

Draft AspectJ Quick Reference
Aspects at top-level or static in types

aspect A { … }
defines the aspect A

privileged aspect A { … }
 A can access private fields

aspect A extends B { … }
 B is a class or abstract aspect
aspect A implements B { … }
 B is an interface
aspect A dominates (B || C) { … }

advice in A has more precedence than advice in B or C

general form:

[privileged] [Modifiers]
aspect Id
[extends Type]
[implements TypