gitea.com/macaron/captcha v0.0.0-20190822015246-daa973478bae
gitea.com/macaron/cors v0.0.0-20190821152825-7dcef4a17175
gitea.com/macaron/csrf v0.0.0-20190822024205-3dc5a4474439
+ gitea.com/macaron/gzip v0.0.0-20191118033930-0c4c5566a0e5
gitea.com/macaron/i18n v0.0.0-20190822004228-474e714e2223
gitea.com/macaron/inject v0.0.0-20190805023432-d4c86e31027a
gitea.com/macaron/macaron v1.3.3-0.20190821202302-9646c0587edb
github.com/joho/godotenv v1.3.0 // indirect
github.com/kballard/go-shellquote v0.0.0-20170619183022-cd60e84ee657
github.com/keybase/go-crypto v0.0.0-20170605145657-00ac4db533f6
- github.com/klauspost/compress v0.0.0-20161025140425-8df558b6cb6f
- github.com/klauspost/cpuid v0.0.0-20160302075316-09cded8978dc // indirect
- github.com/klauspost/crc32 v0.0.0-20161016154125-cb6bfca970f6 // indirect
+ github.com/klauspost/compress v1.9.2
github.com/lafriks/xormstore v1.3.2
github.com/lib/pq v1.2.0
github.com/lunny/dingtalk_webhook v0.0.0-20171025031554-e3534c89ef96
gitea.com/macaron/cors v0.0.0-20190821152825-7dcef4a17175/go.mod h1:rtOK4J20kpMD9XcNsnO5YA843YSTe/MUMbDj/TJ/Q7A=
gitea.com/macaron/csrf v0.0.0-20190822024205-3dc5a4474439 h1:88c34YM29a1GlWLrLBaG/GTT2htDdJz1u3n9+lmPolg=
gitea.com/macaron/csrf v0.0.0-20190822024205-3dc5a4474439/go.mod h1:IsQPHx73HnnqFBYiVHjg87q4XBZyGXXu77xANukvZuk=
+gitea.com/macaron/gzip v0.0.0-20191118033930-0c4c5566a0e5 h1:G/a7r0r2jEelSynBlv1+PAEZQKfsdRHQUMb1PlNvemM=
+gitea.com/macaron/gzip v0.0.0-20191118033930-0c4c5566a0e5/go.mod h1:jGHtoovArcQj+sw7NJxyPgjuRxOSG9a/oFu3VkLRTKQ=
gitea.com/macaron/i18n v0.0.0-20190822004228-474e714e2223 h1:iZWwQif/LHMjBgfY/ua8CFVa4XMDfbbs7EZ0Q1dYguU=
gitea.com/macaron/i18n v0.0.0-20190822004228-474e714e2223/go.mod h1:+qsc10s4hBsHKU/9luGGumFh4m5FFVc7uih+8/mM1NY=
gitea.com/macaron/inject v0.0.0-20190803172902-8375ba841591/go.mod h1:h6E4kLao1Yko6DOU6QDnQPcuoNzvbZqzj2mtPcEn1aM=
github.com/kisielk/errcheck v1.1.0/go.mod h1:EZBBE59ingxPouuu3KfxchcWSUPOHkagtvWXihfKN4Q=
github.com/kisielk/errcheck v1.2.0/go.mod h1:/BMXB+zMLi60iA8Vv6Ksmxu/1UDYcXs4uQLJ+jE2L00=
github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck=
-github.com/klauspost/compress v0.0.0-20161025140425-8df558b6cb6f h1:tCnZKEmDovgV4jmsclh6CuKk9AMzTzyVWfejgkgccVg=
-github.com/klauspost/compress v0.0.0-20161025140425-8df558b6cb6f/go.mod h1:RyIbtBH6LamlWaDj8nUwkbUhJ87Yi3uG0guNDohfE1A=
-github.com/klauspost/cpuid v0.0.0-20160302075316-09cded8978dc h1:WW8B7p7QBnFlqRVv/k6ro/S8Z7tCnYjJHcQNScx9YVs=
-github.com/klauspost/cpuid v0.0.0-20160302075316-09cded8978dc/go.mod h1:Pj4uuM528wm8OyEC2QMXAi2YiTZ96dNQPGgoMS4s3ek=
-github.com/klauspost/crc32 v0.0.0-20161016154125-cb6bfca970f6 h1:KAZ1BW2TCmT6PRihDPpocIy1QTtsAsrx6TneU/4+CMg=
-github.com/klauspost/crc32 v0.0.0-20161016154125-cb6bfca970f6/go.mod h1:+ZoRqAPRLkC4NPOvfYeR5KNOrY6TD+/sAC3HXPZgDYg=
+github.com/klauspost/compress v1.9.2 h1:LfVyl+ZlLlLDeQ/d2AqfGIIH4qEDu0Ed2S5GyhCWIWY=
+github.com/klauspost/compress v1.9.2/go.mod h1:RyIbtBH6LamlWaDj8nUwkbUhJ87Yi3uG0guNDohfE1A=
github.com/konsorten/go-windows-terminal-sequences v1.0.1/go.mod h1:T0+1ngSBFLxvqU3pZ+m/2kptfBszLMUkC4ZK/EgS/cQ=
github.com/konsorten/go-windows-terminal-sequences v1.0.2/go.mod h1:T0+1ngSBFLxvqU3pZ+m/2kptfBszLMUkC4ZK/EgS/cQ=
github.com/kr/logfmt v0.0.0-20140226030751-b84e30acd515/go.mod h1:+0opPa2QZZtGFBFZlji/RkVcI2GknAs/DXo4wKdlNEc=
"testing"
"code.gitea.io/gitea/models"
- "code.gitea.io/gitea/modules/gzip"
"code.gitea.io/gitea/modules/lfs"
"code.gitea.io/gitea/modules/setting"
+ "gitea.com/macaron/gzip"
gzipp "github.com/klauspost/compress/gzip"
"github.com/stretchr/testify/assert"
)
+++ /dev/null
-// Copyright 2019 The Gitea Authors. All rights reserved.
-// Use of this source code is governed by a MIT-style
-// license that can be found in the LICENSE file.
-
-package gzip
-
-import (
- "bufio"
- "fmt"
- "io"
- "net"
- "net/http"
- "regexp"
- "strconv"
- "strings"
- "sync"
-
- "gitea.com/macaron/macaron"
- "github.com/klauspost/compress/gzip"
-)
-
-const (
- acceptEncodingHeader = "Accept-Encoding"
- contentEncodingHeader = "Content-Encoding"
- contentLengthHeader = "Content-Length"
- contentTypeHeader = "Content-Type"
- rangeHeader = "Range"
- varyHeader = "Vary"
-)
-
-const (
- // MinSize is the minimum size of content we will compress
- MinSize = 1400
-)
-
-// noopClosers are io.Writers with a shim to prevent early closure
-type noopCloser struct {
- io.Writer
-}
-
-func (noopCloser) Close() error { return nil }
-
-// WriterPool is a gzip writer pool to reduce workload on creation of
-// gzip writers
-type WriterPool struct {
- pool sync.Pool
- compressionLevel int
-}
-
-// NewWriterPool creates a new pool
-func NewWriterPool(compressionLevel int) *WriterPool {
- return &WriterPool{pool: sync.Pool{
- // New will return nil, we'll manage the creation of new
- // writers in the middleware
- New: func() interface{} { return nil },
- },
- compressionLevel: compressionLevel}
-}
-
-// Get a writer from the pool - or create one if not available
-func (wp *WriterPool) Get(rw macaron.ResponseWriter) *gzip.Writer {
- ret := wp.pool.Get()
- if ret == nil {
- ret, _ = gzip.NewWriterLevel(rw, wp.compressionLevel)
- } else {
- ret.(*gzip.Writer).Reset(rw)
- }
- return ret.(*gzip.Writer)
-}
-
-// Put returns a writer to the pool
-func (wp *WriterPool) Put(w *gzip.Writer) {
- wp.pool.Put(w)
-}
-
-var writerPool WriterPool
-
-// Options represents the configuration for the gzip middleware
-type Options struct {
- CompressionLevel int
-}
-
-func validateCompressionLevel(level int) bool {
- return level == gzip.DefaultCompression ||
- level == gzip.ConstantCompression ||
- (level >= gzip.BestSpeed && level <= gzip.BestCompression)
-}
-
-func validate(options []Options) Options {
- // Default to level 4 compression (Best results seem to be between 4 and 6)
- opt := Options{CompressionLevel: 4}
- if len(options) > 0 {
- opt = options[0]
- }
- if !validateCompressionLevel(opt.CompressionLevel) {
- opt.CompressionLevel = 4
- }
- return opt
-}
-
-// Middleware creates a macaron.Handler to proxy the response
-func Middleware(options ...Options) macaron.Handler {
- opt := validate(options)
- writerPool = *NewWriterPool(opt.CompressionLevel)
- regex := regexp.MustCompile(`bytes=(\d+)\-.*`)
-
- return func(ctx *macaron.Context) {
- // If the client won't accept gzip or x-gzip don't compress
- if !strings.Contains(ctx.Req.Header.Get(acceptEncodingHeader), "gzip") &&
- !strings.Contains(ctx.Req.Header.Get(acceptEncodingHeader), "x-gzip") {
- return
- }
-
- // If the client is asking for a specific range of bytes - don't compress
- if rangeHdr := ctx.Req.Header.Get(rangeHeader); rangeHdr != "" {
-
- match := regex.FindStringSubmatch(rangeHdr)
- if len(match) > 1 {
- return
- }
- }
-
- // OK we should proxy the response writer
- // We are still not necessarily going to compress...
- proxyWriter := &ProxyResponseWriter{
- internal: ctx.Resp,
- }
- defer proxyWriter.Close()
-
- ctx.Resp = proxyWriter
- ctx.MapTo(proxyWriter, (*http.ResponseWriter)(nil))
-
- // Check if render middleware has been registered,
- // if yes, we need to modify ResponseWriter for it as well.
- if _, ok := ctx.Render.(*macaron.DummyRender); !ok {
- ctx.Render.SetResponseWriter(proxyWriter)
- }
-
- ctx.Next()
- ctx.Resp = proxyWriter.internal
- }
-}
-
-// ProxyResponseWriter is a wrapped macaron ResponseWriter that may compress its contents
-type ProxyResponseWriter struct {
- writer io.WriteCloser
- internal macaron.ResponseWriter
- stopped bool
-
- code int
- buf []byte
-}
-
-// Header returns the header map
-func (proxy *ProxyResponseWriter) Header() http.Header {
- return proxy.internal.Header()
-}
-
-// Status returns the status code of the response or 0 if the response has not been written.
-func (proxy *ProxyResponseWriter) Status() int {
- if proxy.code != 0 {
- return proxy.code
- }
- return proxy.internal.Status()
-}
-
-// Written returns whether or not the ResponseWriter has been written.
-func (proxy *ProxyResponseWriter) Written() bool {
- if proxy.code != 0 {
- return true
- }
- return proxy.internal.Written()
-}
-
-// Size returns the size of the response body.
-func (proxy *ProxyResponseWriter) Size() int {
- return proxy.internal.Size()
-}
-
-// Before allows for a function to be called before the ResponseWriter has been written to. This is
-// useful for setting headers or any other operations that must happen before a response has been written.
-func (proxy *ProxyResponseWriter) Before(before macaron.BeforeFunc) {
- proxy.internal.Before(before)
-}
-
-// Write appends data to the proxied gzip writer.
-func (proxy *ProxyResponseWriter) Write(b []byte) (int, error) {
- // if writer is initialized, use the writer
- if proxy.writer != nil {
- return proxy.writer.Write(b)
- }
-
- proxy.buf = append(proxy.buf, b...)
-
- var (
- contentLength, _ = strconv.Atoi(proxy.Header().Get(contentLengthHeader))
- contentType = proxy.Header().Get(contentTypeHeader)
- contentEncoding = proxy.Header().Get(contentEncodingHeader)
- )
-
- // OK if an encoding hasn't been chosen, and content length > 1400
- // and content type isn't a compressed type
- if contentEncoding == "" &&
- (contentLength == 0 || contentLength >= MinSize) &&
- (contentType == "" || !compressedContentType(contentType)) {
- // If current buffer is less than the min size and a Content-Length isn't set, then wait
- if len(proxy.buf) < MinSize && contentLength == 0 {
- return len(b), nil
- }
-
- // If the Content-Length is larger than minSize or the current buffer is larger than minSize, then continue.
- if contentLength >= MinSize || len(proxy.buf) >= MinSize {
- // if we don't know the content type, infer it
- if contentType == "" {
- contentType = http.DetectContentType(proxy.buf)
- proxy.Header().Set(contentTypeHeader, contentType)
- }
- // If the Content-Type is not compressed - Compress!
- if !compressedContentType(contentType) {
- if err := proxy.startGzip(); err != nil {
- return 0, err
- }
- return len(b), nil
- }
- }
- }
- // If we got here, we should not GZIP this response.
- if err := proxy.startPlain(); err != nil {
- return 0, err
- }
- return len(b), nil
-}
-
-func (proxy *ProxyResponseWriter) startGzip() error {
- // Set the content-encoding and vary headers.
- proxy.Header().Set(contentEncodingHeader, "gzip")
- proxy.Header().Set(varyHeader, acceptEncodingHeader)
-
- // if the Content-Length is already set, then calls to Write on gzip
- // will fail to set the Content-Length header since its already set
- // See: https://github.com/golang/go/issues/14975.
- proxy.Header().Del(contentLengthHeader)
-
- // Write the header to gzip response.
- if proxy.code != 0 {
- proxy.internal.WriteHeader(proxy.code)
- // Ensure that no other WriteHeader's happen
- proxy.code = 0
- }
-
- // Initialize and flush the buffer into the gzip response if there are any bytes.
- // If there aren't any, we shouldn't initialize it yet because on Close it will
- // write the gzip header even if nothing was ever written.
- if len(proxy.buf) > 0 {
- // Initialize the GZIP response.
- proxy.writer = writerPool.Get(proxy.internal)
-
- return proxy.writeBuf()
- }
- return nil
-}
-
-func (proxy *ProxyResponseWriter) startPlain() error {
- if proxy.code != 0 {
- proxy.internal.WriteHeader(proxy.code)
- proxy.code = 0
- }
- proxy.stopped = true
- proxy.writer = noopCloser{proxy.internal}
- return proxy.writeBuf()
-}
-
-func (proxy *ProxyResponseWriter) writeBuf() error {
- if proxy.buf == nil {
- return nil
- }
-
- n, err := proxy.writer.Write(proxy.buf)
-
- // This should never happen (per io.Writer docs), but if the write didn't
- // accept the entire buffer but returned no specific error, we have no clue
- // what's going on, so abort just to be safe.
- if err == nil && n < len(proxy.buf) {
- err = io.ErrShortWrite
- }
- proxy.buf = nil
- return err
-}
-
-// WriteHeader will ensure that we have setup the writer before we write the header
-func (proxy *ProxyResponseWriter) WriteHeader(code int) {
- if proxy.code == 0 {
- proxy.code = code
- }
-}
-
-// Close the writer
-func (proxy *ProxyResponseWriter) Close() error {
- if proxy.stopped {
- return nil
- }
-
- if proxy.writer == nil {
- err := proxy.startPlain()
- if err != nil {
- return fmt.Errorf("GzipMiddleware: write to regular responseWriter at close gets error: %q", err.Error())
- }
- }
-
- err := proxy.writer.Close()
-
- if poolWriter, ok := proxy.writer.(*gzip.Writer); ok {
- writerPool.Put(poolWriter)
- }
-
- proxy.writer = nil
- proxy.stopped = true
- return err
-}
-
-// Flush the writer
-func (proxy *ProxyResponseWriter) Flush() {
- if proxy.writer == nil {
- return
- }
-
- if gw, ok := proxy.writer.(*gzip.Writer); ok {
- gw.Flush()
- }
-
- proxy.internal.Flush()
-}
-
-// Hijack implements http.Hijacker. If the underlying ResponseWriter is a
-// Hijacker, its Hijack method is returned. Otherwise an error is returned.
-func (proxy *ProxyResponseWriter) Hijack() (net.Conn, *bufio.ReadWriter, error) {
- hijacker, ok := proxy.internal.(http.Hijacker)
- if !ok {
- return nil, nil, fmt.Errorf("the ResponseWriter doesn't support the Hijacker interface")
- }
- return hijacker.Hijack()
-}
-
-// verify Hijacker interface implementation
-var _ http.Hijacker = &ProxyResponseWriter{}
-
-func compressedContentType(contentType string) bool {
- switch contentType {
- case "application/zip":
- return true
- case "application/x-gzip":
- return true
- case "application/gzip":
- return true
- default:
- return false
- }
-}
+++ /dev/null
-// Copyright 2019 The Gitea Authors. All rights reserved.
-// Use of this source code is governed by a MIT-style
-// license that can be found in the LICENSE file.
-
-package gzip
-
-import (
- "archive/zip"
- "bytes"
- "io/ioutil"
- "net/http"
- "net/http/httptest"
- "testing"
-
- "gitea.com/macaron/macaron"
- gzipp "github.com/klauspost/compress/gzip"
- "github.com/stretchr/testify/assert"
-)
-
-func setup(sampleResponse []byte) (*macaron.Macaron, *[]byte) {
- m := macaron.New()
- m.Use(Middleware())
- m.Get("/", func() *[]byte { return &sampleResponse })
- return m, &sampleResponse
-}
-
-func reqNoAcceptGzip(t *testing.T, m *macaron.Macaron, sampleResponse *[]byte) {
- // Request without accept gzip: Should not gzip
- resp := httptest.NewRecorder()
- req, err := http.NewRequest("GET", "/", nil)
- assert.NoError(t, err)
- m.ServeHTTP(resp, req)
-
- _, ok := resp.HeaderMap[contentEncodingHeader]
- assert.False(t, ok)
-
- contentEncoding := resp.Header().Get(contentEncodingHeader)
- assert.NotContains(t, contentEncoding, "gzip")
-
- result := resp.Body.Bytes()
- assert.Equal(t, *sampleResponse, result)
-}
-
-func reqAcceptGzip(t *testing.T, m *macaron.Macaron, sampleResponse *[]byte, expectGzip bool) {
- // Request without accept gzip: Should not gzip
- resp := httptest.NewRecorder()
- req, err := http.NewRequest("GET", "/", nil)
- assert.NoError(t, err)
- req.Header.Set(acceptEncodingHeader, "gzip")
- m.ServeHTTP(resp, req)
-
- _, ok := resp.HeaderMap[contentEncodingHeader]
- assert.Equal(t, ok, expectGzip)
-
- contentEncoding := resp.Header().Get(contentEncodingHeader)
- if expectGzip {
- assert.Contains(t, contentEncoding, "gzip")
- gzippReader, err := gzipp.NewReader(resp.Body)
- assert.NoError(t, err)
- result, err := ioutil.ReadAll(gzippReader)
- assert.NoError(t, err)
- assert.Equal(t, *sampleResponse, result)
- } else {
- assert.NotContains(t, contentEncoding, "gzip")
- result := resp.Body.Bytes()
- assert.Equal(t, *sampleResponse, result)
- }
-}
-
-func TestMiddlewareSmall(t *testing.T) {
- m, sampleResponse := setup([]byte("Small response"))
-
- reqNoAcceptGzip(t, m, sampleResponse)
-
- reqAcceptGzip(t, m, sampleResponse, false)
-}
-
-func TestMiddlewareLarge(t *testing.T) {
- b := make([]byte, MinSize+1)
- for i := range b {
- b[i] = byte(i % 256)
- }
- m, sampleResponse := setup(b)
-
- reqNoAcceptGzip(t, m, sampleResponse)
-
- // This should be gzipped as we accept gzip
- reqAcceptGzip(t, m, sampleResponse, true)
-}
-
-func TestMiddlewareGzip(t *testing.T) {
- b := make([]byte, MinSize*10)
- for i := range b {
- b[i] = byte(i % 256)
- }
- outputBuffer := bytes.NewBuffer([]byte{})
- gzippWriter := gzipp.NewWriter(outputBuffer)
- gzippWriter.Write(b)
- gzippWriter.Flush()
- gzippWriter.Close()
- output := outputBuffer.Bytes()
-
- m, sampleResponse := setup(output)
-
- reqNoAcceptGzip(t, m, sampleResponse)
-
- // This should not be gzipped even though we accept gzip
- reqAcceptGzip(t, m, sampleResponse, false)
-}
-
-func TestMiddlewareZip(t *testing.T) {
- b := make([]byte, MinSize*10)
- for i := range b {
- b[i] = byte(i % 256)
- }
- outputBuffer := bytes.NewBuffer([]byte{})
- zipWriter := zip.NewWriter(outputBuffer)
- fileWriter, err := zipWriter.Create("default")
- assert.NoError(t, err)
- fileWriter.Write(b)
- //fileWriter.Close()
- zipWriter.Close()
- output := outputBuffer.Bytes()
-
- m, sampleResponse := setup(output)
-
- reqNoAcceptGzip(t, m, sampleResponse)
-
- // This should not be gzipped even though we accept gzip
- reqAcceptGzip(t, m, sampleResponse, false)
-}
"code.gitea.io/gitea/models"
"code.gitea.io/gitea/modules/auth"
"code.gitea.io/gitea/modules/context"
- "code.gitea.io/gitea/modules/gzip"
"code.gitea.io/gitea/modules/lfs"
"code.gitea.io/gitea/modules/log"
"code.gitea.io/gitea/modules/metrics"
"gitea.com/macaron/captcha"
"gitea.com/macaron/cors"
"gitea.com/macaron/csrf"
+ "gitea.com/macaron/gzip"
"gitea.com/macaron/i18n"
"gitea.com/macaron/macaron"
"gitea.com/macaron/session"
--- /dev/null
+module gitea.com/macaron/gzip
+
+go 1.12
+
+require (
+ gitea.com/macaron/macaron v1.3.3-0.20190821202302-9646c0587edb
+ github.com/klauspost/compress v1.9.2
+ github.com/stretchr/testify v1.4.0
+)
--- /dev/null
+gitea.com/macaron/inject v0.0.0-20190803172902-8375ba841591 h1:UbCTjPcLrNxR9LzKDjQBMT2zoxZuEnca1pZCpgeMuhQ=
+gitea.com/macaron/inject v0.0.0-20190803172902-8375ba841591/go.mod h1:h6E4kLao1Yko6DOU6QDnQPcuoNzvbZqzj2mtPcEn1aM=
+gitea.com/macaron/macaron v1.3.3-0.20190821202302-9646c0587edb h1:amL0md6orTj1tXY16ANzVU9FmzQB+W7aJwp8pVDbrmA=
+gitea.com/macaron/macaron v1.3.3-0.20190821202302-9646c0587edb/go.mod h1:0coI+mSPSwbsyAbOuFllVS38awuk9mevhLD52l50Gjs=
+github.com/davecgh/go-spew v1.1.0 h1:ZDRjVQ15GmhC3fiQ8ni8+OwkZQO4DARzQgrnXU1Liz8=
+github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
+github.com/gopherjs/gopherjs v0.0.0-20181017120253-0766667cb4d1/go.mod h1:wJfORRmW1u3UXTncJ5qlYoELFm8eSnnEO6hX4iZ3EWY=
+github.com/gopherjs/gopherjs v0.0.0-20181103185306-d547d1d9531e h1:JKmoR8x90Iww1ks85zJ1lfDGgIiMDuIptTOhJq+zKyg=
+github.com/gopherjs/gopherjs v0.0.0-20181103185306-d547d1d9531e/go.mod h1:wJfORRmW1u3UXTncJ5qlYoELFm8eSnnEO6hX4iZ3EWY=
+github.com/jtolds/gls v4.2.1+incompatible/go.mod h1:QJZ7F/aHp+rZTRtaJ1ow/lLfFfVYBRgL+9YlvaHOwJU=
+github.com/jtolds/gls v4.20.0+incompatible h1:xdiiI2gbIgH/gLH7ADydsJ1uDOEzR8yvV7C0MuV77Wo=
+github.com/jtolds/gls v4.20.0+incompatible/go.mod h1:QJZ7F/aHp+rZTRtaJ1ow/lLfFfVYBRgL+9YlvaHOwJU=
+github.com/klauspost/compress v1.9.2 h1:LfVyl+ZlLlLDeQ/d2AqfGIIH4qEDu0Ed2S5GyhCWIWY=
+github.com/klauspost/compress v1.9.2/go.mod h1:RyIbtBH6LamlWaDj8nUwkbUhJ87Yi3uG0guNDohfE1A=
+github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
+github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
+github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d/go.mod h1:OnSkiWE9lh6wB0YB77sQom3nweQdgAjqCqsofrRNTgc=
+github.com/smartystreets/assertions v0.0.0-20190116191733-b6c0e53d7304 h1:Jpy1PXuP99tXNrhbq2BaPz9B+jNAvH1JPQQpG/9GCXY=
+github.com/smartystreets/assertions v0.0.0-20190116191733-b6c0e53d7304/go.mod h1:OnSkiWE9lh6wB0YB77sQom3nweQdgAjqCqsofrRNTgc=
+github.com/smartystreets/goconvey v0.0.0-20181108003508-044398e4856c/go.mod h1:XDJAKZRPZ1CvBcN2aX5YOUTYGHki24fSF0Iv48Ibg0s=
+github.com/smartystreets/goconvey v0.0.0-20190731233626-505e41936337 h1:WN9BUFbdyOsSH/XohnWpXOlq9NBD5sGAB2FciQMUEe8=
+github.com/smartystreets/goconvey v0.0.0-20190731233626-505e41936337/go.mod h1:syvi0/a8iFYH4r/RixwvyeAJjdLS9QV7WQ/tjFTllLA=
+github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
+github.com/stretchr/testify v1.4.0 h1:2E4SXV/wtOkTonXsotYi4li6zVWxYlZuYNCXe9XRJyk=
+github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
+github.com/unknwon/com v0.0.0-20190804042917-757f69c95f3e h1:GSGeB9EAKY2spCABz6xOX5DbxZEXolK+nBSvmsQwRjM=
+github.com/unknwon/com v0.0.0-20190804042917-757f69c95f3e/go.mod h1:tOOxU81rwgoCLoOVVPHb6T/wt8HZygqH5id+GNnlCXM=
+golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
+golang.org/x/crypto v0.0.0-20190701094942-4def268fd1a4 h1:HuIa8hRrWRSrqYzx1qI49NNxhdi2PrY7gxVSq1JjLDc=
+golang.org/x/crypto v0.0.0-20190701094942-4def268fd1a4/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
+golang.org/x/net v0.0.0-20190311183353-d8887717615a/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
+golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
+golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
+golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
+golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
+golang.org/x/tools v0.0.0-20190328211700-ab21143f2384/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
+gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
+gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
+gopkg.in/ini.v1 v1.44.0 h1:YRJzTUp0kSYWUVFF5XAbDFfyiqwsl0Vb9R8TVP5eRi0=
+gopkg.in/ini.v1 v1.44.0/go.mod h1:pNLf8WUiyNEtQjuu5G5vTm06TEv9tsIgeAvK8hOrP4k=
+gopkg.in/yaml.v2 v2.2.2 h1:ZCJp+EgiOT7lHqUV2J862kp8Qj64Jo6az82+3Td9dZw=
+gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
--- /dev/null
+// Copyright 2019 The Gitea Authors. All rights reserved.
+// Use of this source code is governed by a MIT-style
+// license that can be found in the LICENSE file.
+
+package gzip
+
+import (
+ "bufio"
+ "fmt"
+ "io"
+ "net"
+ "net/http"
+ "regexp"
+ "strconv"
+ "strings"
+ "sync"
+
+ "gitea.com/macaron/macaron"
+ "github.com/klauspost/compress/gzip"
+)
+
+const (
+ acceptEncodingHeader = "Accept-Encoding"
+ contentEncodingHeader = "Content-Encoding"
+ contentLengthHeader = "Content-Length"
+ contentTypeHeader = "Content-Type"
+ rangeHeader = "Range"
+ varyHeader = "Vary"
+)
+
+const (
+ // MinSize is the minimum size of content we will compress
+ MinSize = 1400
+)
+
+// noopClosers are io.Writers with a shim to prevent early closure
+type noopCloser struct {
+ io.Writer
+}
+
+func (noopCloser) Close() error { return nil }
+
+// WriterPool is a gzip writer pool to reduce workload on creation of
+// gzip writers
+type WriterPool struct {
+ pool sync.Pool
+ compressionLevel int
+}
+
+// NewWriterPool creates a new pool
+func NewWriterPool(compressionLevel int) *WriterPool {
+ return &WriterPool{pool: sync.Pool{
+ // New will return nil, we'll manage the creation of new
+ // writers in the middleware
+ New: func() interface{} { return nil },
+ },
+ compressionLevel: compressionLevel}
+}
+
+// Get a writer from the pool - or create one if not available
+func (wp *WriterPool) Get(rw macaron.ResponseWriter) *gzip.Writer {
+ ret := wp.pool.Get()
+ if ret == nil {
+ ret, _ = gzip.NewWriterLevel(rw, wp.compressionLevel)
+ } else {
+ ret.(*gzip.Writer).Reset(rw)
+ }
+ return ret.(*gzip.Writer)
+}
+
+// Put returns a writer to the pool
+func (wp *WriterPool) Put(w *gzip.Writer) {
+ wp.pool.Put(w)
+}
+
+var writerPool WriterPool
+
+// Options represents the configuration for the gzip middleware
+type Options struct {
+ CompressionLevel int
+}
+
+func validateCompressionLevel(level int) bool {
+ return level == gzip.DefaultCompression ||
+ level == gzip.ConstantCompression ||
+ (level >= gzip.BestSpeed && level <= gzip.BestCompression)
+}
+
+func validate(options []Options) Options {
+ // Default to level 4 compression (Best results seem to be between 4 and 6)
+ opt := Options{CompressionLevel: 4}
+ if len(options) > 0 {
+ opt = options[0]
+ }
+ if !validateCompressionLevel(opt.CompressionLevel) {
+ opt.CompressionLevel = 4
+ }
+ return opt
+}
+
+// Middleware creates a macaron.Handler to proxy the response
+func Middleware(options ...Options) macaron.Handler {
+ opt := validate(options)
+ writerPool = *NewWriterPool(opt.CompressionLevel)
+ regex := regexp.MustCompile(`bytes=(\d+)\-.*`)
+
+ return func(ctx *macaron.Context) {
+ // If the client won't accept gzip or x-gzip don't compress
+ if !strings.Contains(ctx.Req.Header.Get(acceptEncodingHeader), "gzip") &&
+ !strings.Contains(ctx.Req.Header.Get(acceptEncodingHeader), "x-gzip") {
+ return
+ }
+
+ // If the client is asking for a specific range of bytes - don't compress
+ if rangeHdr := ctx.Req.Header.Get(rangeHeader); rangeHdr != "" {
+
+ match := regex.FindStringSubmatch(rangeHdr)
+ if len(match) > 1 {
+ return
+ }
+ }
+
+ // OK we should proxy the response writer
+ // We are still not necessarily going to compress...
+ proxyWriter := &ProxyResponseWriter{
+ internal: ctx.Resp,
+ }
+ defer proxyWriter.Close()
+
+ ctx.Resp = proxyWriter
+ ctx.MapTo(proxyWriter, (*http.ResponseWriter)(nil))
+
+ // Check if render middleware has been registered,
+ // if yes, we need to modify ResponseWriter for it as well.
+ if _, ok := ctx.Render.(*macaron.DummyRender); !ok {
+ ctx.Render.SetResponseWriter(proxyWriter)
+ }
+
+ ctx.Next()
+ ctx.Resp = proxyWriter.internal
+ }
+}
+
+// ProxyResponseWriter is a wrapped macaron ResponseWriter that may compress its contents
+type ProxyResponseWriter struct {
+ writer io.WriteCloser
+ internal macaron.ResponseWriter
+ stopped bool
+
+ code int
+ buf []byte
+}
+
+// Header returns the header map
+func (proxy *ProxyResponseWriter) Header() http.Header {
+ return proxy.internal.Header()
+}
+
+// Status returns the status code of the response or 0 if the response has not been written.
+func (proxy *ProxyResponseWriter) Status() int {
+ if proxy.code != 0 {
+ return proxy.code
+ }
+ return proxy.internal.Status()
+}
+
+// Written returns whether or not the ResponseWriter has been written.
+func (proxy *ProxyResponseWriter) Written() bool {
+ if proxy.code != 0 {
+ return true
+ }
+ return proxy.internal.Written()
+}
+
+// Size returns the size of the response body.
+func (proxy *ProxyResponseWriter) Size() int {
+ return proxy.internal.Size()
+}
+
+// Before allows for a function to be called before the ResponseWriter has been written to. This is
+// useful for setting headers or any other operations that must happen before a response has been written.
+func (proxy *ProxyResponseWriter) Before(before macaron.BeforeFunc) {
+ proxy.internal.Before(before)
+}
+
+// Write appends data to the proxied gzip writer.
+func (proxy *ProxyResponseWriter) Write(b []byte) (int, error) {
+ // if writer is initialized, use the writer
+ if proxy.writer != nil {
+ return proxy.writer.Write(b)
+ }
+
+ proxy.buf = append(proxy.buf, b...)
+
+ var (
+ contentLength, _ = strconv.Atoi(proxy.Header().Get(contentLengthHeader))
+ contentType = proxy.Header().Get(contentTypeHeader)
+ contentEncoding = proxy.Header().Get(contentEncodingHeader)
+ )
+
+ // OK if an encoding hasn't been chosen, and content length > 1400
+ // and content type isn't a compressed type
+ if contentEncoding == "" &&
+ (contentLength == 0 || contentLength >= MinSize) &&
+ (contentType == "" || !compressedContentType(contentType)) {
+ // If current buffer is less than the min size and a Content-Length isn't set, then wait
+ if len(proxy.buf) < MinSize && contentLength == 0 {
+ return len(b), nil
+ }
+
+ // If the Content-Length is larger than minSize or the current buffer is larger than minSize, then continue.
+ if contentLength >= MinSize || len(proxy.buf) >= MinSize {
+ // if we don't know the content type, infer it
+ if contentType == "" {
+ contentType = http.DetectContentType(proxy.buf)
+ proxy.Header().Set(contentTypeHeader, contentType)
+ }
+ // If the Content-Type is not compressed - Compress!
+ if !compressedContentType(contentType) {
+ if err := proxy.startGzip(); err != nil {
+ return 0, err
+ }
+ return len(b), nil
+ }
+ }
+ }
+ // If we got here, we should not GZIP this response.
+ if err := proxy.startPlain(); err != nil {
+ return 0, err
+ }
+ return len(b), nil
+}
+
+func (proxy *ProxyResponseWriter) startGzip() error {
+ // Set the content-encoding and vary headers.
+ proxy.Header().Set(contentEncodingHeader, "gzip")
+ proxy.Header().Set(varyHeader, acceptEncodingHeader)
+
+ // if the Content-Length is already set, then calls to Write on gzip
+ // will fail to set the Content-Length header since its already set
+ // See: https://github.com/golang/go/issues/14975.
+ proxy.Header().Del(contentLengthHeader)
+
+ // Write the header to gzip response.
+ if proxy.code != 0 {
+ proxy.internal.WriteHeader(proxy.code)
+ // Ensure that no other WriteHeader's happen
+ proxy.code = 0
+ }
+
+ // Initialize and flush the buffer into the gzip response if there are any bytes.
+ // If there aren't any, we shouldn't initialize it yet because on Close it will
+ // write the gzip header even if nothing was ever written.
+ if len(proxy.buf) > 0 {
+ // Initialize the GZIP response.
+ proxy.writer = writerPool.Get(proxy.internal)
+
+ return proxy.writeBuf()
+ }
+ return nil
+}
+
+func (proxy *ProxyResponseWriter) startPlain() error {
+ if proxy.code != 0 {
+ proxy.internal.WriteHeader(proxy.code)
+ proxy.code = 0
+ }
+ proxy.stopped = true
+ proxy.writer = noopCloser{proxy.internal}
+ return proxy.writeBuf()
+}
+
+func (proxy *ProxyResponseWriter) writeBuf() error {
+ if proxy.buf == nil {
+ return nil
+ }
+
+ n, err := proxy.writer.Write(proxy.buf)
+
+ // This should never happen (per io.Writer docs), but if the write didn't
+ // accept the entire buffer but returned no specific error, we have no clue
+ // what's going on, so abort just to be safe.
+ if err == nil && n < len(proxy.buf) {
+ err = io.ErrShortWrite
+ }
+ proxy.buf = nil
+ return err
+}
+
+// WriteHeader will ensure that we have setup the writer before we write the header
+func (proxy *ProxyResponseWriter) WriteHeader(code int) {
+ if proxy.code == 0 {
+ proxy.code = code
+ }
+}
+
+// Close the writer
+func (proxy *ProxyResponseWriter) Close() error {
+ if proxy.stopped {
+ return nil
+ }
+
+ if proxy.writer == nil {
+ err := proxy.startPlain()
+ if err != nil {
+ return fmt.Errorf("GzipMiddleware: write to regular responseWriter at close gets error: %q", err.Error())
+ }
+ }
+
+ err := proxy.writer.Close()
+
+ if poolWriter, ok := proxy.writer.(*gzip.Writer); ok {
+ writerPool.Put(poolWriter)
+ }
+
+ proxy.writer = nil
+ proxy.stopped = true
+ return err
+}
+
+// Flush the writer
+func (proxy *ProxyResponseWriter) Flush() {
+ if proxy.writer == nil {
+ return
+ }
+
+ if gw, ok := proxy.writer.(*gzip.Writer); ok {
+ gw.Flush()
+ }
+
+ proxy.internal.Flush()
+}
+
+// Hijack implements http.Hijacker. If the underlying ResponseWriter is a
+// Hijacker, its Hijack method is returned. Otherwise an error is returned.
+func (proxy *ProxyResponseWriter) Hijack() (net.Conn, *bufio.ReadWriter, error) {
+ hijacker, ok := proxy.internal.(http.Hijacker)
+ if !ok {
+ return nil, nil, fmt.Errorf("the ResponseWriter doesn't support the Hijacker interface")
+ }
+ return hijacker.Hijack()
+}
+
+// verify Hijacker interface implementation
+var _ http.Hijacker = &ProxyResponseWriter{}
+
+func compressedContentType(contentType string) bool {
+ switch contentType {
+ case "application/zip":
+ return true
+ case "application/x-gzip":
+ return true
+ case "application/gzip":
+ return true
+ default:
+ return false
+ }
+}
Copyright (c) 2012 The Go Authors. All rights reserved.
+Copyright (c) 2019 Klaus Post. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
+++ /dev/null
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-// forwardCopy is like the built-in copy function except that it always goes
-// forward from the start, even if the dst and src overlap.
-// It is equivalent to:
-// for i := 0; i < n; i++ {
-// mem[dst+i] = mem[src+i]
-// }
-func forwardCopy(mem []byte, dst, src, n int) {
- if dst <= src {
- copy(mem[dst:dst+n], mem[src:src+n])
- return
- }
- for {
- if dst >= src+n {
- copy(mem[dst:dst+n], mem[src:src+n])
- return
- }
- // There is some forward overlap. The destination
- // will be filled with a repeated pattern of mem[src:src+k].
- // We copy one instance of the pattern here, then repeat.
- // Each time around this loop k will double.
- k := dst - src
- copy(mem[dst:dst+k], mem[src:src+k])
- n -= k
- dst += k
- }
-}
+++ /dev/null
-//+build !noasm
-//+build !appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-package flate
-
-import (
- "github.com/klauspost/cpuid"
-)
-
-// crc32sse returns a hash for the first 4 bytes of the slice
-// len(a) must be >= 4.
-//go:noescape
-func crc32sse(a []byte) uint32
-
-// crc32sseAll calculates hashes for each 4-byte set in a.
-// dst must be east len(a) - 4 in size.
-// The size is not checked by the assembly.
-//go:noescape
-func crc32sseAll(a []byte, dst []uint32)
-
-// matchLenSSE4 returns the number of matching bytes in a and b
-// up to length 'max'. Both slices must be at least 'max'
-// bytes in size.
-//
-// TODO: drop the "SSE4" name, since it doesn't use any SSE instructions.
-//
-//go:noescape
-func matchLenSSE4(a, b []byte, max int) int
-
-// histogram accumulates a histogram of b in h.
-// h must be at least 256 entries in length,
-// and must be cleared before calling this function.
-//go:noescape
-func histogram(b []byte, h []int32)
-
-// Detect SSE 4.2 feature.
-func init() {
- useSSE42 = cpuid.CPU.SSE42()
-}
+++ /dev/null
-//+build !noasm
-//+build !appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-// func crc32sse(a []byte) uint32
-TEXT ·crc32sse(SB), 4, $0
- MOVQ a+0(FP), R10
- XORQ BX, BX
-
- // CRC32 dword (R10), EBX
- BYTE $0xF2; BYTE $0x41; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0x1a
-
- MOVL BX, ret+24(FP)
- RET
-
-// func crc32sseAll(a []byte, dst []uint32)
-TEXT ·crc32sseAll(SB), 4, $0
- MOVQ a+0(FP), R8 // R8: src
- MOVQ a_len+8(FP), R10 // input length
- MOVQ dst+24(FP), R9 // R9: dst
- SUBQ $4, R10
- JS end
- JZ one_crc
- MOVQ R10, R13
- SHRQ $2, R10 // len/4
- ANDQ $3, R13 // len&3
- XORQ BX, BX
- ADDQ $1, R13
- TESTQ R10, R10
- JZ rem_loop
-
-crc_loop:
- MOVQ (R8), R11
- XORQ BX, BX
- XORQ DX, DX
- XORQ DI, DI
- MOVQ R11, R12
- SHRQ $8, R11
- MOVQ R12, AX
- MOVQ R11, CX
- SHRQ $16, R12
- SHRQ $16, R11
- MOVQ R12, SI
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
-
- // CRC32 ECX, EDX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd1
-
- // CRC32 ESI, EDI
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xfe
- MOVL BX, (R9)
- MOVL DX, 4(R9)
- MOVL DI, 8(R9)
-
- XORQ BX, BX
- MOVL R11, AX
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
- MOVL BX, 12(R9)
-
- ADDQ $16, R9
- ADDQ $4, R8
- XORQ BX, BX
- SUBQ $1, R10
- JNZ crc_loop
-
-rem_loop:
- MOVL (R8), AX
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
-
- MOVL BX, (R9)
- ADDQ $4, R9
- ADDQ $1, R8
- XORQ BX, BX
- SUBQ $1, R13
- JNZ rem_loop
-
-end:
- RET
-
-one_crc:
- MOVQ $1, R13
- XORQ BX, BX
- JMP rem_loop
-
-// func matchLenSSE4(a, b []byte, max int) int
-TEXT ·matchLenSSE4(SB), 4, $0
- MOVQ a_base+0(FP), SI
- MOVQ b_base+24(FP), DI
- MOVQ DI, DX
- MOVQ max+48(FP), CX
-
-cmp8:
- // As long as we are 8 or more bytes before the end of max, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMPQ CX, $8
- JLT cmp1
- MOVQ (SI), AX
- MOVQ (DI), BX
- CMPQ AX, BX
- JNE bsf
- ADDQ $8, SI
- ADDQ $8, DI
- SUBQ $8, CX
- JMP cmp8
-
-bsf:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs. The BSF instruction finds the
- // least significant 1 bit, the amd64 architecture is little-endian, and
- // the shift by 3 converts a bit index to a byte index.
- XORQ AX, BX
- BSFQ BX, BX
- SHRQ $3, BX
- ADDQ BX, DI
-
- // Subtract off &b[0] to convert from &b[ret] to ret, and return.
- SUBQ DX, DI
- MOVQ DI, ret+56(FP)
- RET
-
-cmp1:
- // In the slices' tail, compare 1 byte at a time.
- CMPQ CX, $0
- JEQ matchLenEnd
- MOVB (SI), AX
- MOVB (DI), BX
- CMPB AX, BX
- JNE matchLenEnd
- ADDQ $1, SI
- ADDQ $1, DI
- SUBQ $1, CX
- JMP cmp1
-
-matchLenEnd:
- // Subtract off &b[0] to convert from &b[ret] to ret, and return.
- SUBQ DX, DI
- MOVQ DI, ret+56(FP)
- RET
-
-// func histogram(b []byte, h []int32)
-TEXT ·histogram(SB), 4, $0
- MOVQ b+0(FP), SI // SI: &b
- MOVQ b_len+8(FP), R9 // R9: len(b)
- MOVQ h+24(FP), DI // DI: Histogram
- MOVQ R9, R8
- SHRQ $3, R8
- JZ hist1
- XORQ R11, R11
-
-loop_hist8:
- MOVQ (SI), R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- INCL (DI)(R10*4)
-
- ADDQ $8, SI
- DECQ R8
- JNZ loop_hist8
-
-hist1:
- ANDQ $7, R9
- JZ end_hist
- XORQ R10, R10
-
-loop_hist1:
- MOVB (SI), R10
- INCL (DI)(R10*4)
- INCQ SI
- DECQ R9
- JNZ loop_hist1
-
-end_hist:
- RET
+++ /dev/null
-//+build !amd64 noasm appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-package flate
-
-func init() {
- useSSE42 = false
-}
-
-// crc32sse should never be called.
-func crc32sse(a []byte) uint32 {
- panic("no assembler")
-}
-
-// crc32sseAll should never be called.
-func crc32sseAll(a []byte, dst []uint32) {
- panic("no assembler")
-}
-
-// matchLenSSE4 should never be called.
-func matchLenSSE4(a, b []byte, max int) int {
- panic("no assembler")
- return 0
-}
-
-// histogram accumulates a histogram of b in h.
-//
-// len(h) must be >= 256, and h's elements must be all zeroes.
-func histogram(b []byte, h []int32) {
- h = h[:256]
- for _, t := range b {
- h[t]++
- }
-}
skipNever = math.MaxInt32
)
-var useSSE42 bool
-
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
{32, 258, 258, 4096, skipNever, 9},
}
-type compressor struct {
- compressionLevel
-
- w *huffmanBitWriter
- bulkHasher func([]byte, []uint32)
-
- // compression algorithm
- fill func(*compressor, []byte) int // copy data to window
- step func(*compressor) // process window
- sync bool // requesting flush
+// advancedState contains state for the advanced levels, with bigger hash tables, etc.
+type advancedState struct {
+ // deflate state
+ length int
+ offset int
+ hash uint32
+ maxInsertIndex int
+ ii uint16 // position of last match, intended to overflow to reset.
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
hashOffset int
// input window: unprocessed data is window[index:windowEnd]
- index int
+ index int
+ hashMatch [maxMatchLength + minMatchLength]uint32
+}
+
+type compressor struct {
+ compressionLevel
+
+ w *huffmanBitWriter
+
+ // compression algorithm
+ fill func(*compressor, []byte) int // copy data to window
+ step func(*compressor) // process window
+ sync bool // requesting flush
+
window []byte
windowEnd int
blockStart int // window index where current tokens start
byteAvailable bool // if true, still need to process window[index-1].
+ err error
// queued output tokens
tokens tokens
-
- // deflate state
- length int
- offset int
- hash uint32
- maxInsertIndex int
- err error
- ii uint16 // position of last match, intended to overflow to reset.
-
- snap snappyEnc
- hashMatch [maxMatchLength + minMatchLength]uint32
+ fast fastEnc
+ state *advancedState
}
func (d *compressor) fillDeflate(b []byte) int {
- if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
+ s := d.state
+ if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window[:], d.window[windowSize:2*windowSize])
- d.index -= windowSize
+ s.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
- d.hashOffset += windowSize
- if d.hashOffset > maxHashOffset {
- delta := d.hashOffset - 1
- d.hashOffset -= delta
- d.chainHead -= delta
- for i, v := range d.hashPrev {
+ s.hashOffset += windowSize
+ if s.hashOffset > maxHashOffset {
+ delta := s.hashOffset - 1
+ s.hashOffset -= delta
+ s.chainHead -= delta
+ // Iterate over slices instead of arrays to avoid copying
+ // the entire table onto the stack (Issue #18625).
+ for i, v := range s.hashPrev[:] {
if int(v) > delta {
- d.hashPrev[i] = uint32(int(v) - delta)
+ s.hashPrev[i] = uint32(int(v) - delta)
} else {
- d.hashPrev[i] = 0
+ s.hashPrev[i] = 0
}
}
- for i, v := range d.hashHead {
+ for i, v := range s.hashHead[:] {
if int(v) > delta {
- d.hashHead[i] = uint32(int(v) - delta)
+ s.hashHead[i] = uint32(int(v) - delta)
} else {
- d.hashHead[i] = 0
+ s.hashHead[i] = 0
}
}
}
return n
}
-func (d *compressor) writeBlock(tok tokens, index int, eof bool) error {
+func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
- d.w.writeBlock(tok.tokens[:tok.n], eof, window)
+ d.w.writeBlock(tok, eof, window)
return d.w.err
}
return nil
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
-func (d *compressor) writeBlockSkip(tok tokens, index int, eof bool) error {
+func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
- d.w.writeBlockHuff(eof, window)
+ d.w.writeBlockHuff(eof, window, d.sync)
} else {
// Write a dynamic huffman block.
- d.w.writeBlockDynamic(tok.tokens[:tok.n], eof, window)
+ d.w.writeBlockDynamic(tok, eof, window, d.sync)
}
} else {
- d.w.writeBlock(tok.tokens[:tok.n], eof, nil)
+ d.w.writeBlock(tok, eof, nil)
}
d.blockStart = index
return d.w.err
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only mode,
// use constant or Snappy compression.
- switch d.compressionLevel.level {
- case 0, 1, 2:
+ if d.level == 0 {
+ return
+ }
+ if d.fast != nil {
+ // encode the last data, but discard the result
+ if len(b) > maxMatchOffset {
+ b = b[len(b)-maxMatchOffset:]
+ }
+ d.fast.Encode(&d.tokens, b)
+ d.tokens.Reset()
return
}
+ s := d.state
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
continue
}
- dst := d.hashMatch[:dstSize]
- d.bulkHasher(tocheck, dst)
+ dst := s.hashMatch[:dstSize]
+ bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
+ s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
+ s.hashHead[newH] = uint32(di + s.hashOffset)
}
- d.hash = newH
+ s.hash = newH
}
// Update window information.
d.windowEnd += n
- d.index = n
+ s.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
-// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
+// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
- n := matchLen(win[i:], wPos, minMatchLook)
+ n := matchLen(win[i:i+minMatchLook], wPos)
if n > length && (n > minMatchLength || pos-i <= 4096) {
length = n
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
- if i < minIndex || i < 0 {
- break
- }
- }
- return
-}
-
-// Try to find a match starting at index whose length is greater than prevSize.
-// We only look at chainCount possibilities before giving up.
-// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
-func (d *compressor) findMatchSSE(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
-
- win := d.window[0 : pos+minMatchLook]
-
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
-
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = prevLength
- if length >= d.good {
- tries >>= 2
- }
-
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
-
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLenSSE4(win[i:], wPos, minMatchLook)
-
- if n > length && (n > minMatchLength || pos-i <= 4096) {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i == minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
+ i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex || i < 0 {
break
}
return d.w.err
}
-const hashmul = 0x1e35a7bd
-
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
- return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
+ b = b[:4]
+ return hash4u(uint32(b[3])|uint32(b[2])<<8|uint32(b[1])<<16|uint32(b[0])<<24, hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
- if len(b) < minMatchLength {
+ if len(b) < 4 {
return
}
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
- dst[0] = (hb * hashmul) >> (32 - hashBits)
- end := len(b) - minMatchLength + 1
+ dst[0] = hash4u(hb, hashBits)
+ end := len(b) - 4 + 1
for i := 1; i < end; i++ {
hb = (hb << 8) | uint32(b[i+3])
- dst[i] = (hb * hashmul) >> (32 - hashBits)
+ dst[i] = hash4u(hb, hashBits)
}
}
-// matchLen returns the number of matching bytes in a and b
-// up to length 'max'. Both slices must be at least 'max'
-// bytes in size.
-func matchLen(a, b []byte, max int) int {
- a = a[:max]
- b = b[:len(a)]
- for i, av := range a {
- if b[i] != av {
- return i
- }
- }
- return max
-}
-
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
- d.hashOffset = 1
- d.length = minMatchLength - 1
- d.offset = 0
d.byteAvailable = false
- d.index = 0
- d.hash = 0
- d.chainHead = -1
- d.bulkHasher = bulkHash4
- if useSSE42 {
- d.bulkHasher = crc32sseAll
- }
-}
-
-// Assumes that d.fastSkipHashing != skipNever,
-// otherwise use deflateLazy
-func (d *compressor) deflate() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ d.err = nil
+ if d.state == nil {
return
}
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>uint(d.fastSkipHashing)) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
+ s := d.state
+ s.index = 0
+ s.hashOffset = 1
+ s.length = minMatchLength - 1
+ s.offset = 0
+ s.hash = 0
+ s.chainHead = -1
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
+ s := d.state
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = false
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
}
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
+ s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if s.index < s.maxInsertIndex {
+ s.hash = hash4(d.window[s.index : s.index+minMatchLength])
}
for {
- if sanity && d.index > d.windowEnd {
+ if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
- lookahead := d.windowEnd - d.index
+ lookahead := d.windowEnd - s.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
- if sanity && d.index > d.windowEnd {
+ if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
+ d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
}
if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
- d.tokens.n = 0
+ d.tokens.Reset()
}
return
}
}
- if d.index < d.maxInsertIndex {
+ if s.index < s.maxInsertIndex {
// Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
+ s.hash = hash4(d.window[s.index : s.index+minMatchLength])
+ ch := s.hashHead[s.hash&hashMask]
+ s.chainHead = int(ch)
+ s.hashPrev[s.index&windowMask] = ch
+ s.hashHead[s.hash&hashMask] = uint32(s.index + s.hashOffset)
+ }
+ prevLength := s.length
+ prevOffset := s.offset
+ s.length = minMatchLength - 1
+ s.offset = 0
+ minIndex := s.index - windowSize
if minIndex < 0 {
minIndex = 0
}
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
+ if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
+ if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, minMatchLength-1, lookahead); ok {
+ s.length = newLength
+ s.offset = newOffset
}
}
- if prevLength >= minMatchLength && d.length <= prevLength {
+ if prevLength >= minMatchLength && s.length <= prevLength {
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
+ d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
var newIndex int
- newIndex = d.index + prevLength - 1
+ newIndex = s.index + prevLength - 1
// Calculate missing hashes
end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
+ if end > s.maxInsertIndex {
+ end = s.maxInsertIndex
}
end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
+ startindex := s.index + 1
+ if startindex > s.maxInsertIndex {
+ startindex = s.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
+ dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
-
- d.index = newIndex
- d.byteAvailable = false
- d.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- // Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
-
- // If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 5)
- for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
- break
- }
-
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
- }
- // Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- } else {
- d.index++
- d.byteAvailable = true
- }
- }
- }
-}
-
-// Assumes that d.fastSkipHashing != skipNever,
-// otherwise use deflateLazySSE
-func (d *compressor) deflateSSE() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
-
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>5) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
-}
-
-// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
-// meaning it always has lazy matching on.
-func (d *compressor) deflateLazySSE() {
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && d.length <= prevLength {
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
-
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- var newIndex int
- newIndex = d.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
+ s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
+ s.hashHead[newH] = uint32(di + s.hashOffset)
}
- d.hash = newH
+ s.hash = newH
}
- d.index = newIndex
+ s.index = newIndex
d.byteAvailable = false
- d.length = minMatchLength - 1
+ s.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
- d.tokens.n = 0
+ d.tokens.Reset()
}
} else {
// Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
+ if s.length >= minMatchLength {
+ s.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
+ s.ii++
+ d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
- d.tokens.n = 0
+ d.tokens.Reset()
}
- d.index++
+ s.index++
// If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 6)
+ // Resets when s.ii overflows after 64KB.
+ if s.ii > 31 {
+ n := int(s.ii >> 5)
for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
+ if s.index >= d.windowEnd-1 {
break
}
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
+ d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
- d.tokens.n = 0
+ d.tokens.Reset()
}
- d.index++
+ s.index++
}
// Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
+ d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
+ // s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
- d.tokens.n = 0
+ d.tokens.Reset()
}
}
} else {
- d.index++
+ s.index++
d.byteAvailable = true
}
}
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
d.windowEnd = 0
}
-// storeHuff will compress and store the currently added data,
+// storeFast will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
-func (d *compressor) storeSnappy() {
+func (d *compressor) storeFast() {
// We only compress if we have maxStoreBlockSize.
- if d.windowEnd < maxStoreBlockSize {
+ if d.windowEnd < len(d.window) {
if !d.sync {
return
}
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.tokens.n = 0
- d.windowEnd = 0
} else {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
d.err = d.w.err
}
- d.tokens.n = 0
+ d.tokens.Reset()
d.windowEnd = 0
- d.snap.Reset()
+ d.fast.Reset()
return
}
}
- d.snap.Encode(&d.tokens, d.window[:d.windowEnd])
+ d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
- if int(d.tokens.n) == d.windowEnd {
+ if d.tokens.n == 0 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
+ d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
} else {
- d.w.writeBlockDynamic(d.tokens.tokens[:d.tokens.n], false, d.window[:d.windowEnd])
+ d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
}
- d.tokens.n = 0
+ d.tokens.Reset()
d.windowEnd = 0
}
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
+ d.w.logReusePenalty = uint(4)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
- case level >= 1 && level <= 4:
- d.snap = newSnappy(level)
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeSnappy
case level == DefaultCompression:
level = 5
fallthrough
- case 5 <= level && level <= 9:
+ case level >= 1 && level <= 6:
+ d.w.logReusePenalty = uint(level + 1)
+ d.fast = newFastEnc(level)
+ d.window = make([]byte, maxStoreBlockSize)
+ d.fill = (*compressor).fillBlock
+ d.step = (*compressor).storeFast
+ case 7 <= level && level <= 9:
+ d.w.logReusePenalty = uint(level)
+ d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
- if d.fastSkipHashing == skipNever {
- if useSSE42 {
- d.step = (*compressor).deflateLazySSE
- } else {
- d.step = (*compressor).deflateLazy
- }
- } else {
- if useSSE42 {
- d.step = (*compressor).deflateSSE
- } else {
- d.step = (*compressor).deflate
-
- }
- }
+ d.step = (*compressor).deflateLazy
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
- if d.snap != nil {
- d.snap.Reset()
+ if d.fast != nil {
+ d.fast.Reset()
d.windowEnd = 0
- d.tokens.n = 0
+ d.tokens.Reset()
return
}
switch d.compressionLevel.chain {
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
- d.chainHead = -1
- for i := range d.hashHead {
- d.hashHead[i] = 0
+ s := d.state
+ s.chainHead = -1
+ for i := range s.hashHead {
+ s.hashHead[i] = 0
}
- for i := range d.hashPrev {
- d.hashPrev[i] = 0
+ for i := range s.hashPrev {
+ s.hashPrev[i] = 0
}
- d.hashOffset = 1
- d.index, d.windowEnd = 0, 0
+ s.hashOffset = 1
+ s.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
- d.tokens.n = 0
- d.length = minMatchLength - 1
- d.offset = 0
- d.hash = 0
- d.ii = 0
- d.maxInsertIndex = 0
+ d.tokens.Reset()
+ s.length = minMatchLength - 1
+ s.offset = 0
+ s.hash = 0
+ s.ii = 0
+ s.maxInsertIndex = 0
}
}
--- /dev/null
+// Copyright 2011 The Snappy-Go Authors. All rights reserved.
