

AspectJ Quick Reference
Aspects at top-level (or static in types)

aspect A { … }
defines the aspect A

privileged aspect A { … }
 A can access private fields and methods
aspect A extends B implements I, J { … }
 B is a class or abstract aspect, I and J are interfaces
aspect A percflow(call(void Foo.m())) { … }

an instance of A is instantiated for every control flow through
calls to m()

general form:

[privileged] [Modifiers] aspect Id
[extends Type] [implements TypeList] [PerClause]
{ Body }

where PerClause is one of
 pertarget (Pointcut)
 perthis (Pointcut)
 percflow (Pointcut)
 percflowbelow (Pointcut)
 issingleton

Pointcut definitions in types

private pointcut pc() : call(void Foo.m()) ;
a pointcut visible only from the defining type

pointcut pc(int i) : set(int Foo.x) && args(i) ;
a package-visible pointcut that exposes an int.

public abstract pointcut pc() ;
an abstract pointcut that can be referred to from anywhere.

abstract pointcut pc(Object o) ;
an abstract pointcut visible from the defining package. Any
pointcut that implements this must expose an Object.

general form:
abstract [Modifiers] pointcut Id (Formals) ;
[Modifiers] pointcut Id (Formals) : Pointcut ;

Advice declarations in aspects

before () : get(int Foo.y) { ... }
runs before reading the field int Foo.y

after () returning : call(int Foo.m(int)) { ... }
runs after calls to int Foo.m(int) that return normally

after () returning (int x) : call(int Foo.m(int)) { ... }
same, but the return value is named x in the body

after () throwing : call(int Foo.m(int)) { ... }
runs after calls to m that exit abruptly by throwing an exception

after () throwing (NotFoundException e) : call(int Foo.m(int)) { ... }
runs after calls to m that exit abruptly by throwing a
NotFoundException. The exception is named e in the body

after () : call(int Foo.m(int)) { ... }
runs after calls to m regardless of how they exit

before(int i) : set(int Foo.x) && args(i) { ... }
runs before field assignment to int Foo.x. The value to be
assigned is named i in the body

before(Object o) : set(* Foo.*) && args(o) { ... }
runs before field assignment to any field of Foo. The value to be
assigned is converted to an object type (int to Integer, for
example) and named o in the body

int around () : call(int Foo.m(int)) { ... }
runs instead of calls to int Foo.m(int), and returns an int. In the
body, continue the call by using proceed(), which has the same
signature as the around advice.

int around () throws IOException : call(int Foo.m(int)) { ... }
same, but the body is allowed to throw IOException

Object around () : call(int Foo.m(int)) { ... }
same, but the value of proceed() is converted to an Integer, and
the body should also return an Integer which will be converted
into an int

general form:

[strictfp] AdviceSpec [throws TypeList] : Pointcut { Body }
where AdviceSpec is one of

before (Formals)
after (Formals)
after (Formals) returning [(Formal)]
after (Formals) throwing [(Formal)]
Type around (Formals)

Special forms in advice

thisJoinPoint
 reflective information about the join point.
thisJoinPointStaticPart

the equivalent of thisJoinPoint.getStaticPart(), but may use
fewer resources.

thisEnclosingJoinPointStaticPart
 the static part of the join point enclosing this one.

proceed (Arguments)

only available in around advice. The Arguments must be the
same number and type as the parameters of the advice.

Inter-type Member Declarations in aspects

int Foo . m (int i) { ... }
a method int m(int) owned by Foo, visible anywhere in the
defining package. In the body, this refers to the instance of Foo,
not the aspect.

private int Foo . m (int i) throws IOException { ... }
a method int m(int) that is declared to throw IOException, only
visible in the defining aspect. In the body, this refers to the
instance of Foo, not the aspect.

abstract int Foo . m (int i) ;
 an abstract method int m(int) owned by Foo
Point . new (int x, int y) { ... }

a constructor owned by Point. In the body, this refers to the new
Point, not the aspect.

private static int Point . x ;
a static int field named x owned by Point and visible only in the
declaring aspect

private int Point . x = foo() ;
a non-static field initialized to the result of calling foo(). In the
initializer, this refers to the instance of Foo, not the aspect.

general form:

[Modifiers] Type Type . Id (Formals)
[throws TypeList] { Body }

abstract [Modifiers] Type Type . Id (Formals)
[throws TypeList] ;

