An Annotation Based Development Style
Introduction
In addition to the familiar AspectJ code-based style of aspect
declaration, AspectJ 5 also supports an annotation-based style of
aspect declaration. We informally call the set of annotations that
support this development style the "@AspectJ" annotations.
AspectJ 5 allows aspects and their members to be specified using
either the code style or the annotation style. Whichever style you
use, the AspectJ weaver ensures that your program has exactly the
same semantics. It is, to quote a famous advertising campaign,
"a choice, not a compromise". The two styles can be mixed within
a single application, and even within a single source file, though
we doubt this latter mix will be recommended in practice.
The use of the @AspectJ annotations means that there are large
classes of AspectJ applications that can be compiled by a regular
Java 5 compiler, and subsequently woven by the AspectJ weaver (for
example, as an additional build stage, or as late as class load-time).
In this chapter we introduce the @AspectJ annotations and show how
they can be used to declare aspects and aspect members.
Aspect Declarations
Aspect declarations are supported by the
org.aspectj.lang.annotation.Aspect annotation.
The declaration:
Is equivalent to:
And since issingleton() is the default aspect instantiation model it is equivalent to:
To specify an aspect an aspect instantiation model (the default is
singleton), provide the perclause as the
@Aspect value.
For example:
is equivalent to...
Limitations
Privileged aspects are not supported by the annotation style.
Pointcuts and Advice
Pointcut and advice declarations can be made using the
Pointcut, Before, After, AfterReturning, AfterThrowing,
and
Around annotations.
Pointcuts
Pointcuts are specified using the
org.aspectj.lang.annotation.Pointcut annotation
on a method declaration. The method should have a
void
return type. The parameters of the method correspond to the parameters
of the pointcut. The modifiers of the method correspond to the modifiers
of the pointcut.
As a general rule, the
@Pointcut annotated method must have an empty method body
and must not have any
throws clause. If formal are bound (using
args(), target(), this(), @args(), @target(), @this(), @annotation()) in the
pointcut, then they must appear in the method signature.
The if() pointcut is treated specially and is discussed in a later section.
Here is a simple example of a pointcut declaration in both code and @AspectJ styles:
is equivalent to...
When binding arguments, simply declare the arguments as normal in the annotated method:
is equivalent to...
An example with modifiers (it is also good to remember that Java 5 annotations are not inherited):
is equivalent to...
Type references inside @AspectJ annotations
Using the code style, types referenced in pointcut expressions are
resolved with respect to the imported types in the compilation unit.
When using the annotation style, types referenced in pointcut
expressions are resolved in the absence of any imports and so have
to be fully qualified if they are not by default visible to the
declaring type (outside of the declaring package and
java.lang). This
does not apply to type patterns with wildcards, which are always resolved
in a global scope.
Consider the following compilation unit:
Using the annotation style this would be written as:
if() pointcut expressions
In code style, it is possible to use the if(...) poincut to define
a conditional pointcut expression which will be evaluated at runtime for each candidate join point.
The if(...)
body can be any valid Java boolean expression, and can use any exposed formal, as well as the join point forms
thisJoinPoint, thisJoinPointStaticPart and thisJoinPointEnclosingStaticPart.
When using the annotation style, it would be really a pain to write a valid Java expression within
the annotation value so the syntax differs sligthly, whilst providing the very same
semantics and runtime behaviour. An if() pointcut expression can be
declared in an @Pointcut, but must either an empty body, or be one
of the expression if(true) or if(false). The annotated
method must be public, static, and return a boolean. The body of the method contains the
condition to be evaluated. For example:
0;
}
]]>
is equivalent to...
0);
]]>
and the following is also a valid form:
0
&& jp.getSignature().getName.startsWith("doo")
&& esjp.getSignature().getName().startsWith("test")
&& COUNT++ < 10;
}
@Before("someCallWithIfTest(anInt, jp, enc)")
public void beforeAdviceWithRuntimeTest(int anInt, JoinPoint jp, JoinPoint.EnclosingStaticPart enc) {
//...
}
// Note that the following is NOT valid
/*
@Before("call(* *.*(int)) && args(i) && if()")
public void advice(int i) {
// so you were writing an advice or an if body ?
}
*/
]]>
It is thus possible with the annotation style to use the if() pointcut
only within an @Pointcut expression. The if() must not contain any
body. The annotated @Pointcut method must then be of the form public static boolean
and can use formal bindings as usual.
Extra implicit arguments of type JoinPoint, JoinPoint.StaticPart and JoinPoint.EnclosingStaticPart can also be used
(this is not permitted for regular annotated pointcuts not using the if() form).
The special forms if(true) and if(false) can be used in a more
general way and don't imply that the pointcut method must have a body.
You can thus write @Before("somePoincut() && if(false)").
Advice
In this section we first discuss the use of annotations for
simple advice declarations. Then we show how
thisJoinPoint
and its siblings are handled in the body of advice and discuss the
treatment of
proceed in around advice.
Using the annotation style, an advice declaration is written as
a regular Java method with one of the
Before, After, AfterReturning,
AfterThrowing, or
Around annotations. Except in
the case of around advice, the method should return void. The method should
be declared public.
A method that has an advice annotation is treated exactly as an
advice declaration by AspectJ's weaver. This includes the join points that
arise when the advice is executed (an adviceexecution join point, not a
method execution join point).
The following example shows a simple before advice declaration in
both styles:
is equivalent to...
If the advice body needs to know which particular
Foo instance
is making the call, just add a parameter to the advice declaration.
can be written as:
If the advice body needs access to
thisJoinPoint,
thisJoinPointStaticPart,
thisEnclosingJoinPointStaticPart then these need to
be declared as additional method parameters when using the annotation
style.
is equivalent to...
Advice that needs all three variables would be declared:
JoinPoint.EnclosingStaticPart is a new (empty) sub-interface
of
JoinPoint.StaticPart which allows the AspectJ weaver to
distinguish based on type which of
thisJoinPointStaticPart and
thisEnclosingJoinPointStaticPart should be passed in a given
parameter position.
After advice declarations take exactly the same form
as
Before, as do the forms of
AfterReturning
and
AfterThrowing that do not expose the return type or
thrown exception respectively.
To expose a return value with after returning advice simply declare the returning
parameter as a parameter in the method body and bind it with the "returning"
attribute:
is equivalent to...
(Note the use of the "pointcut=" prefix in front of the pointcut
expression in the returning case).
After throwing advice works in a similar fashion, using the
throwing attribute when needing to expose a
thrown exception.
For around advice, we have to tackle the problem of
proceed.
One of the design goals for the annotation style is that a large class of
AspectJ applications should be compilable with a standard Java 5 compiler.
A straight call to
proceed inside a method body:
will result in a "No such method" compilation error. For this
reason AspectJ 5 defines a new sub-interface of
JoinPoint,
ProceedingJoinPoint.
The around advice given above can now be written as:
Here's an example that uses parameters for the proceed call:
is equivalent to:
Note that the ProceedingJoinPoint does not need to be passed to the proceed(..) arguments.
Inter-type Declarations
The features described in this section will not be supported until the
AspectJ 5 M4 milestone build.
Inter-type declarations are challenging to support using an annotation style.
It's very important to preserve the exact same semantics between the code style
and the annotation style. We also want to support compilation of a large set
of AspectJ applications using a standard Java 5 compiler. For these reasons, in
the initial release of AspectJ 5 we will only support inter-type declarations
on interfaces using the annotation style.
Consider the following aspect:
This declares an interface
Moody, and then makes two
inter-type declarations on the interface - a field that is private to the
aspect, and a method that returns the mood. Within the body of the inter-type
declared method
getMoody, the type of
this
is
Moody (the target type of the inter-type declaration).
Using the annotation style this aspect can be written:
This is very similar to the mixin mechanism supported by AspectWerkz. The
effect of the
@DeclareParents annotation is equivalent to
a declare parents statement that all types matching the type pattern implement
the interface implemented by the annotated class. In addition, the member
declarations within the annotated class are treated as inter-type declarations
on the implemented interface. Note how this scheme operates within the constraints
of Java type checking and ensures that
this has access
to the exact same set of members as in the code style example.
The annotated class may only extend
Object, and may
only implement a single interface. The interface implemented by the class may
itself extend other interfaces.
Declare statements
The previous section on inter-type declarations covered the case
of declare parents ... implements. The 1.5.0 release of AspectJ 5 will
not support annotation style declarations for declare parents ... extends
and declare soft (programs with these declarations would not in general
be compilable by a regular Java 5 compiler, reducing the priority of
their implementation). These may be supported in a future release.
Declare precedence and declare annotation
will
be supported. For declare precedence, use the
@DeclarePrecedence
annotation as in the following example:
Declare annotation is supported via annotations on a dummy type member. If the
Target specification of the annotation allows it, use a field,
otherwise declare a member of the type required by the
Target.
For example:
Note: Declare annotation is not available in AspectJ 1.5 M3 and syntax may change
when the design and implementation is complete.
We also support annotation style declarations for declare warning and
declare error - any corresponding warnings and errors will be emitted at
weave time, not when the aspects containing the declarations are compiled.
(This is the same behaviour as when using declare warning or error with the
code style). Declare warning and error declarations are made by annotating
a string constant whose value is the message to be issued.
Note that the String must be a constant and not the result of the invocation
of a static method for example.
aspectOf() and hasAspect() methods
A central part of AspectJ's programming model is that aspects
written using the code style and compiled using ajc support
aspectOf and
hasAspect static
methods. When developing an aspect using the annotation style and compiling
using a regular Java 5 compiler, these methods will not be visible to the
compiler and will result in a compilation error if another part of the
program tries to call them.
To provide equivalent support for AspectJ applications compiled with
a standard Java 5 compiler, AspectJ 5 defines the
Aspects
utility class:
public static T aspectOf(T aspectType) {...}
/* variation used for perthis, pertarget */
static public static T aspectOf(T aspectType, Object forObject) {...}
/* variation used for pertypewithin */
static public static T aspectOf(T aspectType, Class forType) {...}
/* variation used for singleton, percflow, percflowbelow */
public static boolean hasAspect(Object anAspect) {...}
/* variation used for perthis, pertarget */
public static boolean hasAspect(Object anAspect, Object forObject) {...}
/* variation used for pertypewithin */
public static boolean hasAspect(Object anAspect, Class forType) {...}
}
]]>