diff options
Diffstat (limited to 'lib/jython/Lib/random.py')
-rw-r--r-- | lib/jython/Lib/random.py | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/lib/jython/Lib/random.py b/lib/jython/Lib/random.py new file mode 100644 index 000000000..6ba9f58a1 --- /dev/null +++ b/lib/jython/Lib/random.py @@ -0,0 +1,663 @@ +"""Random variable generators.
+
+ integers
+ --------
+ uniform within range
+
+ sequences
+ ---------
+ pick random element
+ generate random permutation
+
+ distributions on the real line:
+ ------------------------------
+ uniform
+ normal (Gaussian)
+ lognormal
+ negative exponential
+ gamma
+ beta
+
+ distributions on the circle (angles 0 to 2pi)
+ ---------------------------------------------
+ circular uniform
+ von Mises
+
+Translated from anonymously contributed C/C++ source.
+
+Multi-threading note: the random number generator used here is not thread-
+safe; it is possible that two calls return the same random value. However,
+you can instantiate a different instance of Random() in each thread to get
+generators that don't share state, then use .setstate() and .jumpahead() to
+move the generators to disjoint segments of the full period. For example,
+
+def create_generators(num, delta, firstseed=None):
+ ""\"Return list of num distinct generators.
+ Each generator has its own unique segment of delta elements from
+ Random.random()'s full period.
+ Seed the first generator with optional arg firstseed (default is
+ None, to seed from current time).
+ ""\"
+
+ from random import Random
+ g = Random(firstseed)
+ result = [g]
+ for i in range(num - 1):
+ laststate = g.getstate()
+ g = Random()
+ g.setstate(laststate)
+ g.jumpahead(delta)
+ result.append(g)
+ return result
+
+gens = create_generators(10, 1000000)
+
+That creates 10 distinct generators, which can be passed out to 10 distinct
+threads. The generators don't share state so can be called safely in
+parallel. So long as no thread calls its g.random() more than a million
+times (the second argument to create_generators), the sequences seen by
+each thread will not overlap.
+
+The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
+and that limits how far this technique can be pushed.
+
+Just for fun, note that since we know the period, .jumpahead() can also be
+used to "move backward in time":
+
+>>> g = Random(42) # arbitrary
+>>> g.random()
+0.25420336316883324
+>>> g.jumpahead(6953607871644L - 1) # move *back* one
+>>> g.random()
+0.25420336316883324
+"""
+# XXX The docstring sucks.
+
+from math import log as _log, exp as _exp, pi as _pi, e as _e
+from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
+
+__all__ = ["Random","seed","random","uniform","randint","choice",
+ "randrange","shuffle","normalvariate","lognormvariate",
+ "cunifvariate","expovariate","vonmisesvariate","gammavariate",
+ "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
+ "getstate","setstate","jumpahead","whseed"]
+
+def _verify(name, computed, expected):
+ if abs(computed - expected) > 1e-7:
+ raise ValueError(
+ "computed value for %s deviates too much "
+ "(computed %g, expected %g)" % (name, computed, expected))
+
+NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
+_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
+
+TWOPI = 2.0*_pi
+_verify('TWOPI', TWOPI, 6.28318530718)
+
+LOG4 = _log(4.0)
+_verify('LOG4', LOG4, 1.38629436111989)
+
+SG_MAGICCONST = 1.0 + _log(4.5)
+_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
+
+del _verify
+
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley.
+
+class Random:
+
+ VERSION = 1 # used by getstate/setstate
+
+ def __init__(self, x=None):
+ """Initialize an instance.
+
+ Optional argument x controls seeding, as for Random.seed().
+ """
+
+ self.seed(x)
+ self.gauss_next = None
+
+## -------------------- core generator -------------------
+
+ # Specific to Wichmann-Hill generator. Subclasses wishing to use a
+ # different core generator should override the seed(), random(),
+ # getstate(), setstate() and jumpahead() methods.
+
+ def seed(self, a=None):
+ """Initialize internal state from hashable object.
+
+ None or no argument seeds from current time.
+
+ If a is not None or an int or long, hash(a) is used instead.
+
+ If a is an int or long, a is used directly. Distinct values between
+ 0 and 27814431486575L inclusive are guaranteed to yield distinct
+ internal states (this guarantee is specific to the default
+ Wichmann-Hill generator).
+ """
+
+ if a is None:
+ # Initialize from current time
+ import time
+ a = long(time.time() * 256)
+
+ if type(a) not in (type(3), type(3L)):
+ a = hash(a)
+
+ a, x = divmod(a, 30268)
+ a, y = divmod(a, 30306)
+ a, z = divmod(a, 30322)
+ self._seed = int(x)+1, int(y)+1, int(z)+1
+
+ def random(self):
+ """Get the next random number in the range [0.0, 1.0)."""
+
+ # Wichman-Hill random number generator.
+ #
+ # Wichmann, B. A. & Hill, I. D. (1982)
+ # Algorithm AS 183:
+ # An efficient and portable pseudo-random number generator
+ # Applied Statistics 31 (1982) 188-190
+ #
+ # see also:
+ # Correction to Algorithm AS 183
+ # Applied Statistics 33 (1984) 123
+ #
+ # McLeod, A. I. (1985)
+ # A remark on Algorithm AS 183
+ # Applied Statistics 34 (1985),198-200
+
+ # This part is thread-unsafe:
+ # BEGIN CRITICAL SECTION
+ x, y, z = self._seed
+ x = (171 * x) % 30269
+ y = (172 * y) % 30307
+ z = (170 * z) % 30323
+ self._seed = x, y, z
+ # END CRITICAL SECTION
+
+ # Note: on a platform using IEEE-754 double arithmetic, this can
+ # never return 0.0 (asserted by Tim; proof too long for a comment).
+ return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
+
+ def getstate(self):
+ """Return internal state; can be passed to setstate() later."""
+ return self.VERSION, self._seed, self.gauss_next
+
+ def setstate(self, state):
+ """Restore internal state from object returned by getstate()."""
+ version = state[0]
+ if version == 1:
+ version, self._seed, self.gauss_next = state
+ else:
+ raise ValueError("state with version %s passed to "
+ "Random.setstate() of version %s" %
+ (version, self.VERSION))
+
+ def jumpahead(self, n):
+ """Act as if n calls to random() were made, but quickly.
+
+ n is an int, greater than or equal to 0.
+
+ Example use: If you have 2 threads and know that each will
+ consume no more than a million random numbers, create two Random
+ objects r1 and r2, then do
+ r2.setstate(r1.getstate())
+ r2.jumpahead(1000000)
+ Then r1 and r2 will use guaranteed-disjoint segments of the full
+ period.
+ """
+
+ if not n >= 0:
+ raise ValueError("n must be >= 0")
+ x, y, z = self._seed
+ x = int(x * pow(171, n, 30269)) % 30269
+ y = int(y * pow(172, n, 30307)) % 30307
+ z = int(z * pow(170, n, 30323)) % 30323
+ self._seed = x, y, z
+
+ def __whseed(self, x=0, y=0, z=0):
+ """Set the Wichmann-Hill seed from (x, y, z).
+
+ These must be integers in the range [0, 256).
+ """
+
+ if not type(x) == type(y) == type(z) == type(0):
+ raise TypeError('seeds must be integers')
+ if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
+ raise ValueError('seeds must be in range(0, 256)')
+ if 0 == x == y == z:
+ # Initialize from current time
+ import time
+ t = long(time.time() * 256)
+ t = int((t&0xffffff) ^ (t>>24))
+ t, x = divmod(t, 256)
+ t, y = divmod(t, 256)
+ t, z = divmod(t, 256)
+ # Zero is a poor seed, so substitute 1
+ self._seed = (x or 1, y or 1, z or 1)
+
+ def whseed(self, a=None):
+ """Seed from hashable object's hash code.