+// Modified for deflate by Klaus Post (c) 2015.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "fmt"
+ "math/bits"
+)
+
+type fastEnc interface {
+ Encode(dst *tokens, src []byte)
+ Reset()
+}
+
+func newFastEnc(level int) fastEnc {
+ switch level {
+ case 1:
+ return &fastEncL1{fastGen: fastGen{cur: maxStoreBlockSize}}
+ case 2:
+ return &fastEncL2{fastGen: fastGen{cur: maxStoreBlockSize}}
+ case 3:
+ return &fastEncL3{fastGen: fastGen{cur: maxStoreBlockSize}}
+ case 4:
+ return &fastEncL4{fastGen: fastGen{cur: maxStoreBlockSize}}
+ case 5:
+ return &fastEncL5{fastGen: fastGen{cur: maxStoreBlockSize}}
+ case 6:
+ return &fastEncL6{fastGen: fastGen{cur: maxStoreBlockSize}}
+ default:
+ panic("invalid level specified")
+ }
+}
+
+const (
+ tableBits = 16 // Bits used in the table
+ tableSize = 1 << tableBits // Size of the table
+ tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
+ baseMatchOffset = 1 // The smallest match offset
+ baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
+ maxMatchOffset = 1 << 15 // The largest match offset
+
+ bTableBits = 18 // Bits used in the big tables
+ bTableSize = 1 << bTableBits // Size of the table
+ allocHistory = maxMatchOffset * 10 // Size to preallocate for history.
+ bufferReset = (1 << 31) - allocHistory - maxStoreBlockSize // Reset the buffer offset when reaching this.
+)
+
+const (
+ prime3bytes = 506832829
+ prime4bytes = 2654435761
+ prime5bytes = 889523592379
+ prime6bytes = 227718039650203
+ prime7bytes = 58295818150454627
+ prime8bytes = 0xcf1bbcdcb7a56463
+)
+
+func load32(b []byte, i int) uint32 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:4]
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load64(b []byte, i int) uint64 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:8]
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func load3232(b []byte, i int32) uint32 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:4]
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load6432(b []byte, i int32) uint64 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:8]
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func hash(u uint32) uint32 {
+ return (u * 0x1e35a7bd) >> tableShift
+}
+
+type tableEntry struct {
+ val uint32
+ offset int32
+}
+
+// fastGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type fastGen struct {
+ hist []byte
+ cur int32
+}
+
+func (e *fastGen) addBlock(src []byte) int32 {
+ // check if we have space already
+ if len(e.hist)+len(src) > cap(e.hist) {
+ if cap(e.hist) == 0 {
+ e.hist = make([]byte, 0, allocHistory)
+ } else {
+ if cap(e.hist) < maxMatchOffset*2 {
+ panic("unexpected buffer size")
+ }
+ // Move down
+ offset := int32(len(e.hist)) - maxMatchOffset
+ copy(e.hist[0:maxMatchOffset], e.hist[offset:])
+ e.cur += offset
+ e.hist = e.hist[:maxMatchOffset]
+ }
+ }
+ s := int32(len(e.hist))
+ e.hist = append(e.hist, src...)
+ return s
+}
+
+// hash4 returns the hash of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <32.
+func hash4u(u uint32, h uint8) uint32 {
+ return (u * prime4bytes) >> ((32 - h) & 31)
+}
+
+type tableEntryPrev struct {
+ Cur tableEntry
+ Prev tableEntry
+}
+
+// hash4x64 returns the hash of the lowest 4 bytes of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <32.
+func hash4x64(u uint64, h uint8) uint32 {
+ return (uint32(u) * prime4bytes) >> ((32 - h) & 31)
+}
+
+// hash7 returns the hash of the lowest 7 bytes of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <64.
+func hash7(u uint64, h uint8) uint32 {
+ return uint32(((u << (64 - 56)) * prime7bytes) >> ((64 - h) & 63))
+}
+
+// hash8 returns the hash of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <64.
+func hash8(u uint64, h uint8) uint32 {
+ return uint32((u * prime8bytes) >> ((64 - h) & 63))
+}
+
+// hash6 returns the hash of the lowest 6 bytes of u to fit in a hash table with h bits.
+// Preferably h should be a constant and should always be <64.
+func hash6(u uint64, h uint8) uint32 {
+ return uint32(((u << (64 - 48)) * prime6bytes) >> ((64 - h) & 63))
+}
+
+// matchlen will return the match length between offsets and t in src.
+// The maximum length returned is maxMatchLength - 4.
+// It is assumed that s > t, that t >=0 and s < len(src).
+func (e *fastGen) matchlen(s, t int32, src []byte) int32 {
+ if debugDecode {
+ if t >= s {
+ panic(fmt.Sprint("t >=s:", t, s))
+ }
+ if int(s) >= len(src) {
+ panic(fmt.Sprint("s >= len(src):", s, len(src)))
+ }
+ if t < 0 {
+ panic(fmt.Sprint("t < 0:", t))
+ }
+ if s-t > maxMatchOffset {
+ panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
+ }
+ }
+ s1 := int(s) + maxMatchLength - 4
+ if s1 > len(src) {
+ s1 = len(src)
+ }
+
+ // Extend the match to be as long as possible.
+ return int32(matchLen(src[s:s1], src[t:]))
+}
+
+// matchlenLong will return the match length between offsets and t in src.
+// It is assumed that s > t, that t >=0 and s < len(src).
+func (e *fastGen) matchlenLong(s, t int32, src []byte) int32 {
+ if debugDecode {
+ if t >= s {
+ panic(fmt.Sprint("t >=s:", t, s))
+ }
+ if int(s) >= len(src) {
+ panic(fmt.Sprint("s >= len(src):", s, len(src)))
+ }
+ if t < 0 {
+ panic(fmt.Sprint("t < 0:", t))
+ }
+ if s-t > maxMatchOffset {
+ panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
+ }
+ }
+ // Extend the match to be as long as possible.
+ return int32(matchLen(src[s:], src[t:]))
+}
+
+// Reset the encoding table.
+func (e *fastGen) Reset() {
+ if cap(e.hist) < int(maxMatchOffset*8) {
+ l := maxMatchOffset * 8
+ // Make it at least 1MB.
+ if l < 1<<20 {
+ l = 1 << 20
+ }
+ e.hist = make([]byte, 0, l)
+ }
+ // We offset current position so everything will be out of reach
+ e.cur += maxMatchOffset + int32(len(e.hist))
+ e.hist = e.hist[:0]
+}
+
+// matchLen returns the maximum length.
+// 'a' must be the shortest of the two.
+func matchLen(a, b []byte) int {
+ b = b[:len(a)]
+ var checked int
+ if len(a) > 4 {
+ // Try 4 bytes first
+ if diff := load32(a, 0) ^ load32(b, 0); diff != 0 {
+ return bits.TrailingZeros32(diff) >> 3
+ }
+ // Switch to 8 byte matching.
+ checked = 4
+ a = a[4:]
+ b = b[4:]
+ for len(a) >= 8 {
+ b = b[:len(a)]
+ if diff := load64(a, 0) ^ load64(b, 0); diff != 0 {
+ return checked + (bits.TrailingZeros64(diff) >> 3)
+ }
+ checked += 8
+ a = a[8:]
+ b = b[8:]
+ }
+ }
+ b = b[:len(a)]
+ for i := range a {
+ if a[i] != b[i] {
+ return int(i) + checked
+ }
+ }
+ return len(a) + checked
+}
)
// The number of extra bits needed by length code X - LENGTH_CODES_START.
-var lengthExtraBits = []int8{
+var lengthExtraBits = [32]int8{
/* 257 */ 0, 0, 0,
/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
}
// The length indicated by length code X - LENGTH_CODES_START.
-var lengthBase = []uint32{
+var lengthBase = [32]uint8{
0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 255,
}
// offset code word extra bits.
-var offsetExtraBits = []int8{
+var offsetExtraBits = [64]int8{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
}
-var offsetBase = []uint32{
+var offsetBase = [64]uint32{
/* normal deflate */
0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
// Data waiting to be written is bytes[0:nbytes]
// and then the low nbits of bits.
bits uint64
- nbits uint
- bytes [bufferSize]byte
- codegenFreq [codegenCodeCount]int32
- nbytes int
- literalFreq []int32
- offsetFreq []int32
- codegen []uint8
+ nbits uint16
+ nbytes uint8
literalEncoding *huffmanEncoder
offsetEncoding *huffmanEncoder
codegenEncoding *huffmanEncoder
err error
+ lastHeader int
+ // Set between 0 (reused block can be up to 2x the size)
+ logReusePenalty uint
+ lastHuffMan bool
+ bytes [256]byte
+ literalFreq [lengthCodesStart + 32]uint16
+ offsetFreq [32]uint16
+ codegenFreq [codegenCodeCount]uint16
+
+ // codegen must have an extra space for the final symbol.
+ codegen [literalCount + offsetCodeCount + 1]uint8
}
+// Huffman reuse.
+//
+// The huffmanBitWriter supports reusing huffman tables and thereby combining block sections.
+//
+// This is controlled by several variables:
+//
+// If lastHeader is non-zero the Huffman table can be reused.
+// This also indicates that a Huffman table has been generated that can output all
+// possible symbols.
+// It also indicates that an EOB has not yet been emitted, so if a new tabel is generated
+// an EOB with the previous table must be written.
+//
+// If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
+//
+// An incoming block estimates the output size of a new table using a 'fresh' by calculating the
+// optimal size and adding a penalty in 'logReusePenalty'.
+// A Huffman table is not optimal, which is why we add a penalty, and generating a new table
+// is slower both for compression and decompression.
+
func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
return &huffmanBitWriter{
writer: w,
- literalFreq: make([]int32, maxNumLit),
- offsetFreq: make([]int32, offsetCodeCount),
- codegen: make([]uint8, maxNumLit+offsetCodeCount+1),
- literalEncoding: newHuffmanEncoder(maxNumLit),
+ literalEncoding: newHuffmanEncoder(literalCount),
codegenEncoding: newHuffmanEncoder(codegenCodeCount),
offsetEncoding: newHuffmanEncoder(offsetCodeCount),
}
func (w *huffmanBitWriter) reset(writer io.Writer) {
w.writer = writer
w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
- w.bytes = [bufferSize]byte{}
+ w.bytes = [256]byte{}
+ w.lastHeader = 0
+ w.lastHuffMan = false
+}
+
+func (w *huffmanBitWriter) canReuse(t *tokens) (offsets, lits bool) {
+ offsets, lits = true, true
+ a := t.offHist[:offsetCodeCount]
+ b := w.offsetFreq[:len(a)]
+ for i := range a {
+ if b[i] == 0 && a[i] != 0 {
+ offsets = false
+ break
+ }
+ }
+
+ a = t.extraHist[:literalCount-256]
+ b = w.literalFreq[256:literalCount]
+ b = b[:len(a)]
+ for i := range a {
+ if b[i] == 0 && a[i] != 0 {
+ lits = false
+ break
+ }
+ }
+ if lits {
+ a = t.litHist[:]
+ b = w.literalFreq[:len(a)]
+ for i := range a {
+ if b[i] == 0 && a[i] != 0 {
+ lits = false
+ break
+ }
+ }
+ }
+ return
}
func (w *huffmanBitWriter) flush() {
_, w.err = w.writer.Write(b)
}
-func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
- if w.err != nil {
- return
- }
- w.bits |= uint64(b) << w.nbits
+func (w *huffmanBitWriter) writeBits(b int32, nb uint16) {
+ w.bits |= uint64(b) << (w.nbits & 63)
w.nbits += nb
if w.nbits >= 48 {
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- n := w.nbytes
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n >= bufferFlushSize {
- w.write(w.bytes[:n])
- n = 0
- }
- w.nbytes = n
+ w.writeOutBits()
}
}
// a copy of the frequencies, and as the place where we put the result.
// This is fine because the output is always shorter than the input used
// so far.
- codegen := w.codegen // cache
+ codegen := w.codegen[:] // cache
// Copy the concatenated code sizes to codegen. Put a marker at the end.
cgnl := codegen[:numLiterals]
for i := range cgnl {
codegen[outIndex] = badCode
}
-// dynamicSize returns the size of dynamically encoded data in bits.
-func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
+func (w *huffmanBitWriter) codegens() int {
+ numCodegens := len(w.codegenFreq)
+ for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
+ numCodegens--
+ }
+ return numCodegens
+}
+
+func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
numCodegens = len(w.codegenFreq)
for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
numCodegens--
}
- header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
+ return 3 + 5 + 5 + 4 + (3 * numCodegens) +
w.codegenEncoding.bitLength(w.codegenFreq[:]) +
int(w.codegenFreq[16])*2 +
int(w.codegenFreq[17])*3 +
- int(w.codegenFreq[18])*7
+ int(w.codegenFreq[18])*7, numCodegens
+}
+
+// dynamicSize returns the size of dynamically encoded data in bits.
+func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
+ header, numCodegens := w.headerSize()
size = header +
- litEnc.bitLength(w.literalFreq) +
- offEnc.bitLength(w.offsetFreq) +
+ litEnc.bitLength(w.literalFreq[:]) +
+ offEnc.bitLength(w.offsetFreq[:]) +
extraBits
-
return size, numCodegens
}
+// extraBitSize will return the number of bits that will be written
+// as "extra" bits on matches.
+func (w *huffmanBitWriter) extraBitSize() int {
+ total := 0
+ for i, n := range w.literalFreq[257:literalCount] {
+ total += int(n) * int(lengthExtraBits[i&31])
+ }
+ for i, n := range w.offsetFreq[:offsetCodeCount] {
+ total += int(n) * int(offsetExtraBits[i&31])
+ }
+ return total
+}
+
// fixedSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) fixedSize(extraBits int) int {
return 3 +
- fixedLiteralEncoding.bitLength(w.literalFreq) +
- fixedOffsetEncoding.bitLength(w.offsetFreq) +
+ fixedLiteralEncoding.bitLength(w.literalFreq[:]) +
+ fixedOffsetEncoding.bitLength(w.offsetFreq[:]) +
extraBits
}
}
func (w *huffmanBitWriter) writeCode(c hcode) {
- if w.err != nil {
- return
- }
+ // The function does not get inlined if we "& 63" the shift.
w.bits |= uint64(c.code) << w.nbits
- w.nbits += uint(c.len)
+ w.nbits += c.len
if w.nbits >= 48 {
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- n := w.nbytes
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n >= bufferFlushSize {
- w.write(w.bytes[:n])
+ w.writeOutBits()
+ }
+}
+
+// writeOutBits will write bits to the buffer.
+func (w *huffmanBitWriter) writeOutBits() {
+ bits := w.bits
+ w.bits >>= 48
+ w.nbits -= 48
+ n := w.nbytes
+ w.bytes[n] = byte(bits)
+ w.bytes[n+1] = byte(bits >> 8)
+ w.bytes[n+2] = byte(bits >> 16)
+ w.bytes[n+3] = byte(bits >> 24)
+ w.bytes[n+4] = byte(bits >> 32)
+ w.bytes[n+5] = byte(bits >> 40)
+ n += 6
+ if n >= bufferFlushSize {
+ if w.err != nil {
n = 0
+ return
}
- w.nbytes = n
+ w.write(w.bytes[:n])
+ n = 0
}
+ w.nbytes = n
}
// Write the header of a dynamic Huffman block to the output stream.
if w.err != nil {
return
}
+ if w.lastHeader > 0 {
+ // We owe an EOB
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ }
var flag int32
if isEof {
flag = 1
if w.err != nil {
return
}
+ if w.lastHeader > 0 {
+ // We owe an EOB
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ }
+
// Indicate that we are a fixed Huffman block
var value int32 = 2
if isEof {
// is larger than the original bytes, the data will be written as a
// stored block.
// If the input is nil, the tokens will always be Huffman encoded.
-func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
+func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) {
if w.err != nil {
return
}
- tokens = append(tokens, endBlockMarker)
- numLiterals, numOffsets := w.indexTokens(tokens)
-
+ tokens.AddEOB()
+ if w.lastHeader > 0 {
+ // We owe an EOB
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ }
+ numLiterals, numOffsets := w.indexTokens(tokens, false)
+ w.generate(tokens)
var extraBits int
storedSize, storable := w.storedSize(input)
if storable {
- // We only bother calculating the costs of the extra bits required by
- // the length of offset fields (which will be the same for both fixed
- // and dynamic encoding), if we need to compare those two encodings
- // against stored encoding.
- for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
- // First eight length codes have extra size = 0.
- extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
- }
- for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
- // First four offset codes have extra size = 0.
- extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
- }
+ extraBits = w.extraBitSize()
}
// Figure out smallest code.
}
// Write the tokens.
- w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
+ w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes)
}
// writeBlockDynamic encodes a block using a dynamic Huffman table.
// histogram distribution.
// If input is supplied and the compression savings are below 1/16th of the
// input size the block is stored.
-func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
+func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) {
if w.err != nil {
return
}
- tokens = append(tokens, endBlockMarker)
- numLiterals, numOffsets := w.indexTokens(tokens)
+ sync = sync || eof
+ if sync {
+ tokens.AddEOB()
+ }
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
+ // We cannot reuse pure huffman table.
+ if w.lastHuffMan && w.lastHeader > 0 {
+ // We will not try to reuse.
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ w.lastHuffMan = false
+ }
+ if !sync {
+ tokens.Fill()
+ }
+ numLiterals, numOffsets := w.indexTokens(tokens, !sync)
- // Store bytes, if we don't get a reasonable improvement.
- if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
+ var size int
+ // Check if we should reuse.
+ if w.lastHeader > 0 {
+ // Estimate size for using a new table
+ newSize := w.lastHeader + tokens.EstimatedBits()
+
+ // The estimated size is calculated as an optimal table.
+ // We add a penalty to make it more realistic and re-use a bit more.
+ newSize += newSize >> (w.logReusePenalty & 31)
+ extra := w.extraBitSize()
+ reuseSize, _ := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extra)
+
+ // Check if a new table is better.
+ if newSize < reuseSize {
+ // Write the EOB we owe.
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ size = newSize
+ w.lastHeader = 0
+ } else {
+ size = reuseSize
+ }
+ // Check if we get a reasonable size decrease.
+ if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ w.lastHeader = 0
+ return
+ }
}
- // Write Huffman table.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ // We want a new block/table
+ if w.lastHeader == 0 {
+ w.generate(tokens)
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
+ w.codegenEncoding.generate(w.codegenFreq[:], 7)
+ var numCodegens int
+ size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, w.extraBitSize())
+ // Store bytes, if we don't get a reasonable improvement.
+ if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ w.lastHeader = 0
+ return
+ }
+ // Write Huffman table.
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ w.lastHeader, _ = w.headerSize()
+ w.lastHuffMan = false
+ }
+
+ if sync {
+ w.lastHeader = 0
+ }
// Write the tokens.
- w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
+ w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes)
}
// indexTokens indexes a slice of tokens, and updates
// literalFreq and offsetFreq, and generates literalEncoding
// and offsetEncoding.
// The number of literal and offset tokens is returned.
-func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
- for i := range w.literalFreq {
- w.literalFreq[i] = 0
- }
- for i := range w.offsetFreq {
- w.offsetFreq[i] = 0
- }
+func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) {
+ copy(w.literalFreq[:], t.litHist[:])
+ copy(w.literalFreq[256:], t.extraHist[:])
+ copy(w.offsetFreq[:], t.offHist[:offsetCodeCount])
- for _, t := range tokens {
- if t < matchType {
- w.literalFreq[t.literal()]++
- continue
- }
- length := t.length()
- offset := t.offset()
- w.literalFreq[lengthCodesStart+lengthCode(length)]++
- w.offsetFreq[offsetCode(offset)]++
+ if t.n == 0 {
+ return
+ }
+ if filled {
+ return maxNumLit, maxNumDist
}
-
// get the number of literals
numLiterals = len(w.literalFreq)
for w.literalFreq[numLiterals-1] == 0 {
w.offsetFreq[0] = 1
numOffsets = 1
}
- w.literalEncoding.generate(w.literalFreq, 15)
- w.offsetEncoding.generate(w.offsetFreq, 15)
return
}
+func (w *huffmanBitWriter) generate(t *tokens) {
+ w.literalEncoding.generate(w.literalFreq[:literalCount], 15)
+ w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15)
+}
+
// writeTokens writes a slice of tokens to the output.
// codes for literal and offset encoding must be supplied.
func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
if w.err != nil {
return
}
+ if len(tokens) == 0 {
+ return
+ }
+
+ // Only last token should be endBlockMarker.
+ var deferEOB bool
+ if tokens[len(tokens)-1] == endBlockMarker {
+ tokens = tokens[:len(tokens)-1]
+ deferEOB = true
+ }
+
+ // Create slices up to the next power of two to avoid bounds checks.
+ lits := leCodes[:256]
+ offs := oeCodes[:32]
+ lengths := leCodes[lengthCodesStart:]
+ lengths = lengths[:32]
for _, t := range tokens {
if t < matchType {
- w.writeCode(leCodes[t.literal()])
+ w.writeCode(lits[t.literal()])
continue
}
+
// Write the length
length := t.length()
lengthCode := lengthCode(length)
- w.writeCode(leCodes[lengthCode+lengthCodesStart])
- extraLengthBits := uint(lengthExtraBits[lengthCode])
+ if false {
+ w.writeCode(lengths[lengthCode&31])
+ } else {
+ // inlined
+ c := lengths[lengthCode&31]
+ w.bits |= uint64(c.code) << (w.nbits & 63)
+ w.nbits += c.len
+ if w.nbits >= 48 {
+ w.writeOutBits()
+ }
+ }
+
+ extraLengthBits := uint16(lengthExtraBits[lengthCode&31])
if extraLengthBits > 0 {
- extraLength := int32(length - lengthBase[lengthCode])
+ extraLength := int32(length - lengthBase[lengthCode&31])
w.writeBits(extraLength, extraLengthBits)
}
// Write the offset
offset := t.offset()
offsetCode := offsetCode(offset)
- w.writeCode(oeCodes[offsetCode])
- extraOffsetBits := uint(offsetExtraBits[offsetCode])
+ if false {
+ w.writeCode(offs[offsetCode&31])
+ } else {
+ // inlined
+ c := offs[offsetCode&31]
+ w.bits |= uint64(c.code) << (w.nbits & 63)
+ w.nbits += c.len
+ if w.nbits >= 48 {
+ w.writeOutBits()
+ }
+ }
+ extraOffsetBits := uint16(offsetExtraBits[offsetCode&63])
if extraOffsetBits > 0 {
- extraOffset := int32(offset - offsetBase[offsetCode])
+ extraOffset := int32(offset - offsetBase[offsetCode&63])
w.writeBits(extraOffset, extraOffsetBits)
}
}
+ if deferEOB {
+ w.writeCode(leCodes[endBlockMarker])
+ }
}
// huffOffset is a static offset encoder used for huffman only encoding.
w := newHuffmanBitWriter(nil)
w.offsetFreq[0] = 1
huffOffset = newHuffmanEncoder(offsetCodeCount)
- huffOffset.generate(w.offsetFreq, 15)
+ huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15)
}
// writeBlockHuff encodes a block of bytes as either
// Huffman encoded literals or uncompressed bytes if the
// results only gains very little from compression.
-func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
+func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
if w.err != nil {
return
}
// Clear histogram
- for i := range w.literalFreq {
+ for i := range w.literalFreq[:] {
w.literalFreq[i] = 0
}
+ if !w.lastHuffMan {
+ for i := range w.offsetFreq[:] {
+ w.offsetFreq[i] = 0
+ }
+ }
// Add everything as literals
- histogram(input, w.literalFreq)
+ estBits := histogramSize(input, w.literalFreq[:], !eof && !sync) + 15
- w.literalFreq[endBlockMarker] = 1
+ // Store bytes, if we don't get a reasonable improvement.
+ ssize, storable := w.storedSize(input)
+ if storable && ssize < (estBits+estBits>>4) {
+ w.writeStoredHeader(len(input), eof)
+ w.writeBytes(input)
+ return
+ }
- const numLiterals = endBlockMarker + 1
- const numOffsets = 1
+ if w.lastHeader > 0 {
+ size, _ := w.dynamicSize(w.literalEncoding, huffOffset, w.lastHeader)
+ estBits += estBits >> (w.logReusePenalty)
- w.literalEncoding.generate(w.literalFreq, 15)
+ if estBits < size {
+ // We owe an EOB
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ }
+ }
- // Figure out smallest code.
- // Always use dynamic Huffman or Store
- var numCodegens int
+ const numLiterals = endBlockMarker + 1
+ const numOffsets = 1
+ if w.lastHeader == 0 {
+ w.literalFreq[endBlockMarker] = 1
+ w.literalEncoding.generate(w.literalFreq[:numLiterals], 15)
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
+ w.codegenEncoding.generate(w.codegenFreq[:], 7)
+ numCodegens := w.codegens()
- // Store bytes, if we don't get a reasonable improvement.
- if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
+ // Huffman.
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ w.lastHuffMan = true
+ w.lastHeader, _ = w.headerSize()
}
- // Huffman.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
encoding := w.literalEncoding.codes[:257]
- n := w.nbytes
for _, t := range input {
// Bitwriting inlined, ~30% speedup
c := encoding[t]
- w.bits |= uint64(c.code) << w.nbits
- w.nbits += uint(c.len)
- if w.nbits < 48 {
- continue
- }
- // Store 6 bytes
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n < bufferFlushSize {
- continue
- }
- w.write(w.bytes[:n])
- if w.err != nil {
- return // Return early in the event of write failures
+ w.bits |= uint64(c.code) << ((w.nbits) & 63)
+ w.nbits += c.len
+ if w.nbits >= 48 {
+ bits := w.bits
+ w.bits >>= 48
+ w.nbits -= 48
+ n := w.nbytes
+ w.bytes[n] = byte(bits)
+ w.bytes[n+1] = byte(bits >> 8)
+ w.bytes[n+2] = byte(bits >> 16)
+ w.bytes[n+3] = byte(bits >> 24)
+ w.bytes[n+4] = byte(bits >> 32)
+ w.bytes[n+5] = byte(bits >> 40)
+ n += 6
+ if n >= bufferFlushSize {
+ if w.err != nil {
+ n = 0
+ return
+ }
+ w.write(w.bytes[:n])
+ n = 0
+ }
+ w.nbytes = n
}
- n = 0
}
- w.nbytes = n
- w.writeCode(encoding[endBlockMarker])
+ if eof || sync {
+ w.writeCode(encoding[endBlockMarker])
+ w.lastHeader = 0
+ w.lastHuffMan = false
+ }
}
import (
"math"
+ "math/bits"
"sort"
)
+const (
+ maxBitsLimit = 16
+ // number of valid literals
+ literalCount = 286
+)
+
// hcode is a huffman code with a bit code and bit length.
type hcode struct {
code, len uint16
type literalNode struct {
literal uint16
- freq int32
+ freq uint16
}
// A levelInfo describes the state of the constructed tree for a given depth.
h.code = code
}
-func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
+func reverseBits(number uint16, bitLength byte) uint16 {
+ return bits.Reverse16(number << ((16 - bitLength) & 15))
+}
+
+func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
func newHuffmanEncoder(size int) *huffmanEncoder {
- return &huffmanEncoder{codes: make([]hcode, size)}
+ // Make capacity to next power of two.
+ c := uint(bits.Len32(uint32(size - 1)))
+ return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
}
// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(maxNumLit)
+ h := newHuffmanEncoder(literalCount)
codes := h.codes
var ch uint16
- for ch = 0; ch < maxNumLit; ch++ {
+ for ch = 0; ch < literalCount; ch++ {
var bits uint16
var size uint16
switch {
var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
-func (h *huffmanEncoder) bitLength(freq []int32) int {
+func (h *huffmanEncoder) bitLength(freq []uint16) int {
var total int
for i, f := range freq {
if f != 0 {
return total
}
-const maxBitsLimit = 16
-
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// We initialize the levels as if we had already figured this out.
levels[level] = levelInfo{
level: level,
- lastFreq: list[1].freq,
- nextCharFreq: list[2].freq,
- nextPairFreq: list[0].freq + list[1].freq,
+ lastFreq: int32(list[1].freq),
+ nextCharFreq: int32(list[2].freq),
+ nextPairFreq: int32(list[0].freq) + int32(list[1].freq),
}
leafCounts[level][level] = 2
if level == 1 {
l.lastFreq = l.nextCharFreq
// Lower leafCounts are the same of the previous node.
leafCounts[level][level] = n
- l.nextCharFreq = list[n].freq
+ e := list[n]
+ if e.literal < math.MaxUint16 {
+ l.nextCharFreq = int32(e.freq)
+ } else {
+ l.nextCharFreq = math.MaxInt32
+ }
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits The maximum number of bits to use for any literal.
-func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
+func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
if h.freqcache == nil {
// Allocate a reusable buffer with the longest possible frequency table.
- // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
- // The largest of these is maxNumLit, so we allocate for that case.
- h.freqcache = make([]literalNode, maxNumLit+1)
+ // Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
+ // The largest of these is literalCount, so we allocate for that case.
+ h.freqcache = make([]literalNode, literalCount+1)
}
list := h.freqcache[:len(freq)+1]
// Number of non-zero literals
}
func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
+
+// histogramSize accumulates a histogram of b in h.
+// An estimated size in bits is returned.
+// Unassigned values are assigned '1' in the histogram.
+// len(h) must be >= 256, and h's elements must be all zeroes.
+func histogramSize(b []byte, h []uint16, fill bool) int {
+ h = h[:256]
+ for _, t := range b {
+ h[t]++
+ }
+ invTotal := 1.0 / float64(len(b))
+ shannon := 0.0
+ single := math.Ceil(-math.Log2(invTotal))
+ for i, v := range h[:] {
+ if v > 0 {
+ n := float64(v)
+ shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ } else if fill {
+ shannon += single
+ h[i] = 1
+ }
+ }
+ return int(shannon + 0.99)
+}
import (
"bufio"
+ "fmt"
"io"
+ "math/bits"
"strconv"
"sync"
)
const (
- maxCodeLen = 16 // max length of Huffman code
+ maxCodeLen = 16 // max length of Huffman code
+ maxCodeLenMask = 15 // mask for max length of Huffman code
// The next three numbers come from the RFC section 3.2.7, with the
// additional proviso in section 3.2.5 which implies that distance codes
// 30 and 31 should never occur in compressed data.
maxNumLit = 286
maxNumDist = 30
numCodes = 19 // number of codes in Huffman meta-code
+
+ debugDecode = false
)
// Initialize the fixedHuffmanDecoder only once upon first use.
)
type huffmanDecoder struct {
- min int // the minimum code length
- chunks [huffmanNumChunks]uint32 // chunks as described above
- links [][]uint32 // overflow links
- linkMask uint32 // mask the width of the link table
+ min int // the minimum code length
+ chunks *[huffmanNumChunks]uint16 // chunks as described above
+ links [][]uint16 // overflow links
+ linkMask uint32 // mask the width of the link table
}
// Initialize Huffman decoding tables from array of code lengths.
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
// degenerate case where the tree has only a single symbol with length 1. Empty
// trees are permitted.
-func (h *huffmanDecoder) init(bits []int) bool {
+func (h *huffmanDecoder) init(lengths []int) bool {
// Sanity enables additional runtime tests during Huffman
// table construction. It's intended to be used during
// development to supplement the currently ad-hoc unit tests.
const sanity = false
+ if h.chunks == nil {
+ h.chunks = &[huffmanNumChunks]uint16{}
+ }
if h.min != 0 {
- *h = huffmanDecoder{}
+ *h = huffmanDecoder{chunks: h.chunks, links: h.links}
}
// Count number of codes of each length,
// compute min and max length.
var count [maxCodeLen]int
var min, max int
- for _, n := range bits {
+ for _, n := range lengths {
if n == 0 {
continue
}
if n > max {
max = n
}
- count[n]++
+ count[n&maxCodeLenMask]++
}
// Empty tree. The decompressor.huffSym function will fail later if the tree
var nextcode [maxCodeLen]int
for i := min; i <= max; i++ {
code <<= 1
- nextcode[i] = code
- code += count[i]
+ nextcode[i&maxCodeLenMask] = code
+ code += count[i&maxCodeLenMask]
}
// Check that the coding is complete (i.e., that we've
// accept degenerate single-code codings. See also
// TestDegenerateHuffmanCoding.
if code != 1<<uint(max) && !(code == 1 && max == 1) {
+ if debugDecode {
+ fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
+ }
return false
}
h.min = min
+ chunks := h.chunks[:]
+ for i := range chunks {
+ chunks[i] = 0
+ }
+
if max > huffmanChunkBits {
numLinks := 1 << (uint(max) - huffmanChunkBits)
h.linkMask = uint32(numLinks - 1)
// create link tables
link := nextcode[huffmanChunkBits+1] >> 1
- h.links = make([][]uint32, huffmanNumChunks-link)
+ if cap(h.links) < huffmanNumChunks-link {
+ h.links = make([][]uint16, huffmanNumChunks-link)
+ } else {
+ h.links = h.links[:huffmanNumChunks-link]
+ }
for j := uint(link); j < huffmanNumChunks; j++ {
- reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
+ reverse := int(bits.Reverse16(uint16(j)))
reverse >>= uint(16 - huffmanChunkBits)
off := j - uint(link)
if sanity && h.chunks[reverse] != 0 {
panic("impossible: overwriting existing chunk")
}
- h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
- h.links[off] = make([]uint32, numLinks)
+ h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
+ if cap(h.links[off]) < numLinks {
+ h.links[off] = make([]uint16, numLinks)
+ } else {
+ links := h.links[off][:0]
+ h.links[off] = links[:numLinks]
+ }
}
+ } else {
+ h.links = h.links[:0]
}
- for i, n := range bits {
+ for i, n := range lengths {
if n == 0 {
continue
}
code := nextcode[n]
nextcode[n]++
- chunk := uint32(i<<huffmanValueShift | n)
- reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
+ chunk := uint16(i<<huffmanValueShift | n)
+ reverse := int(bits.Reverse16(uint16(code)))
reverse >>= uint(16 - n)
if n <= huffmanChunkBits {
for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
f.huffmanBlock()
default:
// 3 is reserved.
+ if debugDecode {
+ fmt.Println("reserved data block encountered")
+ }
f.err = CorruptInputError(f.roffset)
}
}
}
nlit := int(f.b&0x1F) + 257
if nlit > maxNumLit {
+ if debugDecode {
+ fmt.Println("nlit > maxNumLit", nlit)
+ }
return CorruptInputError(f.roffset)
}
f.b >>= 5
ndist := int(f.b&0x1F) + 1
if ndist > maxNumDist {
+ if debugDecode {
+ fmt.Println("ndist > maxNumDist", ndist)
+ }
return CorruptInputError(f.roffset)
}
f.b >>= 5
f.codebits[codeOrder[i]] = 0
}
if !f.h1.init(f.codebits[0:]) {
+ if debugDecode {
+ fmt.Println("init codebits failed")
+ }
return CorruptInputError(f.roffset)
}
rep = 3
nb = 2
if i == 0 {
+ if debugDecode {
+ fmt.Println("i==0")
+ }
return CorruptInputError(f.roffset)
}
b = f.bits[i-1]
}
for f.nb < nb {
if err := f.moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits:", err)
+ }
return err
}
}
f.b >>= nb
f.nb -= nb
if i+rep > n {
+ if debugDecode {
+ fmt.Println("i+rep > n", i, rep, n)
+ }
return CorruptInputError(f.roffset)
}
for j := 0; j < rep; j++ {
}
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
+ if debugDecode {
+ fmt.Println("init2 failed")
+ }
return CorruptInputError(f.roffset)
}
length = 258
n = 0
default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
f.err = CorruptInputError(f.roffset)
return
}
if n > 0 {
for f.nb < n {
if err = f.moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
f.err = err
return
}
if f.hd == nil {
for f.nb < 5 {
if err = f.moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
f.err = err
return
}
}
- dist = int(reverseByte[(f.b&0x1F)<<3])
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
f.b >>= 5
f.nb -= 5
} else {
if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
f.err = err
return
}
extra := (dist & 1) << nb
for f.nb < nb {
if err = f.moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
f.err = err
return
}
f.nb -= nb
dist = 1<<(nb+1) + 1 + extra
default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
f.err = CorruptInputError(f.roffset)
return
}
// No check on length; encoding can be prescient.
if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
f.err = CorruptInputError(f.roffset)
return
}
nr, err := io.ReadFull(f.r, f.buf[0:4])
f.roffset += int64(nr)
if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- f.err = err
+ f.err = noEOF(err)
return
}
n := int(f.buf[0]) | int(f.buf[1])<<8
nn := int(f.buf[2]) | int(f.buf[3])<<8
if uint16(nn) != uint16(^n) {
+ if debugDecode {
+ fmt.Println("uint16(nn) != uint16(^n)", nn, ^n)
+ }
f.err = CorruptInputError(f.roffset)
return
}
f.copyLen -= cnt
f.dict.writeMark(cnt)
if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- f.err = err
+ f.err = noEOF(err)
return
}
f.step = (*decompressor).nextBlock
}
+// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
+func noEOF(e error) error {
+ if e == io.EOF {
+ return io.ErrUnexpectedEOF
+ }
+ return e
+}
+
func (f *decompressor) moreBits() error {
c, err := f.r.ReadByte()
if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- return err
+ return noEOF(err)
}
f.roffset++
f.b |= uint32(c) << f.nb
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(h.min)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
for {
- for f.nb < n {
- if err := f.moreBits(); err != nil {
- return 0, err
+ for nb < n {
+ c, err := f.r.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ return 0, noEOF(err)
}
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
}
- chunk := h.chunks[f.b&(huffmanNumChunks-1)]
+ chunk := h.chunks[b&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
- chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
+ chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
n = uint(chunk & huffmanCountMask)
}
- if n <= f.nb {
+ if n <= nb {
if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
f.err = CorruptInputError(f.roffset)
return 0, f.err
}
- f.b >>= n
- f.nb -= n
+ f.b = b >> (n & 31)
+ f.nb = nb - n
return int(chunk >> huffmanValueShift), nil
}
}
r: makeReader(r),
bits: f.bits,
codebits: f.codebits,
+ h1: f.h1,
+ h2: f.h2,
dict: f.dict,
step: (*decompressor).nextBlock,
}
--- /dev/null
+package flate
+
+// fastGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type fastEncL1 struct {
+ fastGen
+ table [tableSize]tableEntry
+}
+
+// EncodeL1 uses a similar algorithm to level 1
+func (e *fastEncL1) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.table[i].offset = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load3232(src, s)
+
+ for {
+ const skipLog = 5
+ const doEvery = 2
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ nextHash := hash(cv)
+ candidate = e.table[nextHash]
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+
+ now := load6432(src, nextS)
+ e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ nextHash = hash(uint32(now))
+
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset && cv == candidate.val {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ break
+ }
+
+ // Do one right away...
+ cv = uint32(now)
+ s = nextS
+ nextS++
+ candidate = e.table[nextHash]
+ now >>= 8
+ e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+
+ offset = s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset && cv == candidate.val {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ break
+ }
+ cv = uint32(now)
+ s = nextS
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ t := candidate.offset - e.cur
+ l := e.matchlenLong(s+4, t+4, src) + 4
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+
+ // Save the match found
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+ if s >= sLimit {
+ // Index first pair after match end.
+ if int(s+l+4) < len(src) {
+ cv := load3232(src, s)
+ e.table[hash(cv)] = tableEntry{offset: s + e.cur, val: cv}
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-2 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-2)
+ o := e.cur + s - 2
+ prevHash := hash(uint32(x))
+ e.table[prevHash] = tableEntry{offset: o, val: uint32(x)}
+ x >>= 16
+ currHash := hash(uint32(x))
+ candidate = e.table[currHash]
+ e.table[currHash] = tableEntry{offset: o + 2, val: uint32(x)}
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || uint32(x) != candidate.val {
+ cv = uint32(x >> 8)
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
--- /dev/null
+package flate
+
+// fastGen maintains the table for matches,
+// and the previous byte block for level 2.
+// This is the generic implementation.
+type fastEncL2 struct {
+ fastGen
+ table [bTableSize]tableEntry
+}
+
+// EncodeL2 uses a similar algorithm to level 1, but is capable
+// of matching across blocks giving better compression at a small slowdown.
+func (e *fastEncL2) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.table[i].offset = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load3232(src, s)
+ for {
+ // When should we start skipping if we haven't found matches in a long while.
+ const skipLog = 5
+ const doEvery = 2
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ nextHash := hash4u(cv, bTableBits)
+ s = nextS
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidate = e.table[nextHash]
+ now := load6432(src, nextS)
+ e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ nextHash = hash4u(uint32(now), bTableBits)
+
+ offset := s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset && cv == candidate.val {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ break
+ }
+
+ // Do one right away...
+ cv = uint32(now)
+ s = nextS
+ nextS++
+ candidate = e.table[nextHash]
+ now >>= 8
+ e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+
+ offset = s - (candidate.offset - e.cur)
+ if offset < maxMatchOffset && cv == candidate.val {
+ break
+ }
+ cv = uint32(now)
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ t := candidate.offset - e.cur
+ l := e.matchlenLong(s+4, t+4, src) + 4
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+
+ if s >= sLimit {
+ // Index first pair after match end.
+ if int(s+l+4) < len(src) {
+ cv := load3232(src, s)
+ e.table[hash4u(cv, bTableBits)] = tableEntry{offset: s + e.cur, val: cv}
+ }
+ goto emitRemainder
+ }
+
+ // Store every second hash in-between, but offset by 1.
+ for i := s - l + 2; i < s-5; i += 7 {
+ x := load6432(src, int32(i))
+ nextHash := hash4u(uint32(x), bTableBits)
+ e.table[nextHash] = tableEntry{offset: e.cur + i, val: uint32(x)}
+ // Skip one
+ x >>= 16
+ nextHash = hash4u(uint32(x), bTableBits)
+ e.table[nextHash] = tableEntry{offset: e.cur + i + 2, val: uint32(x)}
+ // Skip one
+ x >>= 16
+ nextHash = hash4u(uint32(x), bTableBits)
+ e.table[nextHash] = tableEntry{offset: e.cur + i + 4, val: uint32(x)}
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-2 to s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6432(src, s-2)
+ o := e.cur + s - 2
+ prevHash := hash4u(uint32(x), bTableBits)
+ prevHash2 := hash4u(uint32(x>>8), bTableBits)
+ e.table[prevHash] = tableEntry{offset: o, val: uint32(x)}
+ e.table[prevHash2] = tableEntry{offset: o + 1, val: uint32(x >> 8)}
+ currHash := hash4u(uint32(x>>16), bTableBits)
+ candidate = e.table[currHash]
+ e.table[currHash] = tableEntry{offset: o + 2, val: uint32(x >> 16)}
+
+ offset := s - (candidate.offset - e.cur)
+ if offset > maxMatchOffset || uint32(x>>16) != candidate.val {
+ cv = uint32(x >> 24)
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
--- /dev/null
+package flate
+
+// fastEncL3
+type fastEncL3 struct {
+ fastGen
+ table [tableSize]tableEntryPrev
+}
+
+// Encode uses a similar algorithm to level 2, will check up to two candidates.
+func (e *fastEncL3) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 8 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntryPrev{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i]
+ if v.Cur.offset <= minOff {
+ v.Cur.offset = 0
+ } else {
+ v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
+ }
+ if v.Prev.offset <= minOff {
+ v.Prev.offset = 0
+ } else {
+ v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
+ }
+ e.table[i] = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // Skip if too small.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load3232(src, s)
+ for {
+ const skipLog = 6
+ nextS := s
+ var candidate tableEntry
+ for {
+ nextHash := hash(cv)
+ s = nextS
+ nextS = s + 1 + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ candidates := e.table[nextHash]
+ now := load3232(src, nextS)
+ e.table[nextHash] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+
+ // Check both candidates
+ candidate = candidates.Cur
+ offset := s - (candidate.offset - e.cur)
+ if cv == candidate.val {
+ if offset > maxMatchOffset {
+ cv = now
+ // Previous will also be invalid, we have nothing.
+ continue
+ }
+ o2 := s - (candidates.Prev.offset - e.cur)
+ if cv != candidates.Prev.val || o2 > maxMatchOffset {
+ break
+ }
+ // Both match and are valid, pick longest.
+ l1, l2 := matchLen(src[s+4:], src[s-offset+4:]), matchLen(src[s+4:], src[s-o2+4:])
+ if l2 > l1 {
+ candidate = candidates.Prev
+ }
+ break
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ break
+ }
+ }
+ }
+ cv = now
+ }
+
+ // Call emitCopy, and then see if another emitCopy could be our next
+ // move. Repeat until we find no match for the input immediately after
+ // what was consumed by the last emitCopy call.
+ //
+ // If we exit this loop normally then we need to call emitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can
+ // exit this loop via goto if we get close to exhausting the input.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ //
+ t := candidate.offset - e.cur
+ l := e.matchlenLong(s+4, t+4, src) + 4
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+
+ if s >= sLimit {
+ t += l
+ // Index first pair after match end.
+ if int(t+4) < len(src) && t > 0 {
+ cv := load3232(src, t)
+ nextHash := hash(cv)
+ e.table[nextHash] = tableEntryPrev{
+ Prev: e.table[nextHash].Cur,
+ Cur: tableEntry{offset: e.cur + t, val: cv},
+ }
+ }
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-3 to s.
+ x := load6432(src, s-3)
+ prevHash := hash(uint32(x))
+ e.table[prevHash] = tableEntryPrev{
+ Prev: e.table[prevHash].Cur,
+ Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash] = tableEntryPrev{
+ Prev: e.table[prevHash].Cur,
+ Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ }
+ x >>= 8
+ prevHash = hash(uint32(x))
+
+ e.table[prevHash] = tableEntryPrev{
+ Prev: e.table[prevHash].Cur,
+ Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ }
+ x >>= 8
+ currHash := hash(uint32(x))
+ candidates := e.table[currHash]
+ cv = uint32(x)
+ e.table[currHash] = tableEntryPrev{
+ Prev: candidates.Cur,
+ Cur: tableEntry{offset: s + e.cur, val: cv},
+ }
+
+ // Check both candidates
+ candidate = candidates.Cur
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ } else {
+ // We only check if value mismatches.
+ // Offset will always be invalid in other cases.
+ candidate = candidates.Prev
+ if cv == candidate.val {
+ offset := s - (candidate.offset - e.cur)
+ if offset <= maxMatchOffset {
+ continue
+ }
+ }
+ }
+ cv = uint32(x >> 8)
+ s++
+ break
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
--- /dev/null
+package flate
+
+import "fmt"
+
+type fastEncL4 struct {
+ fastGen
+ table [tableSize]tableEntry
+ bTable [tableSize]tableEntry
+}
+
+func (e *fastEncL4) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ for i := range e.bTable[:] {
+ e.bTable[i] = tableEntry{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.table[i].offset = v
+ }
+ for i := range e.bTable[:] {
+ v := e.bTable[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.bTable[i].offset = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load6432(src, s)
+ for {
+ const skipLog = 6
+ const doEvery = 1
+
+ nextS := s
+ var t int32
+ for {
+ nextHashS := hash4x64(cv, tableBits)
+ nextHashL := hash7(cv, tableBits)
+
+ s = nextS
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ // Fetch a short+long candidate
+ sCandidate := e.table[nextHashS]
+ lCandidate := e.bTable[nextHashL]
+ next := load6432(src, nextS)
+ entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ e.table[nextHashS] = entry
+ e.bTable[nextHashL] = entry
+
+ t = lCandidate.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == lCandidate.val {
+ // We got a long match. Use that.
+ break
+ }
+
+ t = sCandidate.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ // Found a 4 match...
+ lCandidate = e.bTable[hash7(next, tableBits)]
+
+ // If the next long is a candidate, check if we should use that instead...
+ lOff := nextS - (lCandidate.offset - e.cur)
+ if lOff < maxMatchOffset && lCandidate.val == uint32(next) {
+ l1, l2 := matchLen(src[s+4:], src[t+4:]), matchLen(src[nextS+4:], src[nextS-lOff+4:])
+ if l2 > l1 {
+ s = nextS
+ t = lCandidate.offset - e.cur
+ }
+ }
+ break
+ }
+ cv = next
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+
+ // Extend the 4-byte match as long as possible.
+ l := e.matchlenLong(s+4, t+4, src) + 4
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+ if false {
+ if t >= s {
+ panic("s-t")
+ }
+ if (s - t) > maxMatchOffset {
+ panic(fmt.Sprintln("mmo", t))
+ }
+ if l < baseMatchLength {
+ panic("bml")
+ }
+ }
+
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+
+ if s >= sLimit {
+ // Index first pair after match end.
+ if int(s+8) < len(src) {
+ cv := load6432(src, s)
+ e.table[hash4x64(cv, tableBits)] = tableEntry{offset: s + e.cur, val: uint32(cv)}
+ e.bTable[hash7(cv, tableBits)] = tableEntry{offset: s + e.cur, val: uint32(cv)}
+ }
+ goto emitRemainder
+ }
+
+ // Store every 3rd hash in-between
+ if true {
+ i := nextS
+ if i < s-1 {
+ cv := load6432(src, i)
+ t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ t2 := tableEntry{val: uint32(cv >> 8), offset: t.offset + 1}
+ e.bTable[hash7(cv, tableBits)] = t
+ e.bTable[hash7(cv>>8, tableBits)] = t2
+ e.table[hash4u(t2.val, tableBits)] = t2
+
+ i += 3
+ for ; i < s-1; i += 3 {
+ cv := load6432(src, i)
+ t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ t2 := tableEntry{val: uint32(cv >> 8), offset: t.offset + 1}
+ e.bTable[hash7(cv, tableBits)] = t
+ e.bTable[hash7(cv>>8, tableBits)] = t2
+ e.table[hash4u(t2.val, tableBits)] = t2
+ }
+ }
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s.
+ x := load6432(src, s-1)
+ o := e.cur + s - 1
+ prevHashS := hash4x64(x, tableBits)
+ prevHashL := hash7(x, tableBits)
+ e.table[prevHashS] = tableEntry{offset: o, val: uint32(x)}
+ e.bTable[prevHashL] = tableEntry{offset: o, val: uint32(x)}
+ cv = x >> 8
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
--- /dev/null
+package flate
+
+import "fmt"
+
+type fastEncL5 struct {
+ fastGen
+ table [tableSize]tableEntry
+ bTable [tableSize]tableEntryPrev
+}
+
+func (e *fastEncL5) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ for i := range e.bTable[:] {
+ e.bTable[i] = tableEntryPrev{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.table[i].offset = v
+ }
+ for i := range e.bTable[:] {
+ v := e.bTable[i]
+ if v.Cur.offset <= minOff {
+ v.Cur.offset = 0
+ v.Prev.offset = 0
+ } else {
+ v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
+ if v.Prev.offset <= minOff {
+ v.Prev.offset = 0
+ } else {
+ v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
+ }
+ }
+ e.bTable[i] = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load6432(src, s)
+ for {
+ const skipLog = 6
+ const doEvery = 1
+
+ nextS := s
+ var l int32
+ var t int32
+ for {
+ nextHashS := hash4x64(cv, tableBits)
+ nextHashL := hash7(cv, tableBits)
+
+ s = nextS
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ // Fetch a short+long candidate
+ sCandidate := e.table[nextHashS]
+ lCandidate := e.bTable[nextHashL]
+ next := load6432(src, nextS)
+ entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ e.table[nextHashS] = entry
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = entry, eLong.Cur
+
+ nextHashS = hash4x64(next, tableBits)
+ nextHashL = hash7(next, tableBits)
+
+ t = lCandidate.Cur.offset - e.cur
+ if s-t < maxMatchOffset {
+ if uint32(cv) == lCandidate.Cur.val {
+ // Store the next match
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+
+ t2 := lCandidate.Prev.offset - e.cur
+ if s-t2 < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ l = e.matchlen(s+4, t+4, src) + 4
+ ml1 := e.matchlen(s+4, t2+4, src) + 4
+ if ml1 > l {
+ t = t2
+ l = ml1
+ break
+ }
+ }
+ break
+ }
+ t = lCandidate.Prev.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ // Store the next match
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ break
+ }
+ }
+
+ t = sCandidate.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ // Found a 4 match...
+ l = e.matchlen(s+4, t+4, src) + 4
+ lCandidate = e.bTable[nextHashL]
+ // Store the next match
+
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+
+ // If the next long is a candidate, use that...
+ t2 := lCandidate.Cur.offset - e.cur
+ if nextS-t2 < maxMatchOffset {
+ if lCandidate.Cur.val == uint32(next) {
+ ml := e.matchlen(nextS+4, t2+4, src) + 4
+ if ml > l {
+ t = t2
+ s = nextS
+ l = ml
+ break
+ }
+ }
+ // If the previous long is a candidate, use that...
+ t2 = lCandidate.Prev.offset - e.cur
+ if nextS-t2 < maxMatchOffset && lCandidate.Prev.val == uint32(next) {
+ ml := e.matchlen(nextS+4, t2+4, src) + 4
+ if ml > l {
+ t = t2
+ s = nextS
+ l = ml
+ break
+ }
+ }
+ }
+ break
+ }
+ cv = next
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+
+ // Extend the 4-byte match as long as possible.
+ if l == 0 {
+ l = e.matchlenLong(s+4, t+4, src) + 4
+ } else if l == maxMatchLength {
+ l += e.matchlenLong(s+l, t+l, src)
+ }
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+ if false {
+ if t >= s {
+ panic(fmt.Sprintln("s-t", s, t))
+ }
+ if (s - t) > maxMatchOffset {
+ panic(fmt.Sprintln("mmo", s-t))
+ }
+ if l < baseMatchLength {
+ panic("bml")
+ }
+ }
+
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+
+ if s >= sLimit {
+ goto emitRemainder
+ }
+
+ // Store every 3rd hash in-between.
+ if true {
+ const hashEvery = 3
+ i := s - l + 1
+ if i < s-1 {
+ cv := load6432(src, i)
+ t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ e.table[hash4x64(cv, tableBits)] = t
+ eLong := &e.bTable[hash7(cv, tableBits)]
+ eLong.Cur, eLong.Prev = t, eLong.Cur
+
+ // Do an long at i+1
+ cv >>= 8
+ t = tableEntry{offset: t.offset + 1, val: uint32(cv)}
+ eLong = &e.bTable[hash7(cv, tableBits)]
+ eLong.Cur, eLong.Prev = t, eLong.Cur
+
+ // We only have enough bits for a short entry at i+2
+ cv >>= 8
+ t = tableEntry{offset: t.offset + 1, val: uint32(cv)}
+ e.table[hash4x64(cv, tableBits)] = t
+
+ // Skip one - otherwise we risk hitting 's'
+ i += 4
+ for ; i < s-1; i += hashEvery {
+ cv := load6432(src, i)
+ t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ t2 := tableEntry{offset: t.offset + 1, val: uint32(cv >> 8)}
+ eLong := &e.bTable[hash7(cv, tableBits)]
+ eLong.Cur, eLong.Prev = t, eLong.Cur
+ e.table[hash4u(t2.val, tableBits)] = t2
+ }
+ }
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s.
+ x := load6432(src, s-1)
+ o := e.cur + s - 1
+ prevHashS := hash4x64(x, tableBits)
+ prevHashL := hash7(x, tableBits)
+ e.table[prevHashS] = tableEntry{offset: o, val: uint32(x)}
+ eLong := &e.bTable[prevHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: o, val: uint32(x)}, eLong.Cur
+ cv = x >> 8
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
--- /dev/null
+package flate
+
+import "fmt"
+
+type fastEncL6 struct {
+ fastGen
+ table [tableSize]tableEntry
+ bTable [tableSize]tableEntryPrev
+}
+
+func (e *fastEncL6) Encode(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ // Protect against e.cur wraparound.
+ for e.cur >= bufferReset {
+ if len(e.hist) == 0 {
+ for i := range e.table[:] {
+ e.table[i] = tableEntry{}
+ }
+ for i := range e.bTable[:] {
+ e.bTable[i] = tableEntryPrev{}
+ }
+ e.cur = maxMatchOffset
+ break
+ }
+ // Shift down everything in the table that isn't already too far away.
+ minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
+ for i := range e.table[:] {
+ v := e.table[i].offset
+ if v <= minOff {
+ v = 0
+ } else {
+ v = v - e.cur + maxMatchOffset
+ }
+ e.table[i].offset = v
+ }
+ for i := range e.bTable[:] {
+ v := e.bTable[i]
+ if v.Cur.offset <= minOff {
+ v.Cur.offset = 0
+ v.Prev.offset = 0
+ } else {
+ v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
+ if v.Prev.offset <= minOff {
+ v.Prev.offset = 0
+ } else {
+ v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
+ }
+ }
+ e.bTable[i] = v
+ }
+ e.cur = maxMatchOffset
+ }
+
+ s := e.addBlock(src)
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ // Override src
+ src = e.hist
+ nextEmit := s
+
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int32(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load6432(src, s)
+ // Repeat MUST be > 1 and within range
+ repeat := int32(1)
+ for {
+ const skipLog = 7
+ const doEvery = 1
+
+ nextS := s
+ var l int32
+ var t int32
+ for {
+ nextHashS := hash4x64(cv, tableBits)
+ nextHashL := hash7(cv, tableBits)
+ s = nextS
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit {
+ goto emitRemainder
+ }
+ // Fetch a short+long candidate
+ sCandidate := e.table[nextHashS]
+ lCandidate := e.bTable[nextHashL]
+ next := load6432(src, nextS)
+ entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ e.table[nextHashS] = entry
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = entry, eLong.Cur
+
+ // Calculate hashes of 'next'
+ nextHashS = hash4x64(next, tableBits)
+ nextHashL = hash7(next, tableBits)
+
+ t = lCandidate.Cur.offset - e.cur
+ if s-t < maxMatchOffset {
+ if uint32(cv) == lCandidate.Cur.val {
+ // Long candidate matches at least 4 bytes.
+
+ // Store the next match
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+
+ // Check the previous long candidate as well.
+ t2 := lCandidate.Prev.offset - e.cur
+ if s-t2 < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ l = e.matchlen(s+4, t+4, src) + 4
+ ml1 := e.matchlen(s+4, t2+4, src) + 4
+ if ml1 > l {
+ t = t2
+ l = ml1
+ break
+ }
+ }
+ break
+ }
+ // Current value did not match, but check if previous long value does.
+ t = lCandidate.Prev.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ // Store the next match
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ break
+ }
+ }
+
+ t = sCandidate.offset - e.cur
+ if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ // Found a 4 match...
+ l = e.matchlen(s+4, t+4, src) + 4
+
+ // Look up next long candidate (at nextS)
+ lCandidate = e.bTable[nextHashL]
+
+ // Store the next match
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ eLong := &e.bTable[nextHashL]
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+
+ // Check repeat at s + repOff
+ const repOff = 1
+ t2 := s - repeat + repOff
+ if load3232(src, t2) == uint32(cv>>(8*repOff)) {
+ ml := e.matchlen(s+4+repOff, t2+4, src) + 4
+ if ml > l {
+ t = t2
+ l = ml
+ s += repOff
+ // Not worth checking more.
+ break
+ }
+ }
+
+ // If the next long is a candidate, use that...
+ t2 = lCandidate.Cur.offset - e.cur
+ if nextS-t2 < maxMatchOffset {
+ if lCandidate.Cur.val == uint32(next) {
+ ml := e.matchlen(nextS+4, t2+4, src) + 4
+ if ml > l {
+ t = t2
+ s = nextS
+ l = ml
+ // This is ok, but check previous as well.
+ }
+ }
+ // If the previous long is a candidate, use that...
+ t2 = lCandidate.Prev.offset - e.cur
+ if nextS-t2 < maxMatchOffset && lCandidate.Prev.val == uint32(next) {
+ ml := e.matchlen(nextS+4, t2+4, src) + 4
+ if ml > l {
+ t = t2
+ s = nextS
+ l = ml
+ break
+ }
+ }
+ }
+ break
+ }
+ cv = next
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+
+ // Extend the 4-byte match as long as possible.
+ if l == 0 {
+ l = e.matchlenLong(s+4, t+4, src) + 4
+ } else if l == maxMatchLength {
+ l += e.matchlenLong(s+l, t+l, src)
+ }
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+ if false {
+ if t >= s {
+ panic(fmt.Sprintln("s-t", s, t))
+ }
+ if (s - t) > maxMatchOffset {
+ panic(fmt.Sprintln("mmo", s-t))
+ }
+ if l < baseMatchLength {
+ panic("bml")
+ }
+ }
+
+ dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
+ repeat = s - t
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+
+ if s >= sLimit {
+ // Index after match end.
+ for i := nextS + 1; i < int32(len(src))-8; i += 2 {
+ cv := load6432(src, i)
+ e.table[hash4x64(cv, tableBits)] = tableEntry{offset: i + e.cur, val: uint32(cv)}
+ eLong := &e.bTable[hash7(cv, tableBits)]
+ eLong.Cur, eLong.Prev = tableEntry{offset: i + e.cur, val: uint32(cv)}, eLong.Cur
+ }
+ goto emitRemainder
+ }
+
+ // Store every long hash in-between and every second short.
+ if true {
+ for i := nextS + 1; i < s-1; i += 2 {
+ cv := load6432(src, i)
+ t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ t2 := tableEntry{offset: t.offset + 1, val: uint32(cv >> 8)}
+ eLong := &e.bTable[hash7(cv, tableBits)]
+ eLong2 := &e.bTable[hash7(cv>>8, tableBits)]
+ e.table[hash4x64(cv, tableBits)] = t
+ eLong.Cur, eLong.Prev = t, eLong.Cur
+ eLong2.Cur, eLong2.Prev = t2, eLong2.Cur
+ }
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-1 and at s.
+ cv = load6432(src, s)
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
+++ /dev/null
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-var reverseByte = [256]byte{
- 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
- 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
- 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
- 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
- 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
- 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
- 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
- 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
- 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
- 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
- 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
- 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
- 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
- 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
- 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
- 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
- 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
- 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
- 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
- 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
- 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
- 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
- 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
- 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
- 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
- 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
- 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
- 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
- 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
- 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
- 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
- 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
-}
-
-func reverseUint16(v uint16) uint16 {
- return uint16(reverseByte[v>>8]) | uint16(reverseByte[v&0xFF])<<8
-}
-
-func reverseBits(number uint16, bitLength byte) uint16 {
- return reverseUint16(number << uint8(16-bitLength))
-}
+++ /dev/null
-// Copyright 2011 The Snappy-Go Authors. All rights reserved.
-// Modified for deflate by Klaus Post (c) 2015.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-// emitLiteral writes a literal chunk and returns the number of bytes written.
-func emitLiteral(dst *tokens, lit []byte) {
- ol := int(dst.n)
- for i, v := range lit {
- dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
- }
- dst.n += uint16(len(lit))
-}
-
-// emitCopy writes a copy chunk and returns the number of bytes written.
-func emitCopy(dst *tokens, offset, length int) {
- dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
- dst.n++
-}
-
-type snappyEnc interface {
- Encode(dst *tokens, src []byte)
- Reset()
-}
-
-func newSnappy(level int) snappyEnc {
- switch level {
- case 1:
- return &snappyL1{}
- case 2:
- return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
- case 3:
- return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
- case 4:
- return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
- default:
- panic("invalid level specified")
- }
-}
-
-const (
- tableBits = 14 // Bits used in the table
- tableSize = 1 << tableBits // Size of the table
- tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
- tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
- baseMatchOffset = 1 // The smallest match offset
- baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
- maxMatchOffset = 1 << 15 // The largest match offset
-)
-
-func load32(b []byte, i int) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
-}
-
-func load64(b []byte, i int) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
-}
-
-func hash(u uint32) uint32 {
- return (u * 0x1e35a7bd) >> tableShift
-}
-
-// snappyL1 encapsulates level 1 compression
-type snappyL1 struct{}
-
-func (e *snappyL1) Reset() {}
-
-func (e *snappyL1) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 16 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- return
- }
-
- // Initialize the hash table.
- //
- // The table element type is uint16, as s < sLimit and sLimit < len(src)
- // and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
- var table [tableSize]uint16
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := len(src) - inputMargin
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := 0
-
- // The encoded form must start with a literal, as there are no previous
- // bytes to copy, so we start looking for hash matches at s == 1.
- s := 1
- nextHash := hash(load32(src, s))
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := 32
-
- nextS := s
- candidate := 0
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = int(table[nextHash&tableMask])
- table[nextHash&tableMask] = uint16(s)
- nextHash = hash(load32(src, nextS))
- // TODO: < should be <=, and add a test for that.
- if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) {
- break
- }
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
- base := s
-
- // Extend the 4-byte match as long as possible.
- //
- // This is an inlined version of Snappy's:
- // s = extendMatch(src, candidate+4, s+4)
- s += 4
- s1 := base + maxMatchLength
- if s1 > len(src) {
- s1 = len(src)
- }
- a := src[s:s1]
- b := src[candidate+4:]
- b = b[:len(a)]
- l := len(a)
- for i := range a {
- if a[i] != b[i] {
- l = i
- break
- }
- }
- s += l
-
- // matchToken is flate's equivalent of Snappy's emitCopy.
- dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
- dst.n++
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load64(src, s-1)
- prevHash := hash(uint32(x >> 0))
- table[prevHash&tableMask] = uint16(s - 1)
- currHash := hash(uint32(x >> 8))
- candidate = int(table[currHash&tableMask])
- table[currHash&tableMask] = uint16(s)
- // TODO: >= should be >, and add a test for that.
- if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
- nextHash = hash(uint32(x >> 16))
- s++
- break
- }
- }
- }
-
-emitRemainder:
- if nextEmit < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
-}
-
-type tableEntry struct {
- val uint32
- offset int32
-}
-
-func load3232(b []byte, i int32) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
-}
-
-func load6432(b []byte, i int32) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
-}
-
-// snappyGen maintains the table for matches,
-// and the previous byte block for level 2.
-// This is the generic implementation.
-type snappyGen struct {
- prev []byte
- cur int32
-}
-
-// snappyGen maintains the table for matches,
-// and the previous byte block for level 2.
-// This is the generic implementation.
-type snappyL2 struct {
- snappyGen
- table [tableSize]tableEntry
-}
-
-// EncodeL2 uses a similar algorithm to level 1, but is capable
-// of matching across blocks giving better compression at a small slowdown.
-func (e *snappyL2) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 16 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntry{}
- }
- e.cur = maxStoreBlockSize
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
- nextHash = hash(now)
-
- offset := s - (candidate.offset - e.cur)
- if offset >= maxMatchOffset || cv != candidate.val {
- // Out of range or not matched.
- cv = now
- continue
- }
- break
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
-
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-1)
- prevHash := hash(uint32(x))
- e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
- x >>= 8
- currHash := hash(uint32(x))
- candidate = e.table[currHash&tableMask]
- e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
-
- offset := s - (candidate.offset - e.cur)
- if offset >= maxMatchOffset || uint32(x) != candidate.val {
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-type tableEntryPrev struct {
- Cur tableEntry
- Prev tableEntry
-}
-
-// snappyL3
-type snappyL3 struct {
- snappyGen
- table [tableSize]tableEntryPrev
-}
-
-// Encode uses a similar algorithm to level 2, will check up to two candidates.
-func (e *snappyL3) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 16 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntryPrev{}
- }
- e.cur = maxStoreBlockSize
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidates := e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
- nextHash = hash(now)
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- break
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- break
- }
- }
- }
- cv = now
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
-
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-2, s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-2)
- prevHash := hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
- }
- x >>= 8
- currHash := hash(uint32(x))
- candidates := e.table[currHash&tableMask]
- cv = uint32(x)
- e.table[currHash&tableMask] = tableEntryPrev{
- Prev: candidates.Cur,
- Cur: tableEntry{offset: s + e.cur, val: cv},
- }
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- continue
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- continue
- }
- }
- }
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-// snappyL4
-type snappyL4 struct {
- snappyL3
-}
-
-// Encode uses a similar algorithm to level 3,
-// but will check up to two candidates if first isn't long enough.
-func (e *snappyL4) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 16 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- matchLenGood = 12
- )
-
- // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntryPrev{}
- }
- e.cur = maxStoreBlockSize
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- var candidateAlt tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidates := e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
- nextHash = hash(now)
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- offset = s - (candidates.Prev.offset - e.cur)
- if cv == candidates.Prev.val && offset < maxMatchOffset {
- candidateAlt = candidates.Prev
- }
- break
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- break
- }
- }
- }
- cv = now
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
- // Try alternative candidate if match length < matchLenGood.
- if l < matchLenGood-4 && candidateAlt.offset != 0 {
- t2 := candidateAlt.offset - e.cur + 4
- l2 := e.matchlen(s, t2, src)
- if l2 > l {
- l = l2
- t = t2
- }
- }
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-2, s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-2)
- prevHash := hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
- }
- x >>= 8
- currHash := hash(uint32(x))
- candidates := e.table[currHash&tableMask]
- cv = uint32(x)
- e.table[currHash&tableMask] = tableEntryPrev{
- Prev: candidates.Cur,
- Cur: tableEntry{offset: s + e.cur, val: cv},
- }
-
- // Check both candidates
- candidate = candidates.Cur
- candidateAlt = tableEntry{}
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- offset = s - (candidates.Prev.offset - e.cur)
- if cv == candidates.Prev.val && offset < maxMatchOffset {
- candidateAlt = candidates.Prev
- }
- continue
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- continue
- }
- }
- }
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
- s1 := int(s) + maxMatchLength - 4
- if s1 > len(src) {
- s1 = len(src)
- }
-
- // If we are inside the current block
- if t >= 0 {
- b := src[t:]
- a := src[s:s1]
- b = b[:len(a)]
- // Extend the match to be as long as possible.
- for i := range a {
- if a[i] != b[i] {
- return int32(i)
- }
- }
- return int32(len(a))
- }
-
- // We found a match in the previous block.
- tp := int32(len(e.prev)) + t
- if tp < 0 {
- return 0
- }
-
- // Extend the match to be as long as possible.
- a := src[s:s1]
- b := e.prev[tp:]
- if len(b) > len(a) {
- b = b[:len(a)]
- }
- a = a[:len(b)]
- for i := range b {
- if a[i] != b[i] {
- return int32(i)
- }
- }
- n := int32(len(b))
- a = src[s+n : s1]
- b = src[:len(a)]
- for i := range a {
- if a[i] != b[i] {
- return int32(i) + n
- }
- }
- return int32(len(a)) + n
-}
-
-// Reset the encoding table.
-func (e *snappyGen) Reset() {
- e.prev = e.prev[:0]
- e.cur += maxMatchOffset + 1
-}
--- /dev/null
+package flate
+
+import (
+ "io"
+ "math"
+)
+
+const (
+ maxStatelessBlock = math.MaxInt16
+
+ slTableBits = 13
+ slTableSize = 1 << slTableBits
+ slTableShift = 32 - slTableBits
+)
+
+type statelessWriter struct {
+ dst io.Writer
+ closed bool
+}
+
+func (s *statelessWriter) Close() error {
+ if s.closed {
+ return nil
+ }
+ s.closed = true
+ // Emit EOF block
+ return StatelessDeflate(s.dst, nil, true)
+}
+
+func (s *statelessWriter) Write(p []byte) (n int, err error) {
+ err = StatelessDeflate(s.dst, p, false)
+ if err != nil {
+ return 0, err
+ }
+ return len(p), nil
+}
+
+func (s *statelessWriter) Reset(w io.Writer) {
+ s.dst = w
+ s.closed = false
+}
+
+// NewStatelessWriter will do compression but without maintaining any state
+// between Write calls.
+// There will be no memory kept between Write calls,
+// but compression and speed will be suboptimal.
+// Because of this, the size of actual Write calls will affect output size.
+func NewStatelessWriter(dst io.Writer) io.WriteCloser {
+ return &statelessWriter{dst: dst}
+}
+
+// StatelessDeflate allows to compress directly to a Writer without retaining state.
+// When returning everything will be flushed.
+func StatelessDeflate(out io.Writer, in []byte, eof bool) error {
+ var dst tokens
+ bw := newHuffmanBitWriter(out)
+ if eof && len(in) == 0 {
+ // Just write an EOF block.
+ // Could be faster...
+ bw.writeStoredHeader(0, true)
+ bw.flush()
+ return bw.err
+ }
+
+ for len(in) > 0 {
+ todo := in
+ if len(todo) > maxStatelessBlock {
+ todo = todo[:maxStatelessBlock]
+ }
+ in = in[len(todo):]
+ // Compress
+ statelessEnc(&dst, todo)
+ isEof := eof && len(in) == 0
+
+ if dst.n == 0 {
+ bw.writeStoredHeader(len(todo), isEof)
+ if bw.err != nil {
+ return bw.err
+ }
+ bw.writeBytes(todo)
+ } else if int(dst.n) > len(todo)-len(todo)>>4 {
+ // If we removed less than 1/16th, huffman compress the block.
+ bw.writeBlockHuff(isEof, todo, false)
+ } else {
+ bw.writeBlockDynamic(&dst, isEof, todo, false)
+ }
+ if bw.err != nil {
+ return bw.err
+ }
+ dst.Reset()
+ }
+ if !eof {
+ // Align.
+ bw.writeStoredHeader(0, false)
+ }
+ bw.flush()
+ return bw.err
+}
+
+func hashSL(u uint32) uint32 {
+ return (u * 0x1e35a7bd) >> slTableShift
+}
+
+func load3216(b []byte, i int16) uint32 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:4]
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func load6416(b []byte, i int16) uint64 {
+ // Help the compiler eliminate bounds checks on the read so it can be done in a single read.
+ b = b[i:]
+ b = b[:8]
+ return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+ uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func statelessEnc(dst *tokens, src []byte) {
+ const (
+ inputMargin = 12 - 1
+ minNonLiteralBlockSize = 1 + 1 + inputMargin
+ )
+
+ type tableEntry struct {
+ offset int16
+ }
+
+ var table [slTableSize]tableEntry
+
+ // This check isn't in the Snappy implementation, but there, the caller
+ // instead of the callee handles this case.
+ if len(src) < minNonLiteralBlockSize {
+ // We do not fill the token table.
+ // This will be picked up by caller.
+ dst.n = uint16(len(src))
+ return
+ }
+
+ s := int16(1)
+ nextEmit := int16(0)
+ // sLimit is when to stop looking for offset/length copies. The inputMargin
+ // lets us use a fast path for emitLiteral in the main loop, while we are
+ // looking for copies.
+ sLimit := int16(len(src) - inputMargin)
+
+ // nextEmit is where in src the next emitLiteral should start from.
+ cv := load3216(src, s)
+
+ for {
+ const skipLog = 5
+ const doEvery = 2
+
+ nextS := s
+ var candidate tableEntry
+ for {
+ nextHash := hashSL(cv)
+ candidate = table[nextHash]
+ nextS = s + doEvery + (s-nextEmit)>>skipLog
+ if nextS > sLimit || nextS <= 0 {
+ goto emitRemainder
+ }
+
+ now := load6416(src, nextS)
+ table[nextHash] = tableEntry{offset: s}
+ nextHash = hashSL(uint32(now))
+
+ if cv == load3216(src, candidate.offset) {
+ table[nextHash] = tableEntry{offset: nextS}
+ break
+ }
+
+ // Do one right away...
+ cv = uint32(now)
+ s = nextS
+ nextS++
+ candidate = table[nextHash]
+ now >>= 8
+ table[nextHash] = tableEntry{offset: s}
+
+ if cv == load3216(src, candidate.offset) {
+ table[nextHash] = tableEntry{offset: nextS}
+ break
+ }
+ cv = uint32(now)
+ s = nextS
+ }
+
+ // A 4-byte match has been found. We'll later see if more than 4 bytes
+ // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
+ // them as literal bytes.
+ for {
+ // Invariant: we have a 4-byte match at s, and no need to emit any
+ // literal bytes prior to s.
+
+ // Extend the 4-byte match as long as possible.
+ t := candidate.offset
+ l := int16(matchLen(src[s+4:], src[t+4:]) + 4)
+
+ // Extend backwards
+ for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
+ s--
+ t--
+ l++
+ }
+ if nextEmit < s {
+ emitLiteral(dst, src[nextEmit:s])
+ }
+
+ // Save the match found
+ dst.AddMatchLong(int32(l), uint32(s-t-baseMatchOffset))
+ s += l
+ nextEmit = s
+ if nextS >= s {
+ s = nextS + 1
+ }
+ if s >= sLimit {
+ goto emitRemainder
+ }
+
+ // We could immediately start working at s now, but to improve
+ // compression we first update the hash table at s-2 and at s. If
+ // another emitCopy is not our next move, also calculate nextHash
+ // at s+1. At least on GOARCH=amd64, these three hash calculations
+ // are faster as one load64 call (with some shifts) instead of
+ // three load32 calls.
+ x := load6416(src, s-2)
+ o := s - 2
+ prevHash := hashSL(uint32(x))
+ table[prevHash] = tableEntry{offset: o}
+ x >>= 16
+ currHash := hashSL(uint32(x))
+ candidate = table[currHash]
+ table[currHash] = tableEntry{offset: o + 2}
+
+ if uint32(x) != load3216(src, candidate.offset) {
+ cv = uint32(x >> 8)
+ s++
+ break
+ }
+ }
+ }
+
+emitRemainder:
+ if int(nextEmit) < len(src) {
+ // If nothing was added, don't encode literals.
+ if dst.n == 0 {
+ return
+ }
+ emitLiteral(dst, src[nextEmit:])
+ }
+}
package flate
-import "fmt"
+import (
+ "bytes"
+ "encoding/binary"
+ "fmt"
+ "io"
+ "math"
+)
const (
// 2 bits: type 0 = literal 1=EOF 2=Match 3=Unused
// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
// is lengthCodes[length - MIN_MATCH_LENGTH]
-var lengthCodes = [...]uint32{
+var lengthCodes = [256]uint8{
0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
27, 27, 27, 27, 27, 28,
}
-var offsetCodes = [...]uint32{
+// lengthCodes1 is length codes, but starting at 1.
+var lengthCodes1 = [256]uint8{
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 9,
+ 10, 10, 11, 11, 12, 12, 13, 13, 13, 13,
+ 14, 14, 14, 14, 15, 15, 15, 15, 16, 16,
+ 16, 16, 17, 17, 17, 17, 17, 17, 17, 17,
+ 18, 18, 18, 18, 18, 18, 18, 18, 19, 19,
+ 19, 19, 19, 19, 19, 19, 20, 20, 20, 20,
+ 20, 20, 20, 20, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 29,
+}
+
+var offsetCodes = [256]uint32{
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
}
+// offsetCodes14 are offsetCodes, but with 14 added.
+var offsetCodes14 = [256]uint32{
+ 14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
+ 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+}
+
type token uint32
type tokens struct {
- tokens [maxStoreBlockSize + 1]token
- n uint16 // Must be able to contain maxStoreBlockSize
+ nLits int
+ extraHist [32]uint16 // codes 256->maxnumlit
+ offHist [32]uint16 // offset codes
+ litHist [256]uint16 // codes 0->255
+ n uint16 // Must be able to contain maxStoreBlockSize
+ tokens [maxStoreBlockSize + 1]token
+}
+
+func (t *tokens) Reset() {
+ if t.n == 0 {
+ return
+ }
+ t.n = 0
+ t.nLits = 0
+ for i := range t.litHist[:] {
+ t.litHist[i] = 0
+ }
+ for i := range t.extraHist[:] {
+ t.extraHist[i] = 0
+ }
+ for i := range t.offHist[:] {
+ t.offHist[i] = 0
+ }
+}
+
+func (t *tokens) Fill() {
+ if t.n == 0 {
+ return
+ }
+ for i, v := range t.litHist[:] {
+ if v == 0 {
+ t.litHist[i] = 1
+ t.nLits++
+ }
+ }
+ for i, v := range t.extraHist[:literalCount-256] {
+ if v == 0 {
+ t.nLits++
+ t.extraHist[i] = 1
+ }
+ }
+ for i, v := range t.offHist[:offsetCodeCount] {
+ if v == 0 {
+ t.offHist[i] = 1
+ }
+ }
}
-// Convert a literal into a literal token.
-func literalToken(literal uint32) token { return token(literalType + literal) }
+func indexTokens(in []token) tokens {
+ var t tokens
+ t.indexTokens(in)
+ return t
+}
+
+func (t *tokens) indexTokens(in []token) {
+ t.Reset()
+ for _, tok := range in {
+ if tok < matchType {
+ t.tokens[t.n] = tok
+ t.litHist[tok]++
+ t.n++
+ continue
+ }
+ t.AddMatch(uint32(tok.length()), tok.offset())
+ }
+}
+
+// emitLiteral writes a literal chunk and returns the number of bytes written.
+func emitLiteral(dst *tokens, lit []byte) {
+ ol := int(dst.n)
+ for i, v := range lit {
+ dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
+ dst.litHist[v]++
+ }
+ dst.n += uint16(len(lit))
+ dst.nLits += len(lit)
+}
-// Convert a < xlength, xoffset > pair into a match token.
-func matchToken(xlength uint32, xoffset uint32) token {
- return token(matchType + xlength<<lengthShift + xoffset)
+func (t *tokens) AddLiteral(lit byte) {
+ t.tokens[t.n] = token(lit)
+ t.litHist[lit]++
+ t.n++
+ t.nLits++
}
-func matchTokend(xlength uint32, xoffset uint32) token {
- if xlength > maxMatchLength || xoffset > maxMatchOffset {
- panic(fmt.Sprintf("Invalid match: len: %d, offset: %d\n", xlength, xoffset))
- return token(matchType)
+// EstimatedBits will return an minimum size estimated by an *optimal*
+// compression of the block.
+// The size of the block
+func (t *tokens) EstimatedBits() int {
+ shannon := float64(0)
+ bits := int(0)
+ nMatches := 0
+ if t.nLits > 0 {
+ invTotal := 1.0 / float64(t.nLits)
+ for _, v := range t.litHist[:] {
+ if v > 0 {
+ n := float64(v)
+ shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ }
+ }
+ // Just add 15 for EOB
+ shannon += 15
+ for _, v := range t.extraHist[1 : literalCount-256] {
+ if v > 0 {
+ n := float64(v)
+ shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ bits += int(lengthExtraBits[v&31]) * int(v)
+ nMatches += int(v)
+ }
+ }
}
- return token(matchType + xlength<<lengthShift + xoffset)
+ if nMatches > 0 {
+ invTotal := 1.0 / float64(nMatches)
+ for _, v := range t.offHist[:offsetCodeCount] {
+ if v > 0 {
+ n := float64(v)
+ shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ bits += int(offsetExtraBits[v&31]) * int(n)
+ }
+ }
+ }
+
+ return int(shannon) + bits
+}
+
+// AddMatch adds a match to the tokens.
+// This function is very sensitive to inlining and right on the border.
+func (t *tokens) AddMatch(xlength uint32, xoffset uint32) {
+ if debugDecode {
+ if xlength >= maxMatchLength+baseMatchLength {
+ panic(fmt.Errorf("invalid length: %v", xlength))
+ }
+ if xoffset >= maxMatchOffset+baseMatchOffset {
+ panic(fmt.Errorf("invalid offset: %v", xoffset))
+ }
+ }
+ t.nLits++
+ lengthCode := lengthCodes1[uint8(xlength)] & 31
+ t.tokens[t.n] = token(matchType | xlength<<lengthShift | xoffset)
+ t.extraHist[lengthCode]++
+ t.offHist[offsetCode(xoffset)&31]++
+ t.n++
+}
+
+// AddMatchLong adds a match to the tokens, potentially longer than max match length.
+// Length should NOT have the base subtracted, only offset should.
+func (t *tokens) AddMatchLong(xlength int32, xoffset uint32) {
+ if debugDecode {
+ if xoffset >= maxMatchOffset+baseMatchOffset {
+ panic(fmt.Errorf("invalid offset: %v", xoffset))
+ }
+ }
+ oc := offsetCode(xoffset) & 31
+ for xlength > 0 {
+ xl := xlength
+ if xl > 258 {
+ // We need to have at least baseMatchLength left over for next loop.
+ xl = 258 - baseMatchLength
+ }
+ xlength -= xl
+ xl -= 3
+ t.nLits++
+ lengthCode := lengthCodes1[uint8(xl)] & 31
+ t.tokens[t.n] = token(matchType | uint32(xl)<<lengthShift | xoffset)
+ t.extraHist[lengthCode]++
+ t.offHist[oc]++
+ t.n++
+ }
+}
+
+func (t *tokens) AddEOB() {
+ t.tokens[t.n] = token(endBlockMarker)
+ t.extraHist[0]++
+ t.n++
+}
+
+func (t *tokens) Slice() []token {
+ return t.tokens[:t.n]
+}
+
+// VarInt returns the tokens as varint encoded bytes.
+func (t *tokens) VarInt() []byte {
+ var b = make([]byte, binary.MaxVarintLen32*int(t.n))
+ var off int
+ for _, v := range t.tokens[:t.n] {
+ off += binary.PutUvarint(b[off:], uint64(v))
+ }
+ return b[:off]
+}
+
+// FromVarInt restores t to the varint encoded tokens provided.
+// Any data in t is removed.
+func (t *tokens) FromVarInt(b []byte) error {
+ var buf = bytes.NewReader(b)
+ var toks []token
+ for {
+ r, err := binary.ReadUvarint(buf)
+ if err == io.EOF {
+ break
+ }
+ if err != nil {
+ return err
+ }
+ toks = append(toks, token(r))
+ }
+ t.indexTokens(toks)
+ return nil
}
// Returns the type of a token
func (t token) typ() uint32 { return uint32(t) & typeMask }
// Returns the literal of a literal token
-func (t token) literal() uint32 { return uint32(t - literalType) }
+func (t token) literal() uint8 { return uint8(t) }
// Returns the extra offset of a match token
func (t token) offset() uint32 { return uint32(t) & offsetMask }
-func (t token) length() uint32 { return uint32((t - matchType) >> lengthShift) }
+func (t token) length() uint8 { return uint8(t >> lengthShift) }
-func lengthCode(len uint32) uint32 { return lengthCodes[len] }
+// The code is never more than 8 bits, but is returned as uint32 for convenience.
+func lengthCode(len uint8) uint32 { return uint32(lengthCodes[len]) }
// Returns the offset code corresponding to a specific offset
func offsetCode(off uint32) uint32 {
+ if false {
+ if off < uint32(len(offsetCodes)) {
+ return offsetCodes[off&255]
+ } else if off>>7 < uint32(len(offsetCodes)) {
+ return offsetCodes[(off>>7)&255] + 14
+ } else {
+ return offsetCodes[(off>>14)&255] + 28
+ }
+ }
if off < uint32(len(offsetCodes)) {
- return offsetCodes[off]
- } else if off>>7 < uint32(len(offsetCodes)) {
- return offsetCodes[off>>7] + 14
- } else {
- return offsetCodes[off>>14] + 28
+ return offsetCodes[uint8(off)]
}
+ return offsetCodes14[uint8(off>>7)]
}
"bufio"
"encoding/binary"
"errors"
+ "hash/crc32"
"io"
"time"
"github.com/klauspost/compress/flate"
- "github.com/klauspost/crc32"
)
const (
import (
"errors"
"fmt"
+ "hash/crc32"
"io"
"github.com/klauspost/compress/flate"
- "github.com/klauspost/crc32"
)
// These constants are copied from the flate package, so that code that imports
DefaultCompression = flate.DefaultCompression
ConstantCompression = flate.ConstantCompression
HuffmanOnly = flate.HuffmanOnly
+
+ // StatelessCompression will do compression but without maintaining any state
+ // between Write calls.
+ // There will be no memory kept between Write calls,
+ // but compression and speed will be suboptimal.
+ // Because of this, the size of actual Write calls will affect output size.
+ StatelessCompression = -3
)
// A Writer is an io.WriteCloser.
// integer value between BestSpeed and BestCompression inclusive. The error
// returned will be nil if the level is valid.
func NewWriterLevel(w io.Writer, level int) (*Writer, error) {
- if level < HuffmanOnly || level > BestCompression {
+ if level < StatelessCompression || level > BestCompression {
return nil, fmt.Errorf("gzip: invalid compression level: %d", level)
}
z := new(Writer)
func (z *Writer) init(w io.Writer, level int) {
compressor := z.compressor
- if compressor != nil {
- compressor.Reset(w)
+ if level != StatelessCompression {
+ if compressor != nil {
+ compressor.Reset(w)
+ }
}
+
*z = Writer{
Header: Header{
OS: 255, // unknown
return n, z.err
}
}
- if z.compressor == nil {
+
+ if z.compressor == nil && z.level != StatelessCompression {
z.compressor, _ = flate.NewWriter(z.w, z.level)
}
}
z.size += uint32(len(p))
z.digest = crc32.Update(z.digest, crc32.IEEETable, p)
+ if z.level == StatelessCompression {
+ return len(p), flate.StatelessDeflate(z.w, p, false)
+ }
n, z.err = z.compressor.Write(p)
return n, z.err
}
if z.err != nil {
return z.err
}
- if z.closed {
+ if z.closed || z.level == StatelessCompression {
return nil
}
if !z.wroteHeader {
return z.err
}
}
- z.err = z.compressor.Close()
+ if z.level == StatelessCompression {
+ z.err = flate.StatelessDeflate(z.w, nil, true)
+ } else {
+ z.err = z.compressor.Close()
+ }
if z.err != nil {
return z.err
}
+++ /dev/null
-# Compiled Object files, Static and Dynamic libs (Shared Objects)
-*.o
-*.a
-*.so
-
-# Folders
-_obj
-_test
-
-# Architecture specific extensions/prefixes
-*.[568vq]
-[568vq].out
-
-*.cgo1.go
-*.cgo2.c
-_cgo_defun.c
-_cgo_gotypes.go
-_cgo_export.*
-
-_testmain.go
-
-*.exe
-*.test
-*.prof
+++ /dev/null
-language: go
-
-go:
- - 1.3
- - 1.4
- - 1.5
- - 1.6
- - tip
+++ /dev/null
-The MIT License (MIT)
-
-Copyright (c) 2015 Klaus Post
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
-
+++ /dev/null
-# cpuid
-Package cpuid provides information about the CPU running the current program.
-
-CPU features are detected on startup, and kept for fast access through the life of the application.
-Currently x86 / x64 (AMD64) is supported, and no external C (cgo) code is used, which should make the library very easy to use.
-
-You can access the CPU information by accessing the shared CPU variable of the cpuid library.
-
-Package home: https://github.com/klauspost/cpuid
-
-[![GoDoc][1]][2] [![Build Status][3]][4]
-
-[1]: https://godoc.org/github.com/klauspost/cpuid?status.svg
-[2]: https://godoc.org/github.com/klauspost/cpuid
-[3]: https://travis-ci.org/klauspost/cpuid.svg
-[4]: https://travis-ci.org/klauspost/cpuid
-
-# features
-## CPU Instructions
-* **CMOV** (i686 CMOV)
-* **NX** (NX (No-Execute) bit)
-* **AMD3DNOW** (AMD 3DNOW)
-* **AMD3DNOWEXT** (AMD 3DNowExt)
-* **MMX** (standard MMX)
-* **MMXEXT** (SSE integer functions or AMD MMX ext)
-* **SSE** (SSE functions)
-* **SSE2** (P4 SSE functions)
-* **SSE3** (Prescott SSE3 functions)
-* **SSSE3** (Conroe SSSE3 functions)
-* **SSE4** (Penryn SSE4.1 functions)
-* **SSE4A** (AMD Barcelona microarchitecture SSE4a instructions)
-* **SSE42** (Nehalem SSE4.2 functions)
-* **AVX** (AVX functions)
-* **AVX2** (AVX2 functions)
-* **FMA3** (Intel FMA 3)
-* **FMA4** (Bulldozer FMA4 functions)
-* **XOP** (Bulldozer XOP functions)
-* **F16C** (Half-precision floating-point conversion)
-* **BMI1** (Bit Manipulation Instruction Set 1)
-* **BMI2** (Bit Manipulation Instruction Set 2)
-* **TBM** (AMD Trailing Bit Manipulation)
-* **LZCNT** (LZCNT instruction)
-* **POPCNT** (POPCNT instruction)
-* **AESNI** (Advanced Encryption Standard New Instructions)
-* **CLMUL** (Carry-less Multiplication)
-* **HTT** (Hyperthreading (enabled))
-* **HLE** (Hardware Lock Elision)
-* **RTM** (Restricted Transactional Memory)
-* **RDRAND** (RDRAND instruction is available)
-* **RDSEED** (RDSEED instruction is available)
-* **ADX** (Intel ADX (Multi-Precision Add-Carry Instruction Extensions))
-* **SHA** (Intel SHA Extensions)
-* **AVX512F** (AVX-512 Foundation)
-* **AVX512DQ** (AVX-512 Doubleword and Quadword Instructions)
-* **AVX512IFMA** (AVX-512 Integer Fused Multiply-Add Instructions)
-* **AVX512PF** (AVX-512 Prefetch Instructions)
-* **AVX512ER** (AVX-512 Exponential and Reciprocal Instructions)
-* **AVX512CD** (AVX-512 Conflict Detection Instructions)
-* **AVX512BW** (AVX-512 Byte and Word Instructions)
-* **AVX512VL** (AVX-512 Vector Length Extensions)
-* **AVX512VBMI** (AVX-512 Vector Bit Manipulation Instructions)
-* **MPX** (Intel MPX (Memory Protection Extensions))
-* **ERMS** (Enhanced REP MOVSB/STOSB)
-* **RDTSCP** (RDTSCP Instruction)
-* **CX16** (CMPXCHG16B Instruction)
-* **SGX** (Software Guard Extensions, with activation details)
-
-## Performance
-* **RDTSCP()** Returns current cycle count. Can be used for benchmarking.
-* **SSE2SLOW** (SSE2 is supported, but usually not faster)
-* **SSE3SLOW** (SSE3 is supported, but usually not faster)
-* **ATOM** (Atom processor, some SSSE3 instructions are slower)
-* **Cache line** (Probable size of a cache line).
-* **L1, L2, L3 Cache size** on newer Intel/AMD CPUs.
-
-## Cpu Vendor/VM
-* **Intel**
-* **AMD**
-* **VIA**
-* **Transmeta**
-* **NSC**
-* **KVM** (Kernel-based Virtual Machine)
-* **MSVM** (Microsoft Hyper-V or Windows Virtual PC)
-* **VMware**
-* **XenHVM**
-
-# installing
-
-```go get github.com/klauspost/cpuid```
-
-# example
-
-```Go
-package main
-
-import (
- "fmt"
- "github.com/klauspost/cpuid"
-)
-
-func main() {
- // Print basic CPU information:
- fmt.Println("Name:", cpuid.CPU.BrandName)
- fmt.Println("PhysicalCores:", cpuid.CPU.PhysicalCores)
- fmt.Println("ThreadsPerCore:", cpuid.CPU.ThreadsPerCore)
- fmt.Println("LogicalCores:", cpuid.CPU.LogicalCores)
- fmt.Println("Family", cpuid.CPU.Family, "Model:", cpuid.CPU.Model)
- fmt.Println("Features:", cpuid.CPU.Features)
- fmt.Println("Cacheline bytes:", cpuid.CPU.CacheLine)
- fmt.Println("L1 Data Cache:", cpuid.CPU.Cache.L1D, "bytes")
- fmt.Println("L1 Instruction Cache:", cpuid.CPU.Cache.L1D, "bytes")
- fmt.Println("L2 Cache:", cpuid.CPU.Cache.L2, "bytes")
- fmt.Println("L3 Cache:", cpuid.CPU.Cache.L3, "bytes")
-
- // Test if we have a specific feature:
- if cpuid.CPU.SSE() {
- fmt.Println("We have Streaming SIMD Extensions")
- }
-}
-```
-
-Sample output:
-```
->go run main.go
-Name: Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz
-PhysicalCores: 2
-ThreadsPerCore: 2
-LogicalCores: 4
-Family 6 Model: 42
-Features: CMOV,MMX,MMXEXT,SSE,SSE2,SSE3,SSSE3,SSE4.1,SSE4.2,AVX,AESNI,CLMUL
-Cacheline bytes: 64
-We have Streaming SIMD Extensions
-```
-
-# private package
-
-In the "private" folder you can find an autogenerated version of the library you can include in your own packages.
-
-For this purpose all exports are removed, and functions and constants are lowercased.
-
-This is not a recommended way of using the library, but provided for convenience, if it is difficult for you to use external packages.
-
-# license
-
-This code is published under an MIT license. See LICENSE file for more information.
+++ /dev/null
-// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
-
-// Package cpuid provides information about the CPU running the current program.
-//
-// CPU features are detected on startup, and kept for fast access through the life of the application.
-// Currently x86 / x64 (AMD64) is supported.
-//
-// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
-//
-// Package home: https://github.com/klauspost/cpuid
-package cpuid
-
-import "strings"
-
-// Vendor is a representation of a CPU vendor.
-type Vendor int
-
-const (
- Other Vendor = iota
- Intel
- AMD
- VIA
- Transmeta
- NSC
- KVM // Kernel-based Virtual Machine
- MSVM // Microsoft Hyper-V or Windows Virtual PC
- VMware
- XenHVM
-)
-
-const (
- CMOV = 1 << iota // i686 CMOV
- NX // NX (No-Execute) bit
- AMD3DNOW // AMD 3DNOW
- AMD3DNOWEXT // AMD 3DNowExt
- MMX // standard MMX
- MMXEXT // SSE integer functions or AMD MMX ext
- SSE // SSE functions
- SSE2 // P4 SSE functions
- SSE3 // Prescott SSE3 functions
- SSSE3 // Conroe SSSE3 functions
- SSE4 // Penryn SSE4.1 functions
- SSE4A // AMD Barcelona microarchitecture SSE4a instructions
- SSE42 // Nehalem SSE4.2 functions
- AVX // AVX functions
- AVX2 // AVX2 functions
- FMA3 // Intel FMA 3
- FMA4 // Bulldozer FMA4 functions
- XOP // Bulldozer XOP functions
- F16C // Half-precision floating-point conversion
- BMI1 // Bit Manipulation Instruction Set 1
- BMI2 // Bit Manipulation Instruction Set 2
- TBM // AMD Trailing Bit Manipulation
- LZCNT // LZCNT instruction
- POPCNT // POPCNT instruction
- AESNI // Advanced Encryption Standard New Instructions
- CLMUL // Carry-less Multiplication
- HTT // Hyperthreading (enabled)
- HLE // Hardware Lock Elision
- RTM // Restricted Transactional Memory
- RDRAND // RDRAND instruction is available
- RDSEED // RDSEED instruction is available
- ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
- SHA // Intel SHA Extensions
- AVX512F // AVX-512 Foundation
- AVX512DQ // AVX-512 Doubleword and Quadword Instructions
- AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
- AVX512PF // AVX-512 Prefetch Instructions
- AVX512ER // AVX-512 Exponential and Reciprocal Instructions
- AVX512CD // AVX-512 Conflict Detection Instructions
- AVX512BW // AVX-512 Byte and Word Instructions
- AVX512VL // AVX-512 Vector Length Extensions
- AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
- MPX // Intel MPX (Memory Protection Extensions)
- ERMS // Enhanced REP MOVSB/STOSB
- RDTSCP // RDTSCP Instruction
- CX16 // CMPXCHG16B Instruction
- SGX // Software Guard Extensions
-
- // Performance indicators
- SSE2SLOW // SSE2 is supported, but usually not faster
- SSE3SLOW // SSE3 is supported, but usually not faster
- ATOM // Atom processor, some SSSE3 instructions are slower
-)
-
-var flagNames = map[Flags]string{
- CMOV: "CMOV", // i686 CMOV
- NX: "NX", // NX (No-Execute) bit
- AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
- AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
- MMX: "MMX", // Standard MMX
- MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
- SSE: "SSE", // SSE functions
- SSE2: "SSE2", // P4 SSE2 functions
- SSE3: "SSE3", // Prescott SSE3 functions
- SSSE3: "SSSE3", // Conroe SSSE3 functions
- SSE4: "SSE4.1", // Penryn SSE4.1 functions
- SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
- SSE42: "SSE4.2", // Nehalem SSE4.2 functions
- AVX: "AVX", // AVX functions
- AVX2: "AVX2", // AVX functions
- FMA3: "FMA3", // Intel FMA 3
- FMA4: "FMA4", // Bulldozer FMA4 functions
- XOP: "XOP", // Bulldozer XOP functions
- F16C: "F16C", // Half-precision floating-point conversion
- BMI1: "BMI1", // Bit Manipulation Instruction Set 1
- BMI2: "BMI2", // Bit Manipulation Instruction Set 2
- TBM: "TBM", // AMD Trailing Bit Manipulation
- LZCNT: "LZCNT", // LZCNT instruction
- POPCNT: "POPCNT", // POPCNT instruction
- AESNI: "AESNI", // Advanced Encryption Standard New Instructions
- CLMUL: "CLMUL", // Carry-less Multiplication
- HTT: "HTT", // Hyperthreading (enabled)
- HLE: "HLE", // Hardware Lock Elision
- RTM: "RTM", // Restricted Transactional Memory
- RDRAND: "RDRAND", // RDRAND instruction is available
- RDSEED: "RDSEED", // RDSEED instruction is available
- ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
- SHA: "SHA", // Intel SHA Extensions
- AVX512F: "AVX512F", // AVX-512 Foundation
- AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
- AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
- AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
- AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
- AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
- AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
- AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
- AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
- MPX: "MPX", // Intel MPX (Memory Protection Extensions)
- ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
- RDTSCP: "RDTSCP", // RDTSCP Instruction
- CX16: "CX16", // CMPXCHG16B Instruction
- SGX: "SGX", // Software Guard Extensions
-
- // Performance indicators
- SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
- SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
- ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
-
-}
-
-// CPUInfo contains information about the detected system CPU.
-type CPUInfo struct {
- BrandName string // Brand name reported by the CPU
- VendorID Vendor // Comparable CPU vendor ID
- Features Flags // Features of the CPU
- PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
- ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
- LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
- Family int // CPU family number
- Model int // CPU model number
- CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
- Cache struct {
- L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
- L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
- L2 int // L2 Cache (per core or shared). Will be -1 if undetected
- L3 int // L3 Instruction Cache (per core or shared). Will be -1 if undetected
- }
- SGX SGXSupport
- maxFunc uint32
- maxExFunc uint32
-}
-
-var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
-var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
-var xgetbv func(index uint32) (eax, edx uint32)
-var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
-
-// CPU contains information about the CPU as detected on startup,
-// or when Detect last was called.
-//
-// Use this as the primary entry point to you data,
-// this way queries are
-var CPU CPUInfo
-
-func init() {
- initCPU()
- Detect()
-}
-
-// Detect will re-detect current CPU info.
-// This will replace the content of the exported CPU variable.
-//
-// Unless you expect the CPU to change while you are running your program
-// you should not need to call this function.
-// If you call this, you must ensure that no other goroutine is accessing the
-// exported CPU variable.
-func Detect() {
- CPU.maxFunc = maxFunctionID()
- CPU.maxExFunc = maxExtendedFunction()
- CPU.BrandName = brandName()
- CPU.CacheLine = cacheLine()
- CPU.Family, CPU.Model = familyModel()
- CPU.Features = support()
- CPU.SGX = sgx(CPU.Features&SGX != 0)
- CPU.ThreadsPerCore = threadsPerCore()
- CPU.LogicalCores = logicalCores()
- CPU.PhysicalCores = physicalCores()
- CPU.VendorID = vendorID()
- CPU.cacheSize()
-}
-
-// Generated here: http://play.golang.org/p/BxFH2Gdc0G
-
-// Cmov indicates support of CMOV instructions
-func (c CPUInfo) Cmov() bool {
- return c.Features&CMOV != 0
-}
-
-// Amd3dnow indicates support of AMD 3DNOW! instructions
-func (c CPUInfo) Amd3dnow() bool {
- return c.Features&AMD3DNOW != 0
-}
-
-// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
-func (c CPUInfo) Amd3dnowExt() bool {
- return c.Features&AMD3DNOWEXT != 0
-}
-
-// MMX indicates support of MMX instructions
-func (c CPUInfo) MMX() bool {
- return c.Features&MMX != 0
-}
-
-// MMXExt indicates support of MMXEXT instructions
-// (SSE integer functions or AMD MMX ext)
-func (c CPUInfo) MMXExt() bool {
- return c.Features&MMXEXT != 0
-}
-
-// SSE indicates support of SSE instructions
-func (c CPUInfo) SSE() bool {
- return c.Features&SSE != 0
-}
-
-// SSE2 indicates support of SSE 2 instructions
-func (c CPUInfo) SSE2() bool {
- return c.Features&SSE2 != 0
-}
-
-// SSE3 indicates support of SSE 3 instructions
-func (c CPUInfo) SSE3() bool {
- return c.Features&SSE3 != 0
-}
-
-// SSSE3 indicates support of SSSE 3 instructions
-func (c CPUInfo) SSSE3() bool {
- return c.Features&SSSE3 != 0
-}
-
-// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
-func (c CPUInfo) SSE4() bool {
- return c.Features&SSE4 != 0
-}
-
-// SSE42 indicates support of SSE4.2 instructions
-func (c CPUInfo) SSE42() bool {
- return c.Features&SSE42 != 0
-}
-
-// AVX indicates support of AVX instructions
-// and operating system support of AVX instructions
-func (c CPUInfo) AVX() bool {
- return c.Features&AVX != 0
-}
-
-// AVX2 indicates support of AVX2 instructions
-func (c CPUInfo) AVX2() bool {
- return c.Features&AVX2 != 0
-}
-
-// FMA3 indicates support of FMA3 instructions
-func (c CPUInfo) FMA3() bool {
- return c.Features&FMA3 != 0
-}
-
-// FMA4 indicates support of FMA4 instructions
-func (c CPUInfo) FMA4() bool {
- return c.Features&FMA4 != 0
-}
-
-// XOP indicates support of XOP instructions
-func (c CPUInfo) XOP() bool {
- return c.Features&XOP != 0
-}
-
-// F16C indicates support of F16C instructions
-func (c CPUInfo) F16C() bool {
- return c.Features&F16C != 0
-}
-
-// BMI1 indicates support of BMI1 instructions
-func (c CPUInfo) BMI1() bool {
- return c.Features&BMI1 != 0
-}
-
-// BMI2 indicates support of BMI2 instructions
-func (c CPUInfo) BMI2() bool {
- return c.Features&BMI2 != 0
-}
-
-// TBM indicates support of TBM instructions
-// (AMD Trailing Bit Manipulation)
-func (c CPUInfo) TBM() bool {
- return c.Features&TBM != 0
-}
-
-// Lzcnt indicates support of LZCNT instruction
-func (c CPUInfo) Lzcnt() bool {
- return c.Features&LZCNT != 0
-}
-
-// Popcnt indicates support of POPCNT instruction
-func (c CPUInfo) Popcnt() bool {
- return c.Features&POPCNT != 0
-}
-
-// HTT indicates the processor has Hyperthreading enabled
-func (c CPUInfo) HTT() bool {
- return c.Features&HTT != 0
-}
-
-// SSE2Slow indicates that SSE2 may be slow on this processor
-func (c CPUInfo) SSE2Slow() bool {
- return c.Features&SSE2SLOW != 0
-}
-
-// SSE3Slow indicates that SSE3 may be slow on this processor
-func (c CPUInfo) SSE3Slow() bool {
- return c.Features&SSE3SLOW != 0
-}
-
-// AesNi indicates support of AES-NI instructions
-// (Advanced Encryption Standard New Instructions)
-func (c CPUInfo) AesNi() bool {
- return c.Features&AESNI != 0
-}
-
-// Clmul indicates support of CLMUL instructions
-// (Carry-less Multiplication)
-func (c CPUInfo) Clmul() bool {
- return c.Features&CLMUL != 0
-}
-
-// NX indicates support of NX (No-Execute) bit
-func (c CPUInfo) NX() bool {
- return c.Features&NX != 0
-}
-
-// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
-func (c CPUInfo) SSE4A() bool {
- return c.Features&SSE4A != 0
-}
-
-// HLE indicates support of Hardware Lock Elision
-func (c CPUInfo) HLE() bool {
- return c.Features&HLE != 0
-}
-
-// RTM indicates support of Restricted Transactional Memory
-func (c CPUInfo) RTM() bool {
- return c.Features&RTM != 0
-}
-
-// Rdrand indicates support of RDRAND instruction is available
-func (c CPUInfo) Rdrand() bool {
- return c.Features&RDRAND != 0
-}
-
-// Rdseed indicates support of RDSEED instruction is available
-func (c CPUInfo) Rdseed() bool {
- return c.Features&RDSEED != 0
-}
-
-// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
-func (c CPUInfo) ADX() bool {
- return c.Features&ADX != 0
-}
-
-// SHA indicates support of Intel SHA Extensions
-func (c CPUInfo) SHA() bool {
- return c.Features&SHA != 0
-}
-
-// AVX512F indicates support of AVX-512 Foundation
-func (c CPUInfo) AVX512F() bool {
- return c.Features&AVX512F != 0
-}
-
-// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
-func (c CPUInfo) AVX512DQ() bool {
- return c.Features&AVX512DQ != 0
-}
-
-// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
-func (c CPUInfo) AVX512IFMA() bool {
- return c.Features&AVX512IFMA != 0
-}
-
-// AVX512PF indicates support of AVX-512 Prefetch Instructions
-func (c CPUInfo) AVX512PF() bool {
- return c.Features&AVX512PF != 0
-}
-
-// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
-func (c CPUInfo) AVX512ER() bool {
- return c.Features&AVX512ER != 0
-}
-
-// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
-func (c CPUInfo) AVX512CD() bool {
- return c.Features&AVX512CD != 0
-}
-
-// AVX512BW indicates support of AVX-512 Byte and Word Instructions
-func (c CPUInfo) AVX512BW() bool {
- return c.Features&AVX512BW != 0
-}
-
-// AVX512VL indicates support of AVX-512 Vector Length Extensions
-func (c CPUInfo) AVX512VL() bool {
- return c.Features&AVX512VL != 0
-}
-
-// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
-func (c CPUInfo) AVX512VBMI() bool {
- return c.Features&AVX512VBMI != 0
-}
-
-// MPX indicates support of Intel MPX (Memory Protection Extensions)
-func (c CPUInfo) MPX() bool {
- return c.Features&MPX != 0
-}
-
-// ERMS indicates support of Enhanced REP MOVSB/STOSB
-func (c CPUInfo) ERMS() bool {
- return c.Features&ERMS != 0
-}
-
-func (c CPUInfo) RDTSCP() bool {
- return c.Features&RDTSCP != 0
-}
-
-func (c CPUInfo) CX16() bool {
- return c.Features&CX16 != 0
-}
-
-// Atom indicates an Atom processor
-func (c CPUInfo) Atom() bool {
- return c.Features&ATOM != 0
-}
-
-// Intel returns true if vendor is recognized as Intel
-func (c CPUInfo) Intel() bool {
- return c.VendorID == Intel
-}
-
-// AMD returns true if vendor is recognized as AMD
-func (c CPUInfo) AMD() bool {
- return c.VendorID == AMD
-}
-
-// Transmeta returns true if vendor is recognized as Transmeta
-func (c CPUInfo) Transmeta() bool {
- return c.VendorID == Transmeta
-}
-
-// NSC returns true if vendor is recognized as National Semiconductor
-func (c CPUInfo) NSC() bool {
- return c.VendorID == NSC
-}
-
-// VIA returns true if vendor is recognized as VIA
-func (c CPUInfo) VIA() bool {
- return c.VendorID == VIA
-}
-
-// RTCounter returns the 64-bit time-stamp counter
-// Uses the RDTSCP instruction. The value 0 is returned
-// if the CPU does not support the instruction.
-func (c CPUInfo) RTCounter() uint64 {
- if !c.RDTSCP() {
- return 0
- }
- a, _, _, d := rdtscpAsm()
- return uint64(a) | (uint64(d) << 32)
-}
-
-// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
-// This variable is OS dependent, but on Linux contains information
-// about the current cpu/core the code is running on.
-// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
-func (c CPUInfo) Ia32TscAux() uint32 {
- if !c.RDTSCP() {
- return 0
- }
- _, _, ecx, _ := rdtscpAsm()
- return ecx
-}
-
-// LogicalCPU will return the Logical CPU the code is currently executing on.
-// This is likely to change when the OS re-schedules the running thread
-// to another CPU.
-// If the current core cannot be detected, -1 will be returned.
-func (c CPUInfo) LogicalCPU() int {
- if c.maxFunc < 1 {
- return -1
- }
- _, ebx, _, _ := cpuid(1)
- return int(ebx >> 24)
-}
-
-// VM Will return true if the cpu id indicates we are in
-// a virtual machine. This is only a hint, and will very likely
-// have many false negatives.
-func (c CPUInfo) VM() bool {
- switch c.VendorID {
- case MSVM, KVM, VMware, XenHVM:
- return true
- }
- return false
-}
-
-// Flags contains detected cpu features and caracteristics
-type Flags uint64
-
-// String returns a string representation of the detected
-// CPU features.
-func (f Flags) String() string {
- return strings.Join(f.Strings(), ",")
-}
-
-// Strings returns and array of the detected features.
-func (f Flags) Strings() []string {
- s := support()
- r := make([]string, 0, 20)
- for i := uint(0); i < 64; i++ {
- key := Flags(1 << i)
- val := flagNames[key]
- if s&key != 0 {
- r = append(r, val)
- }
- }
- return r
-}
-
-func maxExtendedFunction() uint32 {
- eax, _, _, _ := cpuid(0x80000000)
- return eax
-}
-
-func maxFunctionID() uint32 {
- a, _, _, _ := cpuid(0)
- return a
-}
-
-func brandName() string {
- if maxExtendedFunction() >= 0x80000004 {
- v := make([]uint32, 0, 48)
- for i := uint32(0); i < 3; i++ {
- a, b, c, d := cpuid(0x80000002 + i)
- v = append(v, a, b, c, d)
- }
- return strings.Trim(string(valAsString(v...)), " ")
- }
- return "unknown"
-}
-
-func threadsPerCore() int {
- mfi := maxFunctionID()
- if mfi < 0x4 || vendorID() != Intel {
- return 1
- }
-
- if mfi < 0xb {
- _, b, _, d := cpuid(1)
- if (d & (1 << 28)) != 0 {
- // v will contain logical core count
- v := (b >> 16) & 255
- if v > 1 {
- a4, _, _, _ := cpuid(4)
- // physical cores
- v2 := (a4 >> 26) + 1
- if v2 > 0 {
- return int(v) / int(v2)
- }
- }
- }
- return 1
- }
- _, b, _, _ := cpuidex(0xb, 0)
- if b&0xffff == 0 {
- return 1
- }
- return int(b & 0xffff)
-}
-
-func logicalCores() int {
- mfi := maxFunctionID()
- switch vendorID() {
- case Intel:
- // Use this on old Intel processors
- if mfi < 0xb {
- if mfi < 1 {
- return 0
- }
- // CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
- // that can be assigned to logical processors in a physical package.
- // The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
- _, ebx, _, _ := cpuid(1)
- logical := (ebx >> 16) & 0xff
- return int(logical)
- }
- _, b, _, _ := cpuidex(0xb, 1)
- return int(b & 0xffff)
- case AMD:
- _, b, _, _ := cpuid(1)
- return int((b >> 16) & 0xff)
- default:
- return 0
- }
-}
-
-func familyModel() (int, int) {
- if maxFunctionID() < 0x1 {
- return 0, 0
- }
- eax, _, _, _ := cpuid(1)
- family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
- model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
- return int(family), int(model)
-}
-
-func physicalCores() int {
- switch vendorID() {
- case Intel:
- return logicalCores() / threadsPerCore()
- case AMD:
- if maxExtendedFunction() >= 0x80000008 {
- _, _, c, _ := cpuid(0x80000008)
- return int(c&0xff) + 1
- }
- }
- return 0
-}
-
-// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
-var vendorMapping = map[string]Vendor{
- "AMDisbetter!": AMD,
- "AuthenticAMD": AMD,
- "CentaurHauls": VIA,
- "GenuineIntel": Intel,
- "TransmetaCPU": Transmeta,
- "GenuineTMx86": Transmeta,
- "Geode by NSC": NSC,
- "VIA VIA VIA ": VIA,
- "KVMKVMKVMKVM": KVM,
- "Microsoft Hv": MSVM,
- "VMwareVMware": VMware,
- "XenVMMXenVMM": XenHVM,
-}
-
-func vendorID() Vendor {
- _, b, c, d := cpuid(0)
- v := valAsString(b, d, c)
- vend, ok := vendorMapping[string(v)]
- if !ok {
- return Other
- }
- return vend
-}
-
-func cacheLine() int {
- if maxFunctionID() < 0x1 {
- return 0
- }
-
- _, ebx, _, _ := cpuid(1)
- cache := (ebx & 0xff00) >> 5 // cflush size
- if cache == 0 && maxExtendedFunction() >= 0x80000006 {
- _, _, ecx, _ := cpuid(0x80000006)
- cache = ecx & 0xff // cacheline size
- }
- // TODO: Read from Cache and TLB Information
- return int(cache)
-}
-
-func (c *CPUInfo) cacheSize() {
- c.Cache.L1D = -1
- c.Cache.L1I = -1
- c.Cache.L2 = -1
- c.Cache.L3 = -1
- vendor := vendorID()
- switch vendor {
- case Intel:
- if maxFunctionID() < 4 {
- return
- }
- for i := uint32(0); ; i++ {
- eax, ebx, ecx, _ := cpuidex(4, i)
- cacheType := eax & 15
- if cacheType == 0 {
- break
- }
- cacheLevel := (eax >> 5) & 7
- coherency := int(ebx&0xfff) + 1
- partitions := int((ebx>>12)&0x3ff) + 1
- associativity := int((ebx>>22)&0x3ff) + 1
- sets := int(ecx) + 1
- size := associativity * partitions * coherency * sets
- switch cacheLevel {
- case 1:
- if cacheType == 1 {
- // 1 = Data Cache
- c.Cache.L1D = size
- } else if cacheType == 2 {
- // 2 = Instruction Cache
- c.Cache.L1I = size
- } else {
- if c.Cache.L1D < 0 {
- c.Cache.L1I = size
- }
- if c.Cache.L1I < 0 {
- c.Cache.L1I = size
- }
- }
- case 2:
- c.Cache.L2 = size
- case 3:
- c.Cache.L3 = size
- }
- }
- case AMD:
- // Untested.