[Modifiers] Type . new (Formals)
[throws TypeList] { Body }

[Modifiers] Type Type . Id [= Expression] ;

Other Inter-type Declarations in aspects

declare parents : C extends D;
declares that the superclass of C is D. This is only legal if D is
declared to extend the original superclass of C.

declare parents : C implements I, J ;
 C implements I and J
declare warning : set(* Point.*) && !within(Point) : “bad set” ;

the compiler warns “bad set” if it finds a set to any field of
Point outside of the code for Point

declare error : call(Singleton.new(..)) : “bad construction” ;
the compiler signals an error “bad construction” if it finds a call
to any constructor of Singleton

declare soft : IOException : execution(Foo.new(..));
any IOException thrown from executions of the constructors of
Foo are wrapped in org.aspectj.SoftException

declare precedence : Security, Logging, * ;
at each join point, advice from Security has precedence over
advice from Logging, which has precedence over other advice.

general form
declare parents : TypePat extends Type ;
declare parents : TypePat implements TypeList ;
declare warning : Pointcut : String ;
declare error : Pointcut : String ;
declare soft : Type : Pointcut ;
declare precedence : TypePatList ;

Primitive Pointcuts

call (void Foo.m(int))
 a call to the method void Foo.m(int)
call (Foo.new(..))
 a call to any constructor of Foo
execution (* Foo.*(..) throws IOException)

the execution of any method of Foo that is declared to throw
IOException

execution (!public Foo .new(..))
the execution of any non-public constructor of Foo

initialization (Foo.new(int))
the initialization of any Foo object that is started with the
constructor Foo(int)

preinitialization (Foo.new(int))
the pre-initialization (before the super constructor is called) that
is started with the constructor Foo(int)

staticinitialization(Foo)
 when the type Foo is initialized, after loading
get (int Point.x)
 when int Point.x is read
set (!private * Point.*)
 when any non-private field of Point is assigned
handler (IOException+)

when an IOException or its subtype is handled with a catch block
adviceexecution()

the execution of all advice bodies
within (com.bigboxco.*)

any join point where the associated code is defined in the
package com.bigboxco

withincode (void Figure.move())
any join point where the associated code is defined in the method
void Figure.move()

withincode (com.bigboxco.*.new(..))
any join point where the associated code is defined in any
constructor in the package com.bigoxco.

cflow (call(void Figure.move()))
any join point in the control flow of each call to void
Figure.move(). This includes the call itself.

cflowbelow (call(void Figure.move()))
any join point below the control flow of each call to void
Figure.move(). This does not include the call.

if (Tracing.isEnabled())
any join point where Tracing.isEnabled() is true. The boolean
expression used can only access static members, variables bound
in the same pointcut, and thisJoinPoint forms.

this (Point)
any join point where the currently executing object is an instance
of Point

target (java.io.InputPort)
any join point where the target object is an instance of
java.io.InputPort

args (java.io.InputPort, int)
any join point where there are two arguments, the first an
instance of java.io.InputPort, and the second an int

args (*, int)
any join point where there are two arguments, the second of
which is an int.

args (short, .., short)
any join point with at least two arguments, the first and last of
which are shorts

Note: any position in this, target, and args can be replaced with a
variable bound in the advice or pointcut.

general form:

call(MethodPat)
call(ConstructorPat)
execution(MethodPat)
execution(ConstructorPat)
initialization(ConstructorPat)
preinitialization(ConstructorPat)
staticinitialization(TypePat)
get(FieldPat)
set(FieldPat)
handler(TypePat)
adviceexecution()
within(TypePat)
withincode(MethodPat)
withincode(ConstructorPat)
cflow(Pointcut)
cflowbelow(Pointcut)
if(Expression)
this(Type | Var)
target(Type | Var)
args(Type | Var , …)

where MethodPat is:
 [ModifiersPat] TypePat [TypePat .] IdPat (TypePat | .., …)

[throws ThrowsPat]
ConstructorPat is:
 [ModifiersPat] [TypePat .] new (TypePat | .. , …)

[throws ThrowsPat]
FieldPat is:
 [ModifiersPat] TypePat [TypePat .] IdPat
TypePat is one of:
 IdPat [+] [[] …]
 ! TypePat
 TypePat && TypePat
 TypePat || TypePat
 (TypePat)