+
+ None or no argument seeds from current time. It is not guaranteed
+ that objects with distinct hash codes lead to distinct internal
+ states.
+
+ This is obsolete, provided for compatibility with the seed routine
+ used prior to Python 2.1. Use the .seed() method instead.
+ """
+
+ if a is None:
+ self.__whseed()
+ return
+ a = hash(a)
+ a, x = divmod(a, 256)
+ a, y = divmod(a, 256)
+ a, z = divmod(a, 256)
+ x = (x + a) % 256 or 1
+ y = (y + a) % 256 or 1
+ z = (z + a) % 256 or 1
+ self.__whseed(x, y, z)
+
+## ---- Methods below this point do not need to be overridden when
+## ---- subclassing for the purpose of using a different core generator.
+
+## -------------------- pickle support -------------------
+
+ def __getstate__(self): # for pickle
+ return self.getstate()
+
+ def __setstate__(self, state): # for pickle
+ self.setstate(state)
+
+## -------------------- integer methods -------------------
+
+ def randrange(self, start, stop=None, step=1, int=int, default=None):
+ """Choose a random item from range(start, stop[, step]).
+
+ This fixes the problem with randint() which includes the
+ endpoint; in Python this is usually not what you want.
+ Do not supply the 'int' and 'default' arguments.
+ """
+
+ # This code is a bit messy to make it fast for the
+ # common case while still doing adequate error checking
+ istart = int(start)
+ if istart != start:
+ raise ValueError, "non-integer arg 1 for randrange()"
+ if stop is default:
+ if istart > 0:
+ return int(self.random() * istart)
+ raise ValueError, "empty range for randrange()"
+ istop = int(stop)
+ if istop != stop:
+ raise ValueError, "non-integer stop for randrange()"
+ if step == 1:
+ if istart < istop:
+ return istart + int(self.random() *
+ (istop - istart))
+ raise ValueError, "empty range for randrange()"
+ istep = int(step)
+ if istep != step:
+ raise ValueError, "non-integer step for randrange()"
+ if istep > 0:
+ n = (istop - istart + istep - 1) / istep
+ elif istep < 0:
+ n = (istop - istart + istep + 1) / istep
+ else:
+ raise ValueError, "zero step for randrange()"
+
+ if n <= 0:
+ raise ValueError, "empty range for randrange()"
+ return istart + istep*int(self.random() * n)
+
+ def randint(self, a, b):
+ """Return random integer in range [a, b], including both end points.
+
+ (Deprecated; use randrange(a, b+1).)
+ """
+
+ return self.randrange(a, b+1)
+
+## -------------------- sequence methods -------------------
+
+ def choice(self, seq):
+ """Choose a random element from a non-empty sequence."""
+ return seq[int(self.random() * len(seq))]
+
+ def shuffle(self, x, random=None, int=int):
+ """x, random=random.random -> shuffle list x in place; return None.
+
+ Optional arg random is a 0-argument function returning a random
+ float in [0.0, 1.0); by default, the standard random.random.
+
+ Note that for even rather small len(x), the total number of
+ permutations of x is larger than the period of most random number
+ generators; this implies that "most" permutations of a long
+ sequence can never be generated.
+ """
+
+ if random is None:
+ random = self.random
+ for i in xrange(len(x)-1, 0, -1):
+ # pick an element in x[:i+1] with which to exchange x[i]
+ j = int(random() * (i+1))
+ x[i], x[j] = x[j], x[i]
+
+## -------------------- real-valued distributions -------------------
+
+## -------------------- uniform distribution -------------------
+
+ def uniform(self, a, b):
+ """Get a random number in the range [a, b)."""