- if maxExtendedFunction() < 0x80000005 {
- return
- }
- _, _, ecx, edx := cpuid(0x80000005)
- c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
- c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
-
- if maxExtendedFunction() < 0x80000006 {
- return
- }
- _, _, ecx, _ = cpuid(0x80000006)
- c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
- }
-
- return
-}
-
-type SGXSupport struct {
- Available bool
- SGX1Supported bool
- SGX2Supported bool
- MaxEnclaveSizeNot64 int64
- MaxEnclaveSize64 int64
-}
-
-func sgx(available bool) (rval SGXSupport) {
- rval.Available = available
-
- if !available {
- return
- }
-
- a, _, _, d := cpuidex(0x12, 0)
- rval.SGX1Supported = a&0x01 != 0
- rval.SGX2Supported = a&0x02 != 0
- rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
- rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
-
- return
-}
-
-func support() Flags {
- mfi := maxFunctionID()
- vend := vendorID()
- if mfi < 0x1 {
- return 0
- }
- rval := uint64(0)
- _, _, c, d := cpuid(1)
- if (d & (1 << 15)) != 0 {
- rval |= CMOV
- }
- if (d & (1 << 23)) != 0 {
- rval |= MMX
- }
- if (d & (1 << 25)) != 0 {
- rval |= MMXEXT
- }
- if (d & (1 << 25)) != 0 {
- rval |= SSE
- }
- if (d & (1 << 26)) != 0 {
- rval |= SSE2
- }
- if (c & 1) != 0 {
- rval |= SSE3
- }
- if (c & 0x00000200) != 0 {
- rval |= SSSE3
- }
- if (c & 0x00080000) != 0 {
- rval |= SSE4
- }
- if (c & 0x00100000) != 0 {
- rval |= SSE42
- }
- if (c & (1 << 25)) != 0 {
- rval |= AESNI
- }
- if (c & (1 << 1)) != 0 {
- rval |= CLMUL
- }
- if c&(1<<23) != 0 {
- rval |= POPCNT
- }
- if c&(1<<30) != 0 {
- rval |= RDRAND
- }
- if c&(1<<29) != 0 {
- rval |= F16C
- }
- if c&(1<<13) != 0 {
- rval |= CX16
- }
- if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
- if threadsPerCore() > 1 {
- rval |= HTT
- }
- }
-
- // Check XGETBV, OXSAVE and AVX bits
- if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
- // Check for OS support
- eax, _ := xgetbv(0)
- if (eax & 0x6) == 0x6 {
- rval |= AVX
- if (c & 0x00001000) != 0 {
- rval |= FMA3
- }
- }
- }
-
- // Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
- if mfi >= 7 {
- _, ebx, ecx, _ := cpuidex(7, 0)
- if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
- rval |= AVX2
- }
- if (ebx & 0x00000008) != 0 {
- rval |= BMI1
- if (ebx & 0x00000100) != 0 {
- rval |= BMI2
- }
- }
- if ebx&(1<<2) != 0 {
- rval |= SGX
- }
- if ebx&(1<<4) != 0 {
- rval |= HLE
- }
- if ebx&(1<<9) != 0 {
- rval |= ERMS
- }
- if ebx&(1<<11) != 0 {
- rval |= RTM
- }
- if ebx&(1<<14) != 0 {
- rval |= MPX
- }
- if ebx&(1<<18) != 0 {
- rval |= RDSEED
- }
- if ebx&(1<<19) != 0 {
- rval |= ADX
- }
- if ebx&(1<<29) != 0 {
- rval |= SHA
- }
-
- // Only detect AVX-512 features if XGETBV is supported
- if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
- // Check for OS support
- eax, _ := xgetbv(0)
-
- // Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
- // ZMM16-ZMM31 state are enabled by OS)
- /// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
- if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
- if ebx&(1<<16) != 0 {
- rval |= AVX512F
- }
- if ebx&(1<<17) != 0 {
- rval |= AVX512DQ
- }
- if ebx&(1<<21) != 0 {
- rval |= AVX512IFMA
- }
- if ebx&(1<<26) != 0 {
- rval |= AVX512PF
- }
- if ebx&(1<<27) != 0 {
- rval |= AVX512ER
- }
- if ebx&(1<<28) != 0 {
- rval |= AVX512CD
- }
- if ebx&(1<<30) != 0 {
- rval |= AVX512BW
- }
- if ebx&(1<<31) != 0 {
- rval |= AVX512VL
- }
- // ecx
- if ecx&(1<<1) != 0 {
- rval |= AVX512VBMI
- }
- }
- }
- }
-
- if maxExtendedFunction() >= 0x80000001 {
- _, _, c, d := cpuid(0x80000001)
- if (c & (1 << 5)) != 0 {
- rval |= LZCNT
- rval |= POPCNT
- }
- if (d & (1 << 31)) != 0 {
- rval |= AMD3DNOW
- }
- if (d & (1 << 30)) != 0 {
- rval |= AMD3DNOWEXT
- }
- if (d & (1 << 23)) != 0 {
- rval |= MMX
- }
- if (d & (1 << 22)) != 0 {
- rval |= MMXEXT
- }
- if (c & (1 << 6)) != 0 {
- rval |= SSE4A
- }
- if d&(1<<20) != 0 {
- rval |= NX
- }
- if d&(1<<27) != 0 {
- rval |= RDTSCP
- }
-
- /* Allow for selectively disabling SSE2 functions on AMD processors
- with SSE2 support but not SSE4a. This includes Athlon64, some
- Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
- than SSE2 often enough to utilize this special-case flag.
- AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
- so that SSE2 is used unless explicitly disabled by checking
- AV_CPU_FLAG_SSE2SLOW. */
- if vendorID() != Intel &&
- rval&SSE2 != 0 && (c&0x00000040) == 0 {
- rval |= SSE2SLOW
- }
-
- /* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
- * used unless the OS has AVX support. */
- if (rval & AVX) != 0 {
- if (c & 0x00000800) != 0 {
- rval |= XOP
- }
- if (c & 0x00010000) != 0 {
- rval |= FMA4
- }
- }
-
- if vendorID() == Intel {
- family, model := familyModel()
- if family == 6 && (model == 9 || model == 13 || model == 14) {
- /* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
- * 6/14 (core1 "yonah") theoretically support sse2, but it's
- * usually slower than mmx. */
- if (rval & SSE2) != 0 {
- rval |= SSE2SLOW
- }
- if (rval & SSE3) != 0 {
- rval |= SSE3SLOW
- }
- }
- /* The Atom processor has SSSE3 support, which is useful in many cases,
- * but sometimes the SSSE3 version is slower than the SSE2 equivalent
- * on the Atom, but is generally faster on other processors supporting
- * SSSE3. This flag allows for selectively disabling certain SSSE3
- * functions on the Atom. */
- if family == 6 && model == 28 {
- rval |= ATOM
- }
- }
- }
- return Flags(rval)
-}
-
-func valAsString(values ...uint32) []byte {
- r := make([]byte, 4*len(values))
- for i, v := range values {
- dst := r[i*4:]
- dst[0] = byte(v & 0xff)
- dst[1] = byte((v >> 8) & 0xff)
- dst[2] = byte((v >> 16) & 0xff)
- dst[3] = byte((v >> 24) & 0xff)
- switch {
- case dst[0] == 0:
- return r[:i*4]
- case dst[1] == 0:
- return r[:i*4+1]
- case dst[2] == 0:
- return r[:i*4+2]
- case dst[3] == 0:
- return r[:i*4+3]
- }
- }
- return r
-}
+++ /dev/null
-// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
-
-// +build 386,!gccgo
-
-// func asmCpuid(op uint32) (eax, ebx, ecx, edx uint32)
-TEXT ·asmCpuid(SB), 7, $0
- XORL CX, CX
- MOVL op+0(FP), AX
- CPUID
- MOVL AX, eax+4(FP)
- MOVL BX, ebx+8(FP)
- MOVL CX, ecx+12(FP)
- MOVL DX, edx+16(FP)
- RET
-
-// func asmCpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
-TEXT ·asmCpuidex(SB), 7, $0
- MOVL op+0(FP), AX
- MOVL op2+4(FP), CX
- CPUID
- MOVL AX, eax+8(FP)
- MOVL BX, ebx+12(FP)
- MOVL CX, ecx+16(FP)
- MOVL DX, edx+20(FP)
- RET
-
-// func xgetbv(index uint32) (eax, edx uint32)
-TEXT ·asmXgetbv(SB), 7, $0
- MOVL index+0(FP), CX
- BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
- MOVL AX, eax+4(FP)
- MOVL DX, edx+8(FP)
- RET
-
-// func asmRdtscpAsm() (eax, ebx, ecx, edx uint32)
-TEXT ·asmRdtscpAsm(SB), 7, $0
- BYTE $0x0F; BYTE $0x01; BYTE $0xF9 // RDTSCP
- MOVL AX, eax+0(FP)
- MOVL BX, ebx+4(FP)
- MOVL CX, ecx+8(FP)
- MOVL DX, edx+12(FP)
- RET
+++ /dev/null
-// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
-
-//+build amd64,!gccgo
-
-// func asmCpuid(op uint32) (eax, ebx, ecx, edx uint32)
-TEXT ·asmCpuid(SB), 7, $0
- XORQ CX, CX
- MOVL op+0(FP), AX
- CPUID
- MOVL AX, eax+8(FP)
- MOVL BX, ebx+12(FP)
- MOVL CX, ecx+16(FP)
- MOVL DX, edx+20(FP)
- RET
-
-// func asmCpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
-TEXT ·asmCpuidex(SB), 7, $0
- MOVL op+0(FP), AX
- MOVL op2+4(FP), CX
- CPUID
- MOVL AX, eax+8(FP)
- MOVL BX, ebx+12(FP)
- MOVL CX, ecx+16(FP)
- MOVL DX, edx+20(FP)
- RET
-
-// func asmXgetbv(index uint32) (eax, edx uint32)
-TEXT ·asmXgetbv(SB), 7, $0
- MOVL index+0(FP), CX
- BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
- MOVL AX, eax+8(FP)
- MOVL DX, edx+12(FP)
- RET
-
-// func asmRdtscpAsm() (eax, ebx, ecx, edx uint32)
-TEXT ·asmRdtscpAsm(SB), 7, $0
- BYTE $0x0F; BYTE $0x01; BYTE $0xF9 // RDTSCP
- MOVL AX, eax+0(FP)
- MOVL BX, ebx+4(FP)
- MOVL CX, ecx+8(FP)
- MOVL DX, edx+12(FP)
- RET
+++ /dev/null
-// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
-
-// +build 386,!gccgo amd64,!gccgo
-
-package cpuid
-
-func asmCpuid(op uint32) (eax, ebx, ecx, edx uint32)
-func asmCpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
-func asmXgetbv(index uint32) (eax, edx uint32)
-func asmRdtscpAsm() (eax, ebx, ecx, edx uint32)
-
-func initCPU() {
- cpuid = asmCpuid
- cpuidex = asmCpuidex
- xgetbv = asmXgetbv
- rdtscpAsm = asmRdtscpAsm
-}
+++ /dev/null
-// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
-
-// +build !amd64,!386 gccgo
-
-package cpuid
-
-func initCPU() {
- cpuid = func(op uint32) (eax, ebx, ecx, edx uint32) {
- return 0, 0, 0, 0
- }
-
- cpuidex = func(op, op2 uint32) (eax, ebx, ecx, edx uint32) {
- return 0, 0, 0, 0
- }
-
- xgetbv = func(index uint32) (eax, edx uint32) {
- return 0, 0
- }
-
- rdtscpAsm = func() (eax, ebx, ecx, edx uint32) {
- return 0, 0, 0, 0
- }
-}
+++ /dev/null
-package cpuid
-
-//go:generate go run private-gen.go
+++ /dev/null
-# Compiled Object files, Static and Dynamic libs (Shared Objects)
-*.o
-*.a
-*.so
-
-# Folders
-_obj
-_test
-
-# Architecture specific extensions/prefixes
-*.[568vq]
-[568vq].out
-
-*.cgo1.go
-*.cgo2.c
-_cgo_defun.c
-_cgo_gotypes.go
-_cgo_export.*
-
-_testmain.go
-
-*.exe
-*.test
-*.prof
+++ /dev/null
-language: go\r
-\r
-go:\r
- - 1.3\r
- - 1.4\r
- - 1.5\r
- - 1.6\r
- - 1.7\r
- - tip\r
-\r
-script: \r
- - go test -v .\r
- - go test -v -race .\r
+++ /dev/null
-Copyright (c) 2012 The Go Authors. All rights reserved.
-Copyright (c) 2015 Klaus Post
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
- * Redistributions of source code must retain the above copyright
-notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following disclaimer
-in the documentation and/or other materials provided with the
-distribution.
- * Neither the name of Google Inc. nor the names of its
-contributors may be used to endorse or promote products derived from
-this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+++ /dev/null
-# crc32
-CRC32 hash with x64 optimizations
-
-This package is a drop-in replacement for the standard library `hash/crc32` package, that features SSE 4.2 optimizations on x64 platforms, for a 10x speedup.
-
-[![Build Status](https://travis-ci.org/klauspost/crc32.svg?branch=master)](https://travis-ci.org/klauspost/crc32)
-
-# usage
-
-Install using `go get github.com/klauspost/crc32`. This library is based on Go 1.5 code and requires Go 1.3 or newer.
-
-Replace `import "hash/crc32"` with `import "github.com/klauspost/crc32"` and you are good to go.
-
-# changes
-* Oct 20, 2016: Changes have been merged to upstream Go. Package updated to match.
-* Dec 4, 2015: Uses the "slice-by-8" trick more extensively, which gives a 1.5 to 2.5x speedup if assembler is unavailable.
-
-
-# performance
-
-For *Go 1.7* performance is equivalent to the standard library. So if you use this package for Go 1.7 you can switch back.
-
-
-For IEEE tables (the most common), there is approximately a factor 10 speedup with "CLMUL" (Carryless multiplication) instruction:
-```
-benchmark old ns/op new ns/op delta
-BenchmarkCrc32KB 99955 10258 -89.74%
-
-benchmark old MB/s new MB/s speedup
-BenchmarkCrc32KB 327.83 3194.20 9.74x
-```
-
-For other tables and "CLMUL" capable machines the performance is the same as the standard library.
-
-Here are some detailed benchmarks, comparing to go 1.5 standard library with and without assembler enabled.
-
-```
-Std: Standard Go 1.5 library
-Crc: Indicates IEEE type CRC.
-40B: Size of each slice encoded.
-NoAsm: Assembler was disabled (ie. not an AMD64 or SSE 4.2+ capable machine).
-Castagnoli: Castagnoli CRC type.
-
-BenchmarkStdCrc40B-4 10000000 158 ns/op 252.88 MB/s
-BenchmarkCrc40BNoAsm-4 20000000 105 ns/op 377.38 MB/s (slice8)
-BenchmarkCrc40B-4 20000000 105 ns/op 378.77 MB/s (slice8)
-
-BenchmarkStdCrc1KB-4 500000 3604 ns/op 284.10 MB/s
-BenchmarkCrc1KBNoAsm-4 1000000 1463 ns/op 699.79 MB/s (slice8)
-BenchmarkCrc1KB-4 3000000 396 ns/op 2583.69 MB/s (asm)
-
-BenchmarkStdCrc8KB-4 200000 11417 ns/op 717.48 MB/s (slice8)
-BenchmarkCrc8KBNoAsm-4 200000 11317 ns/op 723.85 MB/s (slice8)
-BenchmarkCrc8KB-4 500000 2919 ns/op 2805.73 MB/s (asm)
-
-BenchmarkStdCrc32KB-4 30000 45749 ns/op 716.24 MB/s (slice8)
-BenchmarkCrc32KBNoAsm-4 30000 45109 ns/op 726.42 MB/s (slice8)
-BenchmarkCrc32KB-4 100000 11497 ns/op 2850.09 MB/s (asm)
-
-BenchmarkStdNoAsmCastagnol40B-4 10000000 161 ns/op 246.94 MB/s
-BenchmarkStdCastagnoli40B-4 50000000 28.4 ns/op 1410.69 MB/s (asm)
-BenchmarkCastagnoli40BNoAsm-4 20000000 100 ns/op 398.01 MB/s (slice8)
-BenchmarkCastagnoli40B-4 50000000 28.2 ns/op 1419.54 MB/s (asm)
-
-BenchmarkStdNoAsmCastagnoli1KB-4 500000 3622 ns/op 282.67 MB/s
-BenchmarkStdCastagnoli1KB-4 10000000 144 ns/op 7099.78 MB/s (asm)
-BenchmarkCastagnoli1KBNoAsm-4 1000000 1475 ns/op 694.14 MB/s (slice8)
-BenchmarkCastagnoli1KB-4 10000000 146 ns/op 6993.35 MB/s (asm)
-
-BenchmarkStdNoAsmCastagnoli8KB-4 50000 28781 ns/op 284.63 MB/s
-BenchmarkStdCastagnoli8KB-4 1000000 1029 ns/op 7957.89 MB/s (asm)
-BenchmarkCastagnoli8KBNoAsm-4 200000 11410 ns/op 717.94 MB/s (slice8)
-BenchmarkCastagnoli8KB-4 1000000 1000 ns/op 8188.71 MB/s (asm)
-
-BenchmarkStdNoAsmCastagnoli32KB-4 10000 115426 ns/op 283.89 MB/s
-BenchmarkStdCastagnoli32KB-4 300000 4065 ns/op 8059.13 MB/s (asm)
-BenchmarkCastagnoli32KBNoAsm-4 30000 45171 ns/op 725.41 MB/s (slice8)
-BenchmarkCastagnoli32KB-4 500000 4077 ns/op 8035.89 MB/s (asm)
-```
-
-The IEEE assembler optimizations has been submitted and will be part of the Go 1.6 standard library.
-
-However, the improved use of slice-by-8 has not, but will probably be submitted for Go 1.7.
-
-# license
-
-Standard Go license. Changes are Copyright (c) 2015 Klaus Post under same conditions.
+++ /dev/null
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
-// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
-// information.
-//
-// Polynomials are represented in LSB-first form also known as reversed representation.
-//
-// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
-// for information.
-package crc32
-
-import (
- "hash"
- "sync"
-)
-
-// The size of a CRC-32 checksum in bytes.
-const Size = 4
-
-// Predefined polynomials.
-const (
- // IEEE is by far and away the most common CRC-32 polynomial.
- // Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
- IEEE = 0xedb88320
-
- // Castagnoli's polynomial, used in iSCSI.
- // Has better error detection characteristics than IEEE.
- // http://dx.doi.org/10.1109/26.231911
- Castagnoli = 0x82f63b78
-
- // Koopman's polynomial.
- // Also has better error detection characteristics than IEEE.
- // http://dx.doi.org/10.1109/DSN.2002.1028931
- Koopman = 0xeb31d82e
-)
-
-// Table is a 256-word table representing the polynomial for efficient processing.
-type Table [256]uint32
-
-// This file makes use of functions implemented in architecture-specific files.
-// The interface that they implement is as follows:
-//
-// // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
-// // algorithm is available.
-// archAvailableIEEE() bool
-//
-// // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
-// // It can only be called if archAvailableIEEE() returns true.
-// archInitIEEE()
-//
-// // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
-// // archInitIEEE() was previously called.
-// archUpdateIEEE(crc uint32, p []byte) uint32
-//
-// // archAvailableCastagnoli reports whether an architecture-specific
-// // CRC32-C algorithm is available.
-// archAvailableCastagnoli() bool
-//
-// // archInitCastagnoli initializes the architecture-specific CRC32-C
-// // algorithm. It can only be called if archAvailableCastagnoli() returns
-// // true.
-// archInitCastagnoli()
-//
-// // archUpdateCastagnoli updates the given CRC32-C. It can only be called
-// // if archInitCastagnoli() was previously called.
-// archUpdateCastagnoli(crc uint32, p []byte) uint32
-
-// castagnoliTable points to a lazily initialized Table for the Castagnoli
-// polynomial. MakeTable will always return this value when asked to make a
-// Castagnoli table so we can compare against it to find when the caller is
-// using this polynomial.
-var castagnoliTable *Table
-var castagnoliTable8 *slicing8Table
-var castagnoliArchImpl bool
-var updateCastagnoli func(crc uint32, p []byte) uint32
-var castagnoliOnce sync.Once
-
-func castagnoliInit() {
- castagnoliTable = simpleMakeTable(Castagnoli)
- castagnoliArchImpl = archAvailableCastagnoli()
-
- if castagnoliArchImpl {
- archInitCastagnoli()
- updateCastagnoli = archUpdateCastagnoli
- } else {
- // Initialize the slicing-by-8 table.
- castagnoliTable8 = slicingMakeTable(Castagnoli)
- updateCastagnoli = func(crc uint32, p []byte) uint32 {
- return slicingUpdate(crc, castagnoliTable8, p)
- }
- }
-}
-
-// IEEETable is the table for the IEEE polynomial.
-var IEEETable = simpleMakeTable(IEEE)
-
-// ieeeTable8 is the slicing8Table for IEEE
-var ieeeTable8 *slicing8Table
-var ieeeArchImpl bool
-var updateIEEE func(crc uint32, p []byte) uint32
-var ieeeOnce sync.Once
-
-func ieeeInit() {
- ieeeArchImpl = archAvailableIEEE()
-
- if ieeeArchImpl {
- archInitIEEE()
- updateIEEE = archUpdateIEEE
- } else {
- // Initialize the slicing-by-8 table.
- ieeeTable8 = slicingMakeTable(IEEE)
- updateIEEE = func(crc uint32, p []byte) uint32 {
- return slicingUpdate(crc, ieeeTable8, p)
- }
- }
-}
-
-// MakeTable returns a Table constructed from the specified polynomial.
-// The contents of this Table must not be modified.
-func MakeTable(poly uint32) *Table {
- switch poly {
- case IEEE:
- ieeeOnce.Do(ieeeInit)
- return IEEETable
- case Castagnoli:
- castagnoliOnce.Do(castagnoliInit)
- return castagnoliTable
- }
- return simpleMakeTable(poly)
-}
-
-// digest represents the partial evaluation of a checksum.
-type digest struct {
- crc uint32
- tab *Table
-}
-
-// New creates a new hash.Hash32 computing the CRC-32 checksum
-// using the polynomial represented by the Table.
-// Its Sum method will lay the value out in big-endian byte order.
-func New(tab *Table) hash.Hash32 {
- if tab == IEEETable {
- ieeeOnce.Do(ieeeInit)
- }
- return &digest{0, tab}
-}
-
-// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum
-// using the IEEE polynomial.
-// Its Sum method will lay the value out in big-endian byte order.
-func NewIEEE() hash.Hash32 { return New(IEEETable) }
-
-func (d *digest) Size() int { return Size }
-
-func (d *digest) BlockSize() int { return 1 }
-
-func (d *digest) Reset() { d.crc = 0 }
-
-// Update returns the result of adding the bytes in p to the crc.
-func Update(crc uint32, tab *Table, p []byte) uint32 {
- switch tab {
- case castagnoliTable:
- return updateCastagnoli(crc, p)
- case IEEETable:
- // Unfortunately, because IEEETable is exported, IEEE may be used without a
- // call to MakeTable. We have to make sure it gets initialized in that case.
- ieeeOnce.Do(ieeeInit)
- return updateIEEE(crc, p)
- default:
- return simpleUpdate(crc, tab, p)
- }
-}
-
-func (d *digest) Write(p []byte) (n int, err error) {
- switch d.tab {
- case castagnoliTable:
- d.crc = updateCastagnoli(d.crc, p)
- case IEEETable:
- // We only create digest objects through New() which takes care of
- // initialization in this case.
- d.crc = updateIEEE(d.crc, p)
- default:
- d.crc = simpleUpdate(d.crc, d.tab, p)
- }
- return len(p), nil
-}
-
-func (d *digest) Sum32() uint32 { return d.crc }
-
-func (d *digest) Sum(in []byte) []byte {
- s := d.Sum32()
- return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
-}
-
-// Checksum returns the CRC-32 checksum of data
-// using the polynomial represented by the Table.
-func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
-
-// ChecksumIEEE returns the CRC-32 checksum of data
-// using the IEEE polynomial.
-func ChecksumIEEE(data []byte) uint32 {
- ieeeOnce.Do(ieeeInit)
- return updateIEEE(0, data)
-}
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine,!gccgo
-
-// AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a
-// description of the interface that each architecture-specific file
-// implements.
-
-package crc32
-
-import "unsafe"
-
-// This file contains the code to call the SSE 4.2 version of the Castagnoli
-// and IEEE CRC.
-
-// haveSSE41/haveSSE42/haveCLMUL are defined in crc_amd64.s and use
-// CPUID to test for SSE 4.1, 4.2 and CLMUL support.
-func haveSSE41() bool
-func haveSSE42() bool
-func haveCLMUL() bool
-
-// castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE4.2 CRC32
-// instruction.
-//go:noescape
-func castagnoliSSE42(crc uint32, p []byte) uint32
-
-// castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE4.2 CRC32
-// instruction.
-//go:noescape
-func castagnoliSSE42Triple(
- crcA, crcB, crcC uint32,
- a, b, c []byte,
- rounds uint32,
-) (retA uint32, retB uint32, retC uint32)
-
-// ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ
-// instruction as well as SSE 4.1.
-//go:noescape
-func ieeeCLMUL(crc uint32, p []byte) uint32
-
-var sse42 = haveSSE42()
-var useFastIEEE = haveCLMUL() && haveSSE41()
-
-const castagnoliK1 = 168
-const castagnoliK2 = 1344
-
-type sse42Table [4]Table
-
-var castagnoliSSE42TableK1 *sse42Table
-var castagnoliSSE42TableK2 *sse42Table
-
-func archAvailableCastagnoli() bool {
- return sse42
-}
-
-func archInitCastagnoli() {
- if !sse42 {
- panic("arch-specific Castagnoli not available")
- }
- castagnoliSSE42TableK1 = new(sse42Table)
- castagnoliSSE42TableK2 = new(sse42Table)
- // See description in updateCastagnoli.
- // t[0][i] = CRC(i000, O)
- // t[1][i] = CRC(0i00, O)
- // t[2][i] = CRC(00i0, O)
- // t[3][i] = CRC(000i, O)
- // where O is a sequence of K zeros.
- var tmp [castagnoliK2]byte
- for b := 0; b < 4; b++ {
- for i := 0; i < 256; i++ {
- val := uint32(i) << uint32(b*8)
- castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1])
- castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:])
- }
- }
-}
-
-// castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the
-// table given) with the given initial crc value. This corresponds to
-// CRC(crc, O) in the description in updateCastagnoli.
-func castagnoliShift(table *sse42Table, crc uint32) uint32 {
- return table[3][crc>>24] ^
- table[2][(crc>>16)&0xFF] ^
- table[1][(crc>>8)&0xFF] ^
- table[0][crc&0xFF]
-}
-
-func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
- if !sse42 {
- panic("not available")
- }
-
- // This method is inspired from the algorithm in Intel's white paper:
- // "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction"
- // The same strategy of splitting the buffer in three is used but the
- // combining calculation is different; the complete derivation is explained
- // below.
- //
- // -- The basic idea --
- //
- // The CRC32 instruction (available in SSE4.2) can process 8 bytes at a
- // time. In recent Intel architectures the instruction takes 3 cycles;
- // however the processor can pipeline up to three instructions if they
- // don't depend on each other.
- //
- // Roughly this means that we can process three buffers in about the same
- // time we can process one buffer.
- //
- // The idea is then to split the buffer in three, CRC the three pieces
- // separately and then combine the results.
- //
- // Combining the results requires precomputed tables, so we must choose a
- // fixed buffer length to optimize. The longer the length, the faster; but
- // only buffers longer than this length will use the optimization. We choose
- // two cutoffs and compute tables for both:
- // - one around 512: 168*3=504
- // - one around 4KB: 1344*3=4032
- //
- // -- The nitty gritty --
- //
- // Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with
- // initial non-inverted CRC I). This function has the following properties:
- // (a) CRC(I, AB) = CRC(CRC(I, A), B)
- // (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B)
- //
- // Say we want to compute CRC(I, ABC) where A, B, C are three sequences of
- // K bytes each, where K is a fixed constant. Let O be the sequence of K zero
- // bytes.
- //
- // CRC(I, ABC) = CRC(I, ABO xor C)
- // = CRC(I, ABO) xor CRC(0, C)
- // = CRC(CRC(I, AB), O) xor CRC(0, C)
- // = CRC(CRC(I, AO xor B), O) xor CRC(0, C)
- // = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C)
- // = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C)
- //
- // The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B),
- // and CRC(0, C) efficiently. We just need to find a way to quickly compute
- // CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these
- // values; since we can't have a 32-bit table, we break it up into four
- // 8-bit tables:
- //
- // CRC(uvwx, O) = CRC(u000, O) xor
- // CRC(0v00, O) xor
- // CRC(00w0, O) xor
- // CRC(000x, O)
- //
- // We can compute tables corresponding to the four terms for all 8-bit
- // values.
-
- crc = ^crc
-
- // If a buffer is long enough to use the optimization, process the first few
- // bytes to align the buffer to an 8 byte boundary (if necessary).
- if len(p) >= castagnoliK1*3 {
- delta := int(uintptr(unsafe.Pointer(&p[0])) & 7)
- if delta != 0 {
- delta = 8 - delta
- crc = castagnoliSSE42(crc, p[:delta])
- p = p[delta:]
- }
- }
-
- // Process 3*K2 at a time.
- for len(p) >= castagnoliK2*3 {
- // Compute CRC(I, A), CRC(0, B), and CRC(0, C).
- crcA, crcB, crcC := castagnoliSSE42Triple(
- crc, 0, 0,
- p, p[castagnoliK2:], p[castagnoliK2*2:],
- castagnoliK2/24)
-
- // CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
- crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB
- // CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
- crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC
- p = p[castagnoliK2*3:]
- }
-
- // Process 3*K1 at a time.
- for len(p) >= castagnoliK1*3 {
- // Compute CRC(I, A), CRC(0, B), and CRC(0, C).
- crcA, crcB, crcC := castagnoliSSE42Triple(
- crc, 0, 0,
- p, p[castagnoliK1:], p[castagnoliK1*2:],
- castagnoliK1/24)
-
- // CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
- crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB
- // CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
- crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC
- p = p[castagnoliK1*3:]
- }
-
- // Use the simple implementation for what's left.
- crc = castagnoliSSE42(crc, p)
- return ^crc
-}
-
-func archAvailableIEEE() bool {
- return useFastIEEE
-}
-
-var archIeeeTable8 *slicing8Table
-
-func archInitIEEE() {
- if !useFastIEEE {
- panic("not available")
- }
- // We still use slicing-by-8 for small buffers.
