin_hood::hash<size_t>>::type;
-
- // the lower InitialInfoNumBits are reserved for info.
- auto h = Mix{}(WHash::operator()(key));
- *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift);
- *idx = (h >> InitialInfoNumBits) & mMask;
- }
-
- // forwards the index by one, wrapping around at the end
- void next(InfoType* info, size_t* idx) const noexcept {
- *idx = *idx + 1;
- *info += mInfoInc;
- }
-
- void nextWhileLess(InfoType* info, size_t* idx) const noexcept {
- // unrolling this by hand did not bring any speedups.
- while (*info < mInfo[*idx]) {
- next(info, idx);
- }
- }
-
- // Shift everything up by one element. Tries to move stuff around.
- void
- shiftUp(size_t startIdx,
- size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
- auto idx = startIdx;
- ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1]));
- while (--idx != insertion_idx) {
- mKeyVals[idx] = std::move(mKeyVals[idx - 1]);
- }
-
- idx = startIdx;
- while (idx != insertion_idx) {
- ROBIN_HOOD_COUNT(shiftUp)
- mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc);
- if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) {
- mMaxNumElementsAllowed = 0;
- }
- --idx;
- }
- }
-
- void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
- // until we find one that is either empty or has zero offset.
- // TODO(martinus) we don't need to move everything, just the last one for the same
- // bucket.
- mKeyVals[idx].destroy(*this);
-
- // until we find one that is either empty or has zero offset.
- while (mInfo[idx + 1] >= 2 * mInfoInc) {
- ROBIN_HOOD_COUNT(shiftDown)
- mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc);
- mKeyVals[idx] = std::move(mKeyVals[idx + 1]);
- ++idx;
- }
-
- mInfo[idx] = 0;
- // don't destroy, we've moved it
- // mKeyVals[idx].destroy(*this);
- mKeyVals[idx].~Node();
- }
-
- // copy of find(), except that it returns iterator instead of const_iterator.
- template <typename Other>
- ROBIN_HOOD(NODISCARD)
- size_t findIdx(Other const& key) const {
- size_t idx{};
- InfoType info{};
- keyToIdx(key, &idx, &info);
-
- do {
- // unrolling this twice gives a bit of a speedup. More unrolling did not help.
- if (info == mInfo[idx] &&
- ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
- return idx;
- }
- next(&info, &idx);
- if (info == mInfo[idx] &&
- ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
- return idx;
- }
- next(&info, &idx);
- } while (info <= mInfo[idx]);
-
- // nothing found!
- return mMask == 0 ? 0
- : static_cast<size_t>(std::distance(
- mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo)));
- }
-
- void cloneData(const Table& o) {
- Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this);
- }
-
- // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
- // @return index where the element was created
- size_t insert_move(Node&& keyval) {
- // we don't retry, fail if overflowing
- // don't need to check max num elements
- if (0 == mMaxNumElementsAllowed && !try_increase_info()) {
- throwOverflowError(); // impossible to reach LCOV_EXCL_LINE
- }
-
- size_t idx{};
- InfoType info{};
- keyToIdx(keyval.getFirst(), &idx, &info);
-
- // skip forward. Use <= because we are certain that the element is not there.
- while (info <= mInfo[idx]) {
- idx = idx + 1;
- info += mInfoInc;
- }
-
- // key not found, so we are now exactly where we want to insert it.
- auto const insertion_idx = idx;
- auto const insertion_info = static_cast<uint8_t>(info);
- if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
- mMaxNumElementsAllowed = 0;
- }
-
- // find an empty spot
- while (0 != mInfo[idx]) {
- next(&info, &idx);
- }
-
- auto& l = mKeyVals[insertion_idx];
- if (idx == insertion_idx) {
- ::new (static_cast<void*>(&l)) Node(std::move(keyval));
- } else {
- shiftUp(idx, insertion_idx);
- l = std::move(keyval);
- }
-
- // put at empty spot
- mInfo[insertion_idx] = insertion_info;
-
- ++mNumElements;
- return insertion_idx;
- }
-
-public:
- using iterator = Iter<false>;
- using const_iterator = Iter<true>;
-
- Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual()))
- : WHash()
- , WKeyEqual() {
- ROBIN_HOOD_TRACE(this)
- }
-
- // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert.
- // This tremendously speeds up ctor & dtor of a map that never receives an element. The
- // penalty is payed at the first insert, and not before. Lookup of this empty map works
- // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the
- // standard, but we can ignore it.
- explicit Table(
- size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{},
- const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal)))
- : WHash(h)
- , WKeyEqual(equal) {
- ROBIN_HOOD_TRACE(this)
- }
-
- template <typename Iter>
- Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
- const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
- : WHash(h)
- , WKeyEqual(equal) {
- ROBIN_HOOD_TRACE(this)
- insert(first, last);
- }
-
- Table(std::initializer_list<value_type> initlist,
- size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
- const KeyEqual& equal = KeyEqual{})
- : WHash(h)
- , WKeyEqual(equal) {
- ROBIN_HOOD_TRACE(this)
- insert(initlist.begin(), initlist.end());
- }
-
- Table(Table&& o) noexcept
- : WHash(std::move(static_cast<WHash&>(o)))
- , WKeyEqual(std::move(static_cast<WKeyEqual&>(o)))
- , DataPool(std::move(static_cast<DataPool&>(o))) {
- ROBIN_HOOD_TRACE(this)
- if (o.mMask) {
- mKeyVals = std::move(o.mKeyVals);
- mInfo = std::move(o.mInfo);
- mNumElements = std::move(o.mNumElements);
- mMask = std::move(o.mMask);
- mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
- mInfoInc = std::move(o.mInfoInc);
- mInfoHashShift = std::move(o.mInfoHashShift);
- // set other's mask to 0 so its destructor won't do anything
- o.init();
- }
- }
-
- Table& operator=(Table&& o) noexcept {
- ROBIN_HOOD_TRACE(this)
- if (&o != this) {
- if (o.mMask) {
- // only move stuff if the other map actually has some data
- destroy();
- mKeyVals = std::move(o.mKeyVals);
- mInfo = std::move(o.mInfo);
- mNumElements = std::move(o.mNumElements);
- mMask = std::move(o.mMask);
- mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
- mInfoInc = std::move(o.mInfoInc);
- mInfoHashShift = std::move(o.mInfoHashShift);
- WHash::operator=(std::move(static_cast<WHash&>(o)));
- WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o)));
- DataPool::operator=(std::move(static_cast<DataPool&>(o)));
-
- o.init();
-
- } else {
- // nothing in the other map => just clear us.
- clear();
- }
- }
- return *this;
- }
-
- Table(const Table& o)
- : WHash(static_cast<const WHash&>(o))
- , WKeyEqual(static_cast<const WKeyEqual&>(o))
- , DataPool(static_cast<const DataPool&>(o)) {
- ROBIN_HOOD_TRACE(this)
- if (!o.empty()) {
- // not empty: create an exact copy. it is also possible to just iterate through all
- // elements and insert them, but copying is probably faster.
-
- auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
- auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
-
- ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
- << numElementsWithBuffer << ")")
- mKeyVals = static_cast<Node*>(
- detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
- // no need for calloc because clonData does memcpy
- mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
- mNumElements = o.mNumElements;
- mMask = o.mMask;
- mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
- mInfoInc = o.mInfoInc;
- mInfoHashShift = o.mInfoHashShift;
- cloneData(o);
- }
- }
-
- // Creates a copy of the given map. Copy constructor of each entry is used.
- // Not sure why clang-tidy thinks this doesn't handle self assignment, it does
- // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
- Table& operator=(Table const& o) {
- ROBIN_HOOD_TRACE(this)
- if (&o == this) {
- // prevent assigning of itself
- return *this;
- }
-
- // we keep using the old allocator and not assign the new one, because we want to keep
- // the memory available. when it is the same size.
- if (o.empty()) {
- if (0 == mMask) {
- // nothing to do, we are empty too
- return *this;
- }
-
- // not empty: destroy what we have there
- // clear also resets mInfo to 0, that's sometimes not necessary.
- destroy();
- init();
- WHash::operator=(static_cast<const WHash&>(o));
- WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
- DataPool::operator=(static_cast<DataPool const&>(o));
-
- return *this;
- }
-
- // clean up old stuff
- Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
-
- if (mMask != o.mMask) {
- // no luck: we don't have the same array size allocated, so we need to realloc.
- if (0 != mMask) {
- // only deallocate if we actually have data!
- ROBIN_HOOD_LOG("std::free")
- std::free(mKeyVals);
- }
-
- auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
- auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
- ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
- << numElementsWithBuffer << ")")
- mKeyVals = static_cast<Node*>(
- detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
-
- // no need for calloc here because cloneData performs a memcpy.
- mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
- // sentinel is set in cloneData
- }
- WHash::operator=(static_cast<const WHash&>(o));
- WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
- DataPool::operator=(static_cast<DataPool const&>(o));
- mNumElements = o.mNumElements;
- mMask = o.mMask;
- mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
- mInfoInc = o.mInfoInc;
- mInfoHashShift = o.mInfoHashShift;
- cloneData(o);
-
- return *this;
- }
-
- // Swaps everything between the two maps.
- void swap(Table& o) {
- ROBIN_HOOD_TRACE(this)
- using std::swap;
- swap(o, *this);
- }
-
- // Clears all data, without resizing.
- void clear() {
- ROBIN_HOOD_TRACE(this)
- if (empty()) {
- // don't do anything! also important because we don't want to write to
- // DummyInfoByte::b, even though we would just write 0 to it.
- return;
- }
-
- Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
-
- auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
- // clear everything, then set the sentinel again
- uint8_t const z = 0;
- std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z);
- mInfo[numElementsWithBuffer] = 1;
-
- mInfoInc = InitialInfoInc;
- mInfoHashShift = InitialInfoHashShift;
- }
-
- // Destroys the map and all it's contents.
- ~Table() {
- ROBIN_HOOD_TRACE(this)
- destroy();
- }
-
- // Checks if both tables contain the same entries. Order is irrelevant.