+ return a + (b-a) * self.random()
+
+## -------------------- normal distribution --------------------
+
+ def normalvariate(self, mu, sigma):
+ # mu = mean, sigma = standard deviation
+
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ random = self.random
+ while 1:
+ u1 = random()
+ u2 = random()
+ z = NV_MAGICCONST*(u1-0.5)/u2
+ zz = z*z/4.0
+ if zz <= -_log(u2):
+ break
+ return mu + z*sigma
+
+## -------------------- lognormal distribution --------------------
+
+ def lognormvariate(self, mu, sigma):
+ return _exp(self.normalvariate(mu, sigma))
+
+## -------------------- circular uniform --------------------
+
+ def cunifvariate(self, mean, arc):
+ # mean: mean angle (in radians between 0 and pi)
+ # arc: range of distribution (in radians between 0 and pi)
+
+ return (mean + arc * (self.random() - 0.5)) % _pi
+
+## -------------------- exponential distribution --------------------
+
+ def expovariate(self, lambd):
+ # lambd: rate lambd = 1/mean
+ # ('lambda' is a Python reserved word)
+
+ random = self.random
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -_log(u)/lambd
+
+## -------------------- von Mises distribution --------------------
+
+ def vonmisesvariate(self, mu, kappa):
+ # mu: mean angle (in radians between 0 and 2*pi)
+ # kappa: concentration parameter kappa (>= 0)
+ # if kappa = 0 generate uniform random angle
+
+ # Based upon an algorithm published in: Fisher, N.I.,
+ # "Statistical Analysis of Circular Data", Cambridge
+ # University Press, 1993.
+
+ # Thanks to Magnus Kessler for a correction to the
+ # implementation of step 4.
+
+ random = self.random
+ if kappa <= 1e-6:
+ return TWOPI * random()
+
+ a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
+ b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
+ r = (1.0 + b * b)/(2.0 * b)
+
+ while 1:
+ u1 = random()
+
+ z = _cos(_pi * u1)
+ f = (1.0 + r * z)/(r + z)
+ c = kappa * (r - f)
+
+ u2 = random()
+
+ if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
+ break
+
+ u3 = random()
+ if u3 > 0.5:
+ theta = (mu % TWOPI) + _acos(f)
+ else:
+ theta = (mu % TWOPI) - _acos(f)
+
+ return theta
+
+## -------------------- gamma distribution --------------------
+
+ def gammavariate(self, alpha, beta):
+ # beta times standard gamma
+ ainv = _sqrt(2.0 * alpha - 1.0)
+ return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
+
+ def stdgamma(self, alpha, ainv, bbb, ccc):
+ # ainv = sqrt(2 * alpha - 1)
+ # bbb = alpha - log(4)
+ # ccc = alpha + ainv
+
+ random = self.random
+ if alpha <= 0.0:
+ raise ValueError, 'stdgamma: alpha must be > 0.0'
+
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ v = _log(u1/(1.0-u1))/ainv
+ x = alpha*_exp(v)
+ z = u1*u1*u2
+ r = bbb+ccc*v-x
+ if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
+ return x
+
+ elif alpha == 1.0:
+ # expovariate(1)
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -_log(u)
+
+ else: # alpha is between 0 and 1 (exclusive)
+
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+ while 1:
+ u = random()
+ b = (_e + alpha)/_e
+ p = b*u
+ if p <= 1.0:
+ x = pow(p, 1.0/alpha)
+ else:
+ # p > 1
+ x = -_log((b-p)/alpha)
+ u1 = random()
+ if not (((p <= 1.0) and (u1 > _exp(-x))) or
+ ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
+ break
+ return x
+
+
+## -------------------- Gauss (faster alternative) --------------------
+
+ def gauss(self, mu, sigma):
+
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z*sigma
+
+## -------------------- beta --------------------
+## See
+## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
+## for Ivan Frohne's insightful analysis of why the original implementation:
+##
+## def betavariate(self, alpha, beta):
+## # Discrete Event Simulation in C, pp 87-88.