- archIeeeTable8 = slicingMakeTable(IEEE)
-}
-
-func archUpdateIEEE(crc uint32, p []byte) uint32 {
- if !useFastIEEE {
- panic("not available")
- }
-
- if len(p) >= 64 {
- left := len(p) & 15
- do := len(p) - left
- crc = ^ieeeCLMUL(^crc, p[:do])
- p = p[do:]
- }
- if len(p) == 0 {
- return crc
- }
- return slicingUpdate(crc, archIeeeTable8, p)
-}
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build gc
-
-#define NOSPLIT 4
-#define RODATA 8
-
-// castagnoliSSE42 updates the (non-inverted) crc with the given buffer.
-//
-// func castagnoliSSE42(crc uint32, p []byte) uint32
-TEXT ·castagnoliSSE42(SB), NOSPLIT, $0
- MOVL crc+0(FP), AX // CRC value
- MOVQ p+8(FP), SI // data pointer
- MOVQ p_len+16(FP), CX // len(p)
-
- // If there are fewer than 8 bytes to process, skip alignment.
- CMPQ CX, $8
- JL less_than_8
-
- MOVQ SI, BX
- ANDQ $7, BX
- JZ aligned
-
- // Process the first few bytes to 8-byte align the input.
-
- // BX = 8 - BX. We need to process this many bytes to align.
- SUBQ $1, BX
- XORQ $7, BX
-
- BTQ $0, BX
- JNC align_2
-
- CRC32B (SI), AX
- DECQ CX
- INCQ SI
-
-align_2:
- BTQ $1, BX
- JNC align_4
-
- // CRC32W (SI), AX
- BYTE $0x66; BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
-
- SUBQ $2, CX
- ADDQ $2, SI
-
-align_4:
- BTQ $2, BX
- JNC aligned
-
- // CRC32L (SI), AX
- BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
-
- SUBQ $4, CX
- ADDQ $4, SI
-
-aligned:
- // The input is now 8-byte aligned and we can process 8-byte chunks.
- CMPQ CX, $8
- JL less_than_8
-
- CRC32Q (SI), AX
- ADDQ $8, SI
- SUBQ $8, CX
- JMP aligned
-
-less_than_8:
- // We may have some bytes left over; process 4 bytes, then 2, then 1.
- BTQ $2, CX
- JNC less_than_4
-
- // CRC32L (SI), AX
- BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
- ADDQ $4, SI
-
-less_than_4:
- BTQ $1, CX
- JNC less_than_2
-
- // CRC32W (SI), AX
- BYTE $0x66; BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
- ADDQ $2, SI
-
-less_than_2:
- BTQ $0, CX
- JNC done
-
- CRC32B (SI), AX
-
-done:
- MOVL AX, ret+32(FP)
- RET
-
-// castagnoliSSE42Triple updates three (non-inverted) crcs with (24*rounds)
-// bytes from each buffer.
-//
-// func castagnoliSSE42Triple(
-// crc1, crc2, crc3 uint32,
-// a, b, c []byte,
-// rounds uint32,
-// ) (retA uint32, retB uint32, retC uint32)
-TEXT ·castagnoliSSE42Triple(SB), NOSPLIT, $0
- MOVL crcA+0(FP), AX
- MOVL crcB+4(FP), CX
- MOVL crcC+8(FP), DX
-
- MOVQ a+16(FP), R8 // data pointer
- MOVQ b+40(FP), R9 // data pointer
- MOVQ c+64(FP), R10 // data pointer
-
- MOVL rounds+88(FP), R11
-
-loop:
- CRC32Q (R8), AX
- CRC32Q (R9), CX
- CRC32Q (R10), DX
-
- CRC32Q 8(R8), AX
- CRC32Q 8(R9), CX
- CRC32Q 8(R10), DX
-
- CRC32Q 16(R8), AX
- CRC32Q 16(R9), CX
- CRC32Q 16(R10), DX
-
- ADDQ $24, R8
- ADDQ $24, R9
- ADDQ $24, R10
-
- DECQ R11
- JNZ loop
-
- MOVL AX, retA+96(FP)
- MOVL CX, retB+100(FP)
- MOVL DX, retC+104(FP)
- RET
-
-// func haveSSE42() bool
-TEXT ·haveSSE42(SB), NOSPLIT, $0
- XORQ AX, AX
- INCL AX
- CPUID
- SHRQ $20, CX
- ANDQ $1, CX
- MOVB CX, ret+0(FP)
- RET
-
-// func haveCLMUL() bool
-TEXT ·haveCLMUL(SB), NOSPLIT, $0
- XORQ AX, AX
- INCL AX
- CPUID
- SHRQ $1, CX
- ANDQ $1, CX
- MOVB CX, ret+0(FP)
- RET
-
-// func haveSSE41() bool
-TEXT ·haveSSE41(SB), NOSPLIT, $0
- XORQ AX, AX
- INCL AX
- CPUID
- SHRQ $19, CX
- ANDQ $1, CX
- MOVB CX, ret+0(FP)
- RET
-
-// CRC32 polynomial data
-//
-// These constants are lifted from the
-// Linux kernel, since they avoid the costly
-// PSHUFB 16 byte reversal proposed in the
-// original Intel paper.
-DATA r2r1kp<>+0(SB)/8, $0x154442bd4
-DATA r2r1kp<>+8(SB)/8, $0x1c6e41596
-DATA r4r3kp<>+0(SB)/8, $0x1751997d0
-DATA r4r3kp<>+8(SB)/8, $0x0ccaa009e
-DATA rupolykp<>+0(SB)/8, $0x1db710641
-DATA rupolykp<>+8(SB)/8, $0x1f7011641
-DATA r5kp<>+0(SB)/8, $0x163cd6124
-
-GLOBL r2r1kp<>(SB), RODATA, $16
-GLOBL r4r3kp<>(SB), RODATA, $16
-GLOBL rupolykp<>(SB), RODATA, $16
-GLOBL r5kp<>(SB), RODATA, $8
-
-// Based on http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
-// len(p) must be at least 64, and must be a multiple of 16.
-
-// func ieeeCLMUL(crc uint32, p []byte) uint32
-TEXT ·ieeeCLMUL(SB), NOSPLIT, $0
- MOVL crc+0(FP), X0 // Initial CRC value
- MOVQ p+8(FP), SI // data pointer
- MOVQ p_len+16(FP), CX // len(p)
-
- MOVOU (SI), X1
- MOVOU 16(SI), X2
- MOVOU 32(SI), X3
- MOVOU 48(SI), X4
- PXOR X0, X1
- ADDQ $64, SI // buf+=64
- SUBQ $64, CX // len-=64
- CMPQ CX, $64 // Less than 64 bytes left
- JB remain64
-
- MOVOA r2r1kp<>+0(SB), X0
-
-loopback64:
- MOVOA X1, X5
- MOVOA X2, X6
- MOVOA X3, X7
- MOVOA X4, X8
-
- PCLMULQDQ $0, X0, X1
- PCLMULQDQ $0, X0, X2
- PCLMULQDQ $0, X0, X3
- PCLMULQDQ $0, X0, X4
-
- // Load next early
- MOVOU (SI), X11
- MOVOU 16(SI), X12
- MOVOU 32(SI), X13
- MOVOU 48(SI), X14
-
- PCLMULQDQ $0x11, X0, X5
- PCLMULQDQ $0x11, X0, X6
- PCLMULQDQ $0x11, X0, X7
- PCLMULQDQ $0x11, X0, X8
-
- PXOR X5, X1
- PXOR X6, X2
- PXOR X7, X3
- PXOR X8, X4
-
- PXOR X11, X1
- PXOR X12, X2
- PXOR X13, X3
- PXOR X14, X4
-
- ADDQ $0x40, DI
- ADDQ $64, SI // buf+=64
- SUBQ $64, CX // len-=64
- CMPQ CX, $64 // Less than 64 bytes left?
- JGE loopback64
-
- // Fold result into a single register (X1)
-remain64:
- MOVOA r4r3kp<>+0(SB), X0
-
- MOVOA X1, X5
- PCLMULQDQ $0, X0, X1
- PCLMULQDQ $0x11, X0, X5
- PXOR X5, X1
- PXOR X2, X1
-
- MOVOA X1, X5
- PCLMULQDQ $0, X0, X1
- PCLMULQDQ $0x11, X0, X5
- PXOR X5, X1
- PXOR X3, X1
-
- MOVOA X1, X5
- PCLMULQDQ $0, X0, X1
- PCLMULQDQ $0x11, X0, X5
- PXOR X5, X1
- PXOR X4, X1
-
- // If there is less than 16 bytes left we are done
- CMPQ CX, $16
- JB finish
-
- // Encode 16 bytes
-remain16:
- MOVOU (SI), X10
- MOVOA X1, X5
- PCLMULQDQ $0, X0, X1
- PCLMULQDQ $0x11, X0, X5
- PXOR X5, X1
- PXOR X10, X1
- SUBQ $16, CX
- ADDQ $16, SI
- CMPQ CX, $16
- JGE remain16
-
-finish:
- // Fold final result into 32 bits and return it
- PCMPEQB X3, X3
- PCLMULQDQ $1, X1, X0
- PSRLDQ $8, X1
- PXOR X0, X1
-
- MOVOA X1, X2
- MOVQ r5kp<>+0(SB), X0
-
- // Creates 32 bit mask. Note that we don't care about upper half.
- PSRLQ $32, X3
-
- PSRLDQ $4, X2
- PAND X3, X1
- PCLMULQDQ $0, X0, X1
- PXOR X2, X1
-
- MOVOA rupolykp<>+0(SB), X0
-
- MOVOA X1, X2
- PAND X3, X1
- PCLMULQDQ $0x10, X0, X1
- PAND X3, X1
- PCLMULQDQ $0, X0, X1
- PXOR X2, X1
-
- // PEXTRD $1, X1, AX (SSE 4.1)
- BYTE $0x66; BYTE $0x0f; BYTE $0x3a
- BYTE $0x16; BYTE $0xc8; BYTE $0x01
- MOVL AX, ret+32(FP)
-
- RET
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine,!gccgo
-
-package crc32
-
-// This file contains the code to call the SSE 4.2 version of the Castagnoli
-// CRC.
-
-// haveSSE42 is defined in crc32_amd64p32.s and uses CPUID to test for SSE 4.2
-// support.
-func haveSSE42() bool
-
-// castagnoliSSE42 is defined in crc32_amd64p32.s and uses the SSE4.2 CRC32
-// instruction.
-//go:noescape
-func castagnoliSSE42(crc uint32, p []byte) uint32
-
-var sse42 = haveSSE42()
-
-func archAvailableCastagnoli() bool {
- return sse42
-}
-
-func archInitCastagnoli() {
- if !sse42 {
- panic("not available")
- }
- // No initialization necessary.
-}
-
-func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
- if !sse42 {
- panic("not available")
- }
- return castagnoliSSE42(crc, p)
-}
-
-func archAvailableIEEE() bool { return false }
-func archInitIEEE() { panic("not available") }
-func archUpdateIEEE(crc uint32, p []byte) uint32 { panic("not available") }
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build gc
-
-#define NOSPLIT 4
-#define RODATA 8
-
-// func castagnoliSSE42(crc uint32, p []byte) uint32
-TEXT ·castagnoliSSE42(SB), NOSPLIT, $0
- MOVL crc+0(FP), AX // CRC value
- MOVL p+4(FP), SI // data pointer
- MOVL p_len+8(FP), CX // len(p)
-
- NOTL AX
-
- // If there's less than 8 bytes to process, we do it byte-by-byte.
- CMPQ CX, $8
- JL cleanup
-
- // Process individual bytes until the input is 8-byte aligned.
-startup:
- MOVQ SI, BX
- ANDQ $7, BX
- JZ aligned
-
- CRC32B (SI), AX
- DECQ CX
- INCQ SI
- JMP startup
-
-aligned:
- // The input is now 8-byte aligned and we can process 8-byte chunks.
- CMPQ CX, $8
- JL cleanup
-
- CRC32Q (SI), AX
- ADDQ $8, SI
- SUBQ $8, CX
- JMP aligned
-
-cleanup:
- // We may have some bytes left over that we process one at a time.
- CMPQ CX, $0
- JE done
-
- CRC32B (SI), AX
- INCQ SI
- DECQ CX
- JMP cleanup
-
-done:
- NOTL AX
- MOVL AX, ret+16(FP)
- RET
-
-// func haveSSE42() bool
-TEXT ·haveSSE42(SB), NOSPLIT, $0
- XORQ AX, AX
- INCL AX
- CPUID
- SHRQ $20, CX
- ANDQ $1, CX
- MOVB CX, ret+0(FP)
- RET
-
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file contains CRC32 algorithms that are not specific to any architecture
-// and don't use hardware acceleration.
-//
-// The simple (and slow) CRC32 implementation only uses a 256*4 bytes table.
-//
-// The slicing-by-8 algorithm is a faster implementation that uses a bigger
-// table (8*256*4 bytes).
-
-package crc32
-
-// simpleMakeTable allocates and constructs a Table for the specified
-// polynomial. The table is suitable for use with the simple algorithm
-// (simpleUpdate).
-func simpleMakeTable(poly uint32) *Table {
- t := new(Table)
- simplePopulateTable(poly, t)
- return t
-}
-
-// simplePopulateTable constructs a Table for the specified polynomial, suitable
-// for use with simpleUpdate.
-func simplePopulateTable(poly uint32, t *Table) {
- for i := 0; i < 256; i++ {
- crc := uint32(i)
- for j := 0; j < 8; j++ {
- if crc&1 == 1 {
- crc = (crc >> 1) ^ poly
- } else {
- crc >>= 1
- }
- }
- t[i] = crc
- }
-}
-
-// simpleUpdate uses the simple algorithm to update the CRC, given a table that
-// was previously computed using simpleMakeTable.
-func simpleUpdate(crc uint32, tab *Table, p []byte) uint32 {
- crc = ^crc
- for _, v := range p {
- crc = tab[byte(crc)^v] ^ (crc >> 8)
- }
- return ^crc
-}
-
-// Use slicing-by-8 when payload >= this value.
-const slicing8Cutoff = 16
-
-// slicing8Table is array of 8 Tables, used by the slicing-by-8 algorithm.
-type slicing8Table [8]Table
-
-// slicingMakeTable constructs a slicing8Table for the specified polynomial. The
-// table is suitable for use with the slicing-by-8 algorithm (slicingUpdate).
-func slicingMakeTable(poly uint32) *slicing8Table {
- t := new(slicing8Table)
- simplePopulateTable(poly, &t[0])
- for i := 0; i < 256; i++ {
- crc := t[0][i]
- for j := 1; j < 8; j++ {
- crc = t[0][crc&0xFF] ^ (crc >> 8)
- t[j][i] = crc
- }
- }
- return t
-}
-
-// slicingUpdate uses the slicing-by-8 algorithm to update the CRC, given a
-// table that was previously computed using slicingMakeTable.
-func slicingUpdate(crc uint32, tab *slicing8Table, p []byte) uint32 {
- if len(p) >= slicing8Cutoff {
- crc = ^crc
- for len(p) > 8 {
- crc ^= uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24
- crc = tab[0][p[7]] ^ tab[1][p[6]] ^ tab[2][p[5]] ^ tab[3][p[4]] ^
- tab[4][crc>>24] ^ tab[5][(crc>>16)&0xFF] ^
- tab[6][(crc>>8)&0xFF] ^ tab[7][crc&0xFF]
- p = p[8:]
- }
- crc = ^crc
- }
- if len(p) == 0 {
- return crc
- }
- return simpleUpdate(crc, &tab[0], p)
-}
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !amd64,!amd64p32,!s390x
-
-package crc32
-
-func archAvailableIEEE() bool { return false }
-func archInitIEEE() { panic("not available") }
-func archUpdateIEEE(crc uint32, p []byte) uint32 { panic("not available") }
-
-func archAvailableCastagnoli() bool { return false }
-func archInitCastagnoli() { panic("not available") }
-func archUpdateCastagnoli(crc uint32, p []byte) uint32 { panic("not available") }
+++ /dev/null
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build s390x
-
-package crc32
-
-const (
- vxMinLen = 64
- vxAlignMask = 15 // align to 16 bytes
-)
-
-// hasVectorFacility reports whether the machine has the z/Architecture
-// vector facility installed and enabled.
-func hasVectorFacility() bool
-
-var hasVX = hasVectorFacility()
-
-// vectorizedCastagnoli implements CRC32 using vector instructions.
-// It is defined in crc32_s390x.s.
-//go:noescape
-func vectorizedCastagnoli(crc uint32, p []byte) uint32
-
-// vectorizedIEEE implements CRC32 using vector instructions.
-// It is defined in crc32_s390x.s.
-//go:noescape
-func vectorizedIEEE(crc uint32, p []byte) uint32
-
-func archAvailableCastagnoli() bool {
- return hasVX
-}
-
-var archCastagnoliTable8 *slicing8Table
-
-func archInitCastagnoli() {
- if !hasVX {
- panic("not available")
- }
- // We still use slicing-by-8 for small buffers.
- archCastagnoliTable8 = slicingMakeTable(Castagnoli)
-}
-
-// archUpdateCastagnoli calculates the checksum of p using
-// vectorizedCastagnoli.
-func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
- if !hasVX {
- panic("not available")
- }
- // Use vectorized function if data length is above threshold.
- if len(p) >= vxMinLen {
- aligned := len(p) & ^vxAlignMask
- crc = vectorizedCastagnoli(crc, p[:aligned])
- p = p[aligned:]
- }
- if len(p) == 0 {
- return crc
- }
- return slicingUpdate(crc, archCastagnoliTable8, p)
-}
-
-func archAvailableIEEE() bool {
- return hasVX
-}
-
-var archIeeeTable8 *slicing8Table
-
-func archInitIEEE() {
- if !hasVX {
- panic("not available")
- }
- // We still use slicing-by-8 for small buffers.
- archIeeeTable8 = slicingMakeTable(IEEE)
-}
-
-// archUpdateIEEE calculates the checksum of p using vectorizedIEEE.
-func archUpdateIEEE(crc uint32, p []byte) uint32 {
- if !hasVX {
- panic("not available")
- }
- // Use vectorized function if data length is above threshold.
- if len(p) >= vxMinLen {
- aligned := len(p) & ^vxAlignMask
- crc = vectorizedIEEE(crc, p[:aligned])
- p = p[aligned:]
- }
- if len(p) == 0 {
- return crc
- }
- return slicingUpdate(crc, archIeeeTable8, p)
-}
+++ /dev/null
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build s390x
-
-#include "textflag.h"
-
-// Vector register range containing CRC-32 constants
-
-#define CONST_PERM_LE2BE V9
-#define CONST_R2R1 V10
-#define CONST_R4R3 V11
-#define CONST_R5 V12
-#define CONST_RU_POLY V13
-#define CONST_CRC_POLY V14
-
-// The CRC-32 constant block contains reduction constants to fold and
-// process particular chunks of the input data stream in parallel.
-//
-// Note that the constant definitions below are extended in order to compute
-// intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
-// The rightmost doubleword can be 0 to prevent contribution to the result or
-// can be multiplied by 1 to perform an XOR without the need for a separate
-// VECTOR EXCLUSIVE OR instruction.
-//
-// The polynomials used are bit-reflected:
-//
-// IEEE: P'(x) = 0x0edb88320
-// Castagnoli: P'(x) = 0x082f63b78
-
-// IEEE polynomial constants
-DATA ·crcleconskp+0(SB)/8, $0x0F0E0D0C0B0A0908 // LE-to-BE mask
-DATA ·crcleconskp+8(SB)/8, $0x0706050403020100
-DATA ·crcleconskp+16(SB)/8, $0x00000001c6e41596 // R2
-DATA ·crcleconskp+24(SB)/8, $0x0000000154442bd4 // R1
-DATA ·crcleconskp+32(SB)/8, $0x00000000ccaa009e // R4
-DATA ·crcleconskp+40(SB)/8, $0x00000001751997d0 // R3
-DATA ·crcleconskp+48(SB)/8, $0x0000000000000000
-DATA ·crcleconskp+56(SB)/8, $0x0000000163cd6124 // R5
-DATA ·crcleconskp+64(SB)/8, $0x0000000000000000
-DATA ·crcleconskp+72(SB)/8, $0x00000001F7011641 // u'
-DATA ·crcleconskp+80(SB)/8, $0x0000000000000000
-DATA ·crcleconskp+88(SB)/8, $0x00000001DB710641 // P'(x) << 1
-
-GLOBL ·crcleconskp(SB), RODATA, $144
-
-// Castagonli Polynomial constants
-DATA ·crccleconskp+0(SB)/8, $0x0F0E0D0C0B0A0908 // LE-to-BE mask
-DATA ·crccleconskp+8(SB)/8, $0x0706050403020100
-DATA ·crccleconskp+16(SB)/8, $0x000000009e4addf8 // R2
-DATA ·crccleconskp+24(SB)/8, $0x00000000740eef02 // R1
-DATA ·crccleconskp+32(SB)/8, $0x000000014cd00bd6 // R4
-DATA ·crccleconskp+40(SB)/8, $0x00000000f20c0dfe // R3
-DATA ·crccleconskp+48(SB)/8, $0x0000000000000000
-DATA ·crccleconskp+56(SB)/8, $0x00000000dd45aab8 // R5
-DATA ·crccleconskp+64(SB)/8, $0x0000000000000000
-DATA ·crccleconskp+72(SB)/8, $0x00000000dea713f1 // u'
-DATA ·crccleconskp+80(SB)/8, $0x0000000000000000
-DATA ·crccleconskp+88(SB)/8, $0x0000000105ec76f0 // P'(x) << 1
-
-GLOBL ·crccleconskp(SB), RODATA, $144
-
-// func hasVectorFacility() bool
-TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1
- MOVD $x-24(SP), R1
- XC $24, 0(R1), 0(R1) // clear the storage
- MOVD $2, R0 // R0 is the number of double words stored -1
- WORD $0xB2B01000 // STFLE 0(R1)
- XOR R0, R0 // reset the value of R0
- MOVBZ z-8(SP), R1
- AND $0x40, R1
- BEQ novector
-
-vectorinstalled:
- // check if the vector instruction has been enabled
- VLEIB $0, $0xF, V16
- VLGVB $0, V16, R1
- CMPBNE R1, $0xF, novector
- MOVB $1, ret+0(FP) // have vx
- RET
-
-novector:
- MOVB $0, ret+0(FP) // no vx
- RET
-
-// The CRC-32 function(s) use these calling conventions:
-//
-// Parameters:
-//
-// R2: Initial CRC value, typically ~0; and final CRC (return) value.
-// R3: Input buffer pointer, performance might be improved if the
-// buffer is on a doubleword boundary.
-// R4: Length of the buffer, must be 64 bytes or greater.
-//
-// Register usage:
-//
-// R5: CRC-32 constant pool base pointer.
-// V0: Initial CRC value and intermediate constants and results.
-// V1..V4: Data for CRC computation.
-// V5..V8: Next data chunks that are fetched from the input buffer.
-//
-// V9..V14: CRC-32 constants.
-
-// func vectorizedIEEE(crc uint32, p []byte) uint32
-TEXT ·vectorizedIEEE(SB), NOSPLIT, $0
- MOVWZ crc+0(FP), R2 // R2 stores the CRC value
- MOVD p+8(FP), R3 // data pointer
- MOVD p_len+16(FP), R4 // len(p)
-
- MOVD $·crcleconskp(SB), R5
- BR vectorizedBody<>(SB)
-
-// func vectorizedCastagnoli(crc uint32, p []byte) uint32
-TEXT ·vectorizedCastagnoli(SB), NOSPLIT, $0
- MOVWZ crc+0(FP), R2 // R2 stores the CRC value
- MOVD p+8(FP), R3 // data pointer
- MOVD p_len+16(FP), R4 // len(p)
-
- // R5: crc-32 constant pool base pointer, constant is used to reduce crc
- MOVD $·crccleconskp(SB), R5
- BR vectorizedBody<>(SB)
-
-TEXT vectorizedBody<>(SB), NOSPLIT, $0
- XOR $0xffffffff, R2 // NOTW R2
- VLM 0(R5), CONST_PERM_LE2BE, CONST_CRC_POLY
-
- // Load the initial CRC value into the rightmost word of V0
- VZERO V0
- VLVGF $3, R2, V0
-
- // Crash if the input size is less than 64-bytes.
- CMP R4, $64
- BLT crash
-
- // Load a 64-byte data chunk and XOR with CRC
- VLM 0(R3), V1, V4 // 64-bytes into V1..V4
-
- // Reflect the data if the CRC operation is in the bit-reflected domain
- VPERM V1, V1, CONST_PERM_LE2BE, V1
- VPERM V2, V2, CONST_PERM_LE2BE, V2
- VPERM V3, V3, CONST_PERM_LE2BE, V3
- VPERM V4, V4, CONST_PERM_LE2BE, V4
-
- VX V0, V1, V1 // V1 ^= CRC
- ADD $64, R3 // BUF = BUF + 64
- ADD $(-64), R4
-
- // Check remaining buffer size and jump to proper folding method
- CMP R4, $64
- BLT less_than_64bytes
-
-fold_64bytes_loop:
- // Load the next 64-byte data chunk into V5 to V8
- VLM 0(R3), V5, V8
- VPERM V5, V5, CONST_PERM_LE2BE, V5
- VPERM V6, V6, CONST_PERM_LE2BE, V6
- VPERM V7, V7, CONST_PERM_LE2BE, V7
- VPERM V8, V8, CONST_PERM_LE2BE, V8
-
- // Perform a GF(2) multiplication of the doublewords in V1 with
- // the reduction constants in V0. The intermediate result is
- // then folded (accumulated) with the next data chunk in V5 and
- // stored in V1. Repeat this step for the register contents
- // in V2, V3, and V4 respectively.
-
- VGFMAG CONST_R2R1, V1, V5, V1
- VGFMAG CONST_R2R1, V2, V6, V2
- VGFMAG CONST_R2R1, V3, V7, V3
- VGFMAG CONST_R2R1, V4, V8, V4
-
- // Adjust buffer pointer and length for next loop
- ADD $64, R3 // BUF = BUF + 64
- ADD $(-64), R4 // LEN = LEN - 64
-
- CMP R4, $64
- BGE fold_64bytes_loop
-
-less_than_64bytes:
- // Fold V1 to V4 into a single 128-bit value in V1
- VGFMAG CONST_R4R3, V1, V2, V1
- VGFMAG CONST_R4R3, V1, V3, V1
- VGFMAG CONST_R4R3, V1, V4, V1
-
- // Check whether to continue with 64-bit folding
- CMP R4, $16
- BLT final_fold
-
-fold_16bytes_loop:
- VL 0(R3), V2 // Load next data chunk
- VPERM V2, V2, CONST_PERM_LE2BE, V2
-
- VGFMAG CONST_R4R3, V1, V2, V1 // Fold next data chunk
-
- // Adjust buffer pointer and size for folding next data chunk
- ADD $16, R3
- ADD $-16, R4
-
- // Process remaining data chunks
- CMP R4, $16
- BGE fold_16bytes_loop
-
-final_fold:
- VLEIB $7, $0x40, V9
- VSRLB V9, CONST_R4R3, V0
- VLEIG $0, $1, V0
-
- VGFMG V0, V1, V1
-
- VLEIB $7, $0x20, V9 // Shift by words
- VSRLB V9, V1, V2 // Store remaining bits in V2
- VUPLLF V1, V1 // Split rightmost doubleword
- VGFMAG CONST_R5, V1, V2, V1 // V1 = (V1 * R5) XOR V2
-
- // The input values to the Barret reduction are the degree-63 polynomial
- // in V1 (R(x)), degree-32 generator polynomial, and the reduction
- // constant u. The Barret reduction result is the CRC value of R(x) mod
- // P(x).
- //
- // The Barret reduction algorithm is defined as:
- //
- // 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
- // 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
- // 3. C(x) = R(x) XOR T2(x) mod x^32
- //
- // Note: To compensate the division by x^32, use the vector unpack
- // instruction to move the leftmost word into the leftmost doubleword
- // of the vector register. The rightmost doubleword is multiplied
- // with zero to not contribute to the intermedate results.
-
- // T1(x) = floor( R(x) / x^32 ) GF2MUL u
- VUPLLF V1, V2
- VGFMG CONST_RU_POLY, V2, V2
-
- // Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
- // V2 and XOR the intermediate result, T2(x), with the value in V1.
- // The final result is in the rightmost word of V2.
-
- VUPLLF V2, V2
- VGFMAG CONST_CRC_POLY, V2, V1, V2
-
-done:
- VLGVF $2, V2, R2
- XOR $0xffffffff, R2 // NOTW R2
- MOVWZ R2, ret + 32(FP)
- RET
-
-crash:
- MOVD $0, (R0) // input size is less than 64-bytes
gitea.com/macaron/cors
# gitea.com/macaron/csrf v0.0.0-20190822024205-3dc5a4474439
gitea.com/macaron/csrf
+# gitea.com/macaron/gzip v0.0.0-20191118033930-0c4c5566a0e5
+gitea.com/macaron/gzip
# gitea.com/macaron/i18n v0.0.0-20190822004228-474e714e2223
gitea.com/macaron/i18n
# gitea.com/macaron/inject v0.0.0-20190805023432-d4c86e31027a
github.com/keybase/go-crypto/openpgp/packet
github.com/keybase/go-crypto/openpgp/s2k
github.com/keybase/go-crypto/rsa
-# github.com/klauspost/compress v0.0.0-20161025140425-8df558b6cb6f
+# github.com/klauspost/compress v1.9.2
github.com/klauspost/compress/flate
github.com/klauspost/compress/gzip
-# github.com/klauspost/cpuid v0.0.0-20160302075316-09cded8978dc
-github.com/klauspost/cpuid
-# github.com/klauspost/crc32 v0.0.0-20161016154125-cb6bfca970f6
-github.com/klauspost/crc32
# github.com/kr/pretty v0.1.0
github.com/kr/pretty
# github.com/kr/text v0.1.0