- bool operator==(const Table& other) const {
- ROBIN_HOOD_TRACE(this)
- if (other.size() != size()) {
- return false;
- }
- for (auto const& otherEntry : other) {
- if (!has(otherEntry)) {
- return false;
- }
- }
-
- return true;
- }
-
- bool operator!=(const Table& other) const {
- ROBIN_HOOD_TRACE(this)
- return !operator==(other);
- }
-
- template <typename Q = mapped_type>
- typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) {
- ROBIN_HOOD_TRACE(this)
- return doCreateByKey(key);
- }
-
- template <typename Q = mapped_type>
- typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) {
- ROBIN_HOOD_TRACE(this)
- return doCreateByKey(std::move(key));
- }
-
- template <typename Iter>
- void insert(Iter first, Iter last) {
- for (; first != last; ++first) {
- // value_type ctor needed because this might be called with std::pair's
- insert(value_type(*first));
- }
- }
-
- template <typename... Args>
- std::pair<iterator, bool> emplace(Args&&... args) {
- ROBIN_HOOD_TRACE(this)
- Node n{*this, std::forward<Args>(args)...};
- auto r = doInsert(std::move(n));
- if (!r.second) {
- // insertion not possible: destroy node
- // NOLINTNEXTLINE(bugprone-use-after-move)
- n.destroy(*this);
- }
- return r;
- }
-
- template <typename... Args>
- std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) {
- return try_emplace_impl(key, std::forward<Args>(args)...);
- }
-
- template <typename... Args>
- std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args) {
- return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
- }
-
- template <typename... Args>
- std::pair<iterator, bool> try_emplace(const_iterator hint, const key_type& key,
- Args&&... args) {
- (void)hint;
- return try_emplace_impl(key, std::forward<Args>(args)...);
- }
-
- template <typename... Args>
- std::pair<iterator, bool> try_emplace(const_iterator hint, key_type&& key, Args&&... args) {
- (void)hint;
- return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
- }
-
- template <typename Mapped>
- std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj) {
- return insert_or_assign_impl(key, std::forward<Mapped>(obj));
- }
-
- template <typename Mapped>
- std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj) {
- return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
- }
-
- template <typename Mapped>
- std::pair<iterator, bool> insert_or_assign(const_iterator hint, const key_type& key,
- Mapped&& obj) {
- (void)hint;
- return insert_or_assign_impl(key, std::forward<Mapped>(obj));
- }
-
- template <typename Mapped>
- std::pair<iterator, bool> insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) {
- (void)hint;
- return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
- }
-
- std::pair<iterator, bool> insert(const value_type& keyval) {
- ROBIN_HOOD_TRACE(this)
- return doInsert(keyval);
- }
-
- std::pair<iterator, bool> insert(value_type&& keyval) {
- return doInsert(std::move(keyval));
- }
-
- // Returns 1 if key is found, 0 otherwise.
- size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- auto kv = mKeyVals + findIdx(key);
- if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
- return 1;
- }
- return 0;
- }
-
- template <typename OtherKey, typename Self_ = Self>
- // NOLINTNEXTLINE(modernize-use-nodiscard)
- typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const {
- ROBIN_HOOD_TRACE(this)
- auto kv = mKeyVals + findIdx(key);
- if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
- return 1;
- }
- return 0;
- }
-
- bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
- return 1U == count(key);
- }
-
- template <typename OtherKey, typename Self_ = Self>
- // NOLINTNEXTLINE(modernize-use-nodiscard)
- typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const {
- return 1U == count(key);
- }
-
- // Returns a reference to the value found for key.
- // Throws std::out_of_range if element cannot be found
- template <typename Q = mapped_type>
- // NOLINTNEXTLINE(modernize-use-nodiscard)
- typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) {
- ROBIN_HOOD_TRACE(this)
- auto kv = mKeyVals + findIdx(key);
- if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
- doThrow<std::out_of_range>("key not found");
- }
- return kv->getSecond();
- }
-
- // Returns a reference to the value found for key.
- // Throws std::out_of_range if element cannot be found
- template <typename Q = mapped_type>
- // NOLINTNEXTLINE(modernize-use-nodiscard)
- typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const {
- ROBIN_HOOD_TRACE(this)
- auto kv = mKeyVals + findIdx(key);
- if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
- doThrow<std::out_of_range>("key not found");
- }
- return kv->getSecond();
- }
-
- const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return const_iterator{mKeyVals + idx, mInfo + idx};
- }
-
- template <typename OtherKey>
- const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const {
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return const_iterator{mKeyVals + idx, mInfo + idx};
- }
-
- template <typename OtherKey, typename Self_ = Self>
- typename std::enable_if<Self_::is_transparent, // NOLINT(modernize-use-nodiscard)
- const_iterator>::type // NOLINT(modernize-use-nodiscard)
- find(const OtherKey& key) const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return const_iterator{mKeyVals + idx, mInfo + idx};
- }
-
- iterator find(const key_type& key) {
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return iterator{mKeyVals + idx, mInfo + idx};
- }
-
- template <typename OtherKey>
- iterator find(const OtherKey& key, is_transparent_tag /*unused*/) {
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return iterator{mKeyVals + idx, mInfo + idx};
- }
-
- template <typename OtherKey, typename Self_ = Self>
- typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key) {
- ROBIN_HOOD_TRACE(this)
- const size_t idx = findIdx(key);
- return iterator{mKeyVals + idx, mInfo + idx};
- }
-
- iterator begin() {
- ROBIN_HOOD_TRACE(this)
- if (empty()) {
- return end();
- }
- return iterator(mKeyVals, mInfo, fast_forward_tag{});
- }
- const_iterator begin() const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return cbegin();
- }
- const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- if (empty()) {
- return cend();
- }
- return const_iterator(mKeyVals, mInfo, fast_forward_tag{});
- }
-
- iterator end() {
- ROBIN_HOOD_TRACE(this)
- // no need to supply valid info pointer: end() must not be dereferenced, and only node
- // pointer is compared.