+##
+## y = self.expovariate(alpha)
+## z = self.expovariate(1.0/beta)
+## return z/(y+z)
+##
+## was dead wrong, and how it probably got that way.
+
+ def betavariate(self, alpha, beta):
+ # This version due to Janne Sinkkonen, and matches all the std
+ # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
+ y = self.gammavariate(alpha, 1.)
+ if y == 0:
+ return 0.0
+ else:
+ return y / (y + self.gammavariate(beta, 1.))
+
+## -------------------- Pareto --------------------
+
+ def paretovariate(self, alpha):
+ # Jain, pg. 495
+
+ u = self.random()
+ return 1.0 / pow(u, 1.0/alpha)
+
+## -------------------- Weibull --------------------
+
+ def weibullvariate(self, alpha, beta):
+ # Jain, pg. 499; bug fix courtesy Bill Arms
+
+ u = self.random()
+ return alpha * pow(-_log(u), 1.0/beta)
+
+## -------------------- test program --------------------
+
+def _test_generator(n, funccall):
+ import time
+ print n, 'times', funccall
+ code = compile(funccall, funccall, 'eval')
+ sum = 0.0
+ sqsum = 0.0
+ smallest = 1e10
+ largest = -1e10
+ t0 = time.time()
+ for i in range(n):
+ x = eval(code)
+ sum = sum + x
+ sqsum = sqsum + x*x
+ smallest = min(x, smallest)
+ largest = max(x, largest)
+ t1 = time.time()
+ print round(t1-t0, 3), 'sec,',
+ avg = sum/n
+ stddev = _sqrt(sqsum/n - avg*avg)
+ print 'avg %g, stddev %g, min %g, max %g' % \
+ (avg, stddev, smallest, largest)
+
+def _test(N=200):
+ print 'TWOPI =', TWOPI
+ print 'LOG4 =', LOG4
+ print 'NV_MAGICCONST =', NV_MAGICCONST
+ print 'SG_MAGICCONST =', SG_MAGICCONST
+ _test_generator(N, 'random()')
+ _test_generator(N, 'normalvariate(0.0, 1.0)')
+ _test_generator(N, 'lognormvariate(0.0, 1.0)')
+ _test_generator(N, 'cunifvariate(0.0, 1.0)')
+ _test_generator(N, 'expovariate(1.0)')
+ _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
+ _test_generator(N, 'gammavariate(0.5, 1.0)')
+ _test_generator(N, 'gammavariate(0.9, 1.0)')
+ _test_generator(N, 'gammavariate(1.0, 1.0)')
+ _test_generator(N, 'gammavariate(2.0, 1.0)')
+ _test_generator(N, 'gammavariate(20.0, 1.0)')
+ _test_generator(N, 'gammavariate(200.0, 1.0)')
+ _test_generator(N, 'gauss(0.0, 1.0)')
+ _test_generator(N, 'betavariate(3.0, 3.0)')
+ _test_generator(N, 'paretovariate(1.0)')
+ _test_generator(N, 'weibullvariate(1.0, 1.0)')
+
+ # Test jumpahead.
+ s = getstate()
+ jumpahead(N)
+ r1 = random()
+ # now do it the slow way
+ setstate(s)
+ for i in range(N):
+ random()
+ r2 = random()
+ if r1 != r2:
+ raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
+
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions. The functions are not threadsafe, and state
+# is shared across all uses (both in the user's code and in the Python
+# libraries), but that's fine for most programs and is easier for the
+# casual user than making them instantiate their own Random() instance.
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+shuffle = _inst.shuffle
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+cunifvariate = _inst.cunifvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+stdgamma = _inst.stdgamma
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+jumpahead = _inst.jumpahead
+whseed = _inst.whseed
+
+if __name__ == '__main__':
+ _test()
|