- return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
- }
- const_iterator end() const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return cend();
- }
- const_iterator cend() const { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
- }
-
- iterator erase(const_iterator pos) {
- ROBIN_HOOD_TRACE(this)
- // its safe to perform const cast here
- // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
- return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
- }
-
- // Erases element at pos, returns iterator to the next element.
- iterator erase(iterator pos) {
- ROBIN_HOOD_TRACE(this)
- // we assume that pos always points to a valid entry, and not end().
- auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);
-
- shiftDown(idx);
- --mNumElements;
-
- if (*pos.mInfo) {
- // we've backward shifted, return this again
- return pos;
- }
-
- // no backward shift, return next element
- return ++pos;
- }
-
- size_t erase(const key_type& key) {
- ROBIN_HOOD_TRACE(this)
- size_t idx{};
- InfoType info{};
- keyToIdx(key, &idx, &info);
-
- // check while info matches with the source idx
- do {
- if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
- shiftDown(idx);
- --mNumElements;
- return 1;
- }
- next(&info, &idx);
- } while (info <= mInfo[idx]);
-
- // nothing found to delete
- return 0;
- }
-
- // reserves space for the specified number of elements. Makes sure the old data fits.
- // exactly the same as reserve(c).
- void rehash(size_t c) {
- // forces a reserve
- reserve(c, true);
- }
-
- // reserves space for the specified number of elements. Makes sure the old data fits.
- // Exactly the same as rehash(c). Use rehash(0) to shrink to fit.
- void reserve(size_t c) {
- // reserve, but don't force rehash
- reserve(c, false);
- }
-
- size_type size() const noexcept { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return mNumElements;
- }
-
- size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return static_cast<size_type>(-1);
- }
-
- ROBIN_HOOD(NODISCARD) bool empty() const noexcept {
- ROBIN_HOOD_TRACE(this)
- return 0 == mNumElements;
- }
-
- float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return MaxLoadFactor100 / 100.0F;
- }
-
- // Average number of elements per bucket. Since we allow only 1 per bucket
- float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
- ROBIN_HOOD_TRACE(this)
- return static_cast<float>(size()) / static_cast<float>(mMask + 1);
- }
-
- ROBIN_HOOD(NODISCARD) size_t mask() const noexcept {
- ROBIN_HOOD_TRACE(this)
- return mMask;
- }
-
- ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept {
- if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) {
- return maxElements * MaxLoadFactor100 / 100;
- }
-
- // we might be a bit inprecise, but since maxElements is quite large that doesn't matter
- return (maxElements / 100) * MaxLoadFactor100;
- }
-
- ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept {
- // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load
- // 64bit types.
- return numElements + sizeof(uint64_t);
- }
-
- ROBIN_HOOD(NODISCARD)
- size_t calcNumElementsWithBuffer(size_t numElements) const noexcept {
- auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements);
- return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF)));
- }
-
- // calculation only allowed for 2^n values
- ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const {
-#if ROBIN_HOOD(BITNESS) == 64
- return numElements * sizeof(Node) + calcNumBytesInfo(numElements);
-#else
- // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows.
- auto const ne = static_cast<uint64_t>(numElements);
- auto const s = static_cast<uint64_t>(sizeof(Node));
- auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements));
-
- auto const total64 = ne * s + infos;
- auto const total = static_cast<size_t>(total64);
-
- if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) {
- throwOverflowError();
- }
- return total;
-#endif
- }
-
-private:
- template <typename Q = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const {
- ROBIN_HOOD_TRACE(this)
- auto it = find(e.first);
- return it != end() && it->second == e.second;
- }
-
- template <typename Q = mapped_type>
- ROBIN_HOOD(NODISCARD)
- typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const {
- ROBIN_HOOD_TRACE(this)
- return find(e) != end();
- }
-
- void reserve(size_t c, bool forceRehash) {
- ROBIN_HOOD_TRACE(this)
- auto const minElementsAllowed = (std::max)(c, mNumElements);
- auto newSize = InitialNumElements;
- while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) {
- newSize *= 2;
- }
- if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
- throwOverflowError();
- }
-
- ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")
-
- // only actually do anything when the new size is bigger than the old one. This prevents to
- // continuously allocate for each reserve() call.
- if (forceRehash || newSize > mMask + 1) {
- rehashPowerOfTwo(newSize);
- }
- }
-
- // reserves space for at least the specified number of elements.
- // only works if numBuckets if power of two
- void rehashPowerOfTwo(size_t numBuckets) {
- ROBIN_HOOD_TRACE(this)
-
- Node* const oldKeyVals = mKeyVals;
- uint8_t const* const oldInfo = mInfo;
-
- const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
-
- // resize operation: move stuff
- init_data(numBuckets);
- if (oldMaxElementsWithBuffer > 1) {
- for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) {
- if (oldInfo[i] != 0) {
- insert_move(std::move(oldKeyVals[i]));
- // destroy the node but DON'T destroy the data.
- oldKeyVals[i].~Node();
- }
- }
-
- // this check is not necessary as it's guarded by the previous if, but it helps silence
- // g++'s overeager "attempt to free a non-heap object 'map'
- // [-Werror=free-nonheap-object]" warning.
- if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
- // don't destroy old data: put it into the pool instead
- DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer));
- }
- }
- }
-
- ROBIN_HOOD(NOINLINE) void throwOverflowError() const {
-#if ROBIN_HOOD(HAS_EXCEPTIONS)
- throw std::overflow_error("robin_hood::map overflow");
-#else
- abort();
-#endif
- }
-
- template <typename OtherKey, typename... Args>
- std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args) {
- ROBIN_HOOD_TRACE(this)
- auto it = find(key);
- if (it == end()) {
- return emplace(std::piecewise_construct,
- std::forward_as_tuple(std::forward<OtherKey>(key)),
- std::forward_as_tuple(std::forward<Args>(args)...));
- }
- return {it, false};
- }
-
- template <typename OtherKey, typename Mapped>
- std::pair<iterator, bool> insert_or_assign_impl(OtherKey&& key, Mapped&& obj) {
- ROBIN_HOOD_TRACE(this)
- auto it = find(key);
- if (it == end()) {
- return emplace(std::forward<OtherKey>(key), std::forward<Mapped>(obj));
- }
- it->second = std::forward<Mapped>(obj);
- return {it, false};
- }
-
- void init_data(size_t max_elements) {
- mNumElements = 0;
- mMask = max_elements - 1;
- mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);
-
- auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements);
-
- // calloc also zeroes everything
- auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
- ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal("
- << numElementsWithBuffer << ")")
- mKeyVals = reinterpret_cast<Node*>(
- detail::assertNotNull<std::bad_alloc>(std::calloc(1, numBytesTotal)));
- mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
-
- // set sentinel
- mInfo[numElementsWithBuffer] = 1;
-
- mInfoInc = InitialInfoInc;
- mInfoHashShift = InitialInfoHashShift;
- }
-
- template <typename Arg, typename Q = mapped_type>
- typename std::enable_if<!std::is_void<Q>::value, Q&>::type doCreateByKey(Arg&& key) {
- while (true) {
- size_t idx{};
- InfoType info{};
- keyToIdx(key, &idx, &info);
- nextWhileLess(&info, &idx);
-
- // while we potentially have a match. Can't do a do-while here because when mInfo is
- // 0 we don't want to skip forward
- while (info == mInfo[idx]) {
- if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
- // key already exists, do not insert.
- return mKeyVals[idx].getSecond();
- }
- next(&info, &idx);
- }
-
- // unlikely that this evaluates to true
- if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
- increase_size();
- continue;
- }
-
- // key not found, so we are now exactly where we want to insert it.
- auto const insertion_idx = idx;
- auto const insertion_info = info;
- if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
- mMaxNumElementsAllowed = 0;
- }
-
- // find an empty spot
- while (0 != mInfo[idx]) {
- next(&info, &idx);
- }
-
- auto& l = mKeyVals[insertion_idx];
- if (idx == insertion_idx) {
- // put at empty spot. This forwards all arguments into the node where the object
- // is constructed exactly where it is needed.
- ::new (static_cast<void*>(&l))
- Node(*this, std::piecewise_construct,
- std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
- } else {
- shiftUp(idx, insertion_idx);
- l = Node(*this, std::piecewise_construct,
- std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
- }
-
- // mKeyVals[idx].getFirst() = std::move(key);
- mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
-
- ++mNumElements;
- return mKeyVals[insertion_idx].getSecond();
- }
- }
-
- // This is exactly the same code as operator[], except for the return values
- template <typename Arg>
- std::pair<iterator, bool> doInsert(Arg&& keyval) {
- while (true) {
- size_t idx{};
- InfoType info{};
- keyToIdx(getFirstConst(keyval), &idx, &info);
- nextWhileLess(&info, &idx);
-
- // while we potentially have a match
- while (info == mInfo[idx]) {
- if (WKeyEqual::operator()(getFirstConst(keyval), mKeyVals[idx].getFirst())) {
- // key already exists, do NOT insert.
- // see http://en.cppreference.com/w/cpp/container/unordered_map/insert
- return std::make_pair<iterator, bool>(iterator(mKeyVals + idx, mInfo + idx),
- false);
- }
- next(&info, &idx);
- }
-
- // unlikely that this evaluates to true
- if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
- increase_size();
- continue;
- }
-
- // key not found, so we are now exactly where we want to insert it.
- auto const insertion_idx = idx;
- auto const insertion_info = info;
- if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
- mMaxNumElementsAllowed = 0;
- }
-
- // find an empty spot
- while (0 != mInfo[idx]) {
- next(&info, &idx);
- }
-
- auto& l = mKeyVals[insertion_idx];
- if (idx == insertion_idx) {
- ::new (static_cast<void*>(&l)) Node(*this, std::forward<Arg>(keyval));
- } else {
- shiftUp(idx, insertion_idx);
- l = Node(*this, std::forward<Arg>(keyval));
- }
-
- // put at empty spot
- mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
-
- ++mNumElements;
- return std::make_pair(iterator(mKeyVals + insertion_idx, mInfo + insertion_idx), true);
- }
- }
-
- bool try_increase_info() {
- ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
- << ", maxNumElementsAllowed="
- << calcMaxNumElementsAllowed(mMask + 1))
- if (mInfoInc <= 2) {
- // need to be > 2 so that shift works (otherwise undefined behavior!)
- return false;
- }
- // we got space left, try to make info smaller
- mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U);
-
- // remove one bit of the hash, leaving more space for the distance info.
- // This is extremely fast because we can operate on 8 bytes at once.
- ++mInfoHashShift;
- auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
-
- for (size_t i = 0; i < numElementsWithBuffer; i += 8) {
- auto val = unaligned_load<uint64_t>(mInfo + i);
- val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f);
- std::memcpy(mInfo + i, &val, sizeof(val));
- }
- // update sentinel, which might have been cleared out!
- mInfo[numElementsWithBuffer] = 1;
-
- mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
- return true;
- }
-
- void increase_size() {
- // nothing allocated yet? just allocate InitialNumElements
- if (0 == mMask) {
- init_data(InitialNumElements);
- return;
- }
-
- auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
- if (mNumElements < maxNumElementsAllowed && try_increase_info()) {
- return;
- }
-
- ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed="
- << maxNumElementsAllowed << ", load="
- << (static_cast<double>(mNumElements) * 100.0 /
- (static_cast<double>(mMask) + 1)))
- // it seems we have a really bad hash function! don't try to resize again
- if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) {
- throwOverflowError();
- }
-
- rehashPowerOfTwo((mMask + 1) * 2);
- }
-
- void destroy() {
- if (0 == mMask) {
- // don't deallocate!
- return;
- }
-
- Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}
- .nodesDoNotDeallocate(*this);
-
- // This protection against not deleting mMask shouldn't be needed as it's sufficiently
- // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise
- // reports a compile error: attempt to free a non-heap object 'fm'
- // [-Werror=free-nonheap-object]
- if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
- ROBIN_HOOD_LOG("std::free")
- std::free(mKeyVals);
- }
- }
-
- void init() noexcept {
- mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask);
- mInfo = reinterpret_cast<uint8_t*>(&mMask);
- mNumElements = 0;
- mMask = 0;
- mMaxNumElementsAllowed = 0;
- mInfoInc = InitialInfoInc;
- mInfoHashShift = InitialInfoHashShift;
- }
-
- // members are sorted so no padding occurs
- Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); // 8 byte 8
- uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask); // 8 byte 16
- size_t mNumElements = 0; // 8 byte 24
- size_t mMask = 0; // 8 byte 32
- size_t mMaxNumElementsAllowed = 0; // 8 byte 40
- InfoType mInfoInc = InitialInfoInc; // 4 byte 44
- InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 48
- // 16 byte 56 if NodeAllocator
-};
-
-} // namespace detail
-
-// map
-
-template <typename Key, typename T, typename Hash = hash<Key>,
- typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-template <typename Key, typename T, typename Hash = hash<Key>,
- typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-template <typename Key, typename T, typename Hash = hash<Key>,
- typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_map =
- detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 &&
- std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value &&
- std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value,
- MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-// set
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
- size_t MaxLoadFactor100 = 80>
-using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
- size_t MaxLoadFactor100 = 80>
-using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
- size_t MaxLoadFactor100 = 80>
-using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 &&
- std::is_nothrow_move_constructible<Key>::value &&
- std::is_nothrow_move_assignable<Key>::value,
- MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-} // namespace robin_hood
-
-#endif
TEST_CASE("parse received")
{
using namespace std::string_view_literals;
- using map_type = robin_hood::unordered_flat_map<std::string_view, std::string_view>;
+ using map_type = ankerl::unordered_dense::map<std::string_view, std::string_view>;
std::vector<std::pair<std::string_view, map_type>> cases{
// Simple received
{"from smtp11.mailtrack.pl (smtp11.mailtrack.pl [185.243.30.90])"sv,
#include "mime_string.hxx"
#include "libmime/email_addr.h"
#include "libserver/task.h"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include <vector>
#include <string_view>
#include <utility>
}
/* Unit tests helper */
- static auto from_map(const robin_hood::unordered_flat_map<std::string_view, std::string_view> &map) -> received_header {
+ static auto from_map(const ankerl::unordered_dense::map<std::string_view, std::string_view> &map) -> received_header {
using namespace std::string_view_literals;
received_header rh;
return rh;
}
- auto as_map() const -> robin_hood::unordered_flat_map<std::string_view, std::string_view>
+ auto as_map() const -> ankerl::unordered_dense::map<std::string_view, std::string_view>
{
- robin_hood::unordered_flat_map<std::string_view, std::string_view> map;
+ ankerl::unordered_dense::map<std::string_view, std::string_view> map;
if (!from_hostname.empty()) {
map["from_hostname"] = from_hostname.as_view();
#include <vector>
#include <variant>
#include "libutil/cxx/util.hxx"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "composites_internal.hxx"
struct rspamd_task *task;
struct rspamd_composite *composite;
struct rspamd_scan_result *metric_res;
- robin_hood::unordered_flat_map<std::string_view,
+ ankerl::unordered_dense::map<std::string_view,
std::vector<symbol_remove_data>> symbols_to_remove;
std::vector<bool> checked;
return composite;
}
- robin_hood::unordered_flat_map<std::string,
+ ankerl::unordered_dense::map<std::string,
std::shared_ptr<rspamd_composite>, rspamd::smart_str_hash, rspamd::smart_str_equal> composites;
/* Store all composites here, even if we have duplicates */
std::vector<std::shared_ptr<rspamd_composite>> all_composites;
#include <memory>
#include <vector>
#include <cmath>
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "composites.h"
#include "composites_internal.hxx"
static auto
composite_policy_from_str(const std::string_view &inp) -> enum rspamd_composite_policy
{
- const static robin_hood::unordered_flat_map<std::string_view,
+ const static ankerl::unordered_dense::map<std::string_view,
enum rspamd_composite_policy> names{
{"remove", rspamd_composite_policy::RSPAMD_COMPOSITE_POLICY_REMOVE_ALL},
{"remove_all", rspamd_composite_policy::RSPAMD_COMPOSITE_POLICY_REMOVE_ALL},
*/
#include "css.hxx"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "css_parser.hxx"
#include "libserver/html/html_tag.hxx"
#include "libserver/html/html_block.hxx"
using sel_shared_hash = smart_ptr_hash<css_selector>;
using sel_shared_eq = smart_ptr_equal<css_selector>;
using selector_ptr = std::unique_ptr<css_selector>;
- using selectors_hash = robin_hood::unordered_flat_map<selector_ptr, css_declarations_block_ptr,
+ using selectors_hash = ankerl::unordered_dense::map<selector_ptr, css_declarations_block_ptr,
sel_shared_hash, sel_shared_eq>;
using universal_selector_t = std::pair<selector_ptr, css_declarations_block_ptr>;
selectors_hash tags_selector;
#pragma once
#include <string_view>
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "css_value.hxx"
namespace rspamd::css {
* TODO: think about frozen structs when we can deal with 700 values without
* compiler limits...
*/
-static const robin_hood::unordered_flat_map<std::string_view, css_color> css_colors_map{
+static const ankerl::unordered_dense::map<std::string_view, css_color> css_colors_map{
{"aliceblue", {240, 248, 255}},
{"antiquewhite", {250, 235, 215}},
{"antiquewhite1", {255, 239, 219}},
#include "css_value.hxx"
#include "css_property.hxx"
#include "css_parser.hxx"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "libutil/cxx/util.hxx"
#include "libutil/cxx/hash_util.hxx"
#include <vector>
auto compile_to_block(rspamd_mempool_t *pool) const -> rspamd::html::html_block *;
private:
- robin_hood::unordered_flat_set<rule_shared_ptr, rule_shared_hash, rule_shared_eq> rules;
+ ankerl::unordered_dense::set<rule_shared_ptr, rule_shared_hash, rule_shared_eq> rules;
};
using css_declarations_block_ptr = std::shared_ptr<css_declarations_block>;
#include "frozen/unordered_map.h"
#include "frozen/string.h"
#include "libutil/util.h"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "fmt/core.h"
#define DOCTEST_CONFIG_IMPLEMENTATION_IN_DLL
#include <string>
#include <utility>
#include <vector>
-#include <contrib/robin-hood/robin_hood.h>
+#include "contrib/ankerl/unordered_dense.h"
#include <unicode/utf8.h>
#include <unicode/uchar.h>
#include "libutil/cxx/util.hxx"
};
class html_entities_storage {
- robin_hood::unordered_flat_map<std::string_view, html_entity_def> entity_by_name;
- robin_hood::unordered_flat_map<std::string_view, html_entity_def> entity_by_name_heur;
- robin_hood::unordered_flat_map<unsigned, html_entity_def> entity_by_id;
+ ankerl::unordered_dense::map<std::string_view, html_entity_def> entity_by_name;
+ ankerl::unordered_dense::map<std::string_view, html_entity_def> entity_by_name_heur;
+ ankerl::unordered_dense::map<unsigned, html_entity_def> entity_by_id;
public:
html_entities_storage() {
auto nelts = G_N_ELEMENTS(html_entities_array);
#include "libutil/cxx/util.hxx"
#include <string>
-#include <contrib/robin-hood/robin_hood.h>
+#include "contrib/ankerl/unordered_dense.h"
namespace rspamd::html {
);
class html_tags_storage {
- robin_hood::unordered_flat_map<std::string_view, html_tag_def> tag_by_name;
- robin_hood::unordered_flat_map<tag_id_t, html_tag_def> tag_by_id;
+ ankerl::unordered_dense::map<std::string_view, html_tag_def> tag_by_name;
+ ankerl::unordered_dense::map<tag_id_t, html_tag_def> tag_by_id;
public:
html_tags_storage() {
tag_by_name.reserve(html_tag_defs_array.size());
#include "contrib/hiredis/adapters/libev.h"
#include "cryptobox.h"
#include "logger.h"
-
#include <list>
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
namespace rspamd {
class redis_pool_elt;
redis_pool_key_t key;
bool is_unix;
public:
+ /* Disable copy */
+ redis_pool_elt() = delete;
+ redis_pool_elt(const redis_pool_elt &) = delete;
+ /* Enable move */
+ redis_pool_elt(redis_pool_elt &&other) = default;
+
explicit redis_pool_elt(redis_pool *_pool,
const gchar *_db, const gchar *_password,
const char *_ip, int _port)
static constexpr const unsigned default_max_conns = 100;
/* We want to have references integrity */
- robin_hood::unordered_flat_map<redisAsyncContext *,
+ ankerl::unordered_dense::map<redisAsyncContext *,
redis_pool_connection *> conns_by_ctx;
- robin_hood::unordered_node_map<redis_pool_key_t, redis_pool_elt> elts_by_key;
+ ankerl::unordered_dense::map<redis_pool_key_t, redis_pool_elt> elts_by_key;
bool wanna_die = false; /* Hiredis is 'clever' so we can call ourselves from destructor */
public:
double timeout = default_timeout;
}
else {
/* Need to create a pool */
- auto nelt = elts_by_key.emplace(std::piecewise_construct,
- std::forward_as_tuple(key),
- std::forward_as_tuple(this, db, password, ip, port));
+ auto nconn = redis_pool_elt{this, db, password, ip, port};
+ auto nelt = elts_by_key.try_emplace(key,
+ std::move(nconn));
return nelt.first->second.new_connection();
}
#include "rspamd_symcache.h"
#include "contrib/libev/ev.h"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "contrib/expected/expected.hpp"
#include "cfg_file.h"
/* All items ordered */
std::vector<cache_item_ptr> d;
/* Mapping from symbol name to the position in the order array */
- robin_hood::unordered_flat_map<std::string_view, unsigned int> by_symbol;
+ ankerl::unordered_dense::map<std::string_view, unsigned int> by_symbol;
/* Mapping from symbol id to the position in the order array */
- robin_hood::unordered_flat_map<unsigned int, unsigned int> by_cache_id;
+ ankerl::unordered_dense::map<unsigned int, unsigned int> by_cache_id;
/* It matches cache->generation_id; if not, a fresh ordering is required */
unsigned int generation_id;
private:
using items_ptr_vec = std::vector<cache_item_ptr>;
/* Map indexed by symbol name: all symbols must have unique names, so this map holds ownership */
- robin_hood::unordered_flat_map<std::string_view, cache_item_ptr> items_by_symbol;
+ ankerl::unordered_dense::map<std::string_view, cache_item_ptr> items_by_symbol;
items_ptr_vec items_by_id;
/* Items sorted into some order */
/* A list of internal augmentations that are known to Rspamd with their weight */
static const auto known_augmentations =
- robin_hood::unordered_flat_map<std::string, augmentation_info, rspamd::smart_str_hash, rspamd::smart_str_equal>{
+ ankerl::unordered_dense::map<std::string, augmentation_info, rspamd::smart_str_hash, rspamd::smart_str_equal>{
{"passthrough", {
.weight = 10,
.implied_flags = SYMBOL_TYPE_IGNORE_PASSTHROUGH
id_list forbidden_ids{};
/* Set of augmentations */
- robin_hood::unordered_flat_set<std::string, rspamd::smart_str_hash, rspamd::smart_str_equal> augmentations;
+ ankerl::unordered_dense::set<std::string, rspamd::smart_str_hash, rspamd::smart_str_equal> augmentations;
/* Dependencies */
std::vector<cache_dependency> deps;
#include <string>
#include <optional>
#include "contrib/expected/expected.hpp"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include "fmt/core.h"
namespace rspamd::stat::cdb {
* We store weak pointers here to allow owning cdb statfiles to free
* expensive cdb before this cache is terminated (e.g. on dynamic cdb reload)
*/
- robin_hood::unordered_flat_map<std::string, std::weak_ptr<struct cdb>> elts;
+ ankerl::unordered_dense::map<std::string, std::weak_ptr<struct cdb>> elts;
struct cdb_deleter {
void operator()(struct cdb *c) const {
#include "libserver/http/http_connection.h"
#include "libserver/mempool_vars_internal.h"
#include "upstream.h"
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
#include <vector>
namespace rspamd::stat::http {
bool learn) -> bool;
private:
http_backends_collection *all_backends;
- robin_hood::unordered_flat_map<int, const struct rspamd_statfile_config *> seen_statfiles;
+ ankerl::unordered_dense::map<int, const struct rspamd_statfile_config *> seen_statfiles;
struct upstream *selected;
private:
http_backend_runtime(struct rspamd_task *task, bool is_learn) :
#include <string_view>
#include <string>
-#include "contrib/robin-hood/robin_hood.h"
+#include "contrib/ankerl/unordered_dense.h"
namespace rspamd {
struct smart_str_hash {
using is_transparent = void;
auto operator()(const std::string &a) const {
- return robin_hood::hash<std::string>()(a);
+ return ankerl::unordered_dense::hash<std::string>()(a);
}
auto operator()(const std::string_view &a) const {
- return robin_hood::hash<std::string_view>()(a);
+ return ankerl::unordered_dense::hash<std::string_view>()(a);
}
};
#include "libserver/html/html_block.hxx"
#include "images.h"
-#include <contrib/robin-hood/robin_hood.h>
+#include "contrib/ankerl/unordered_dense.h"
#include <frozen/string.h>
#include <frozen/unordered_map.h>
const gchar *tagname;
gint id;
auto any = false;
- robin_hood::unordered_flat_set<int> tags;
+ ankerl::unordered_dense::set<int> tags;
if (lua_type (L, 2) == LUA_TSTRING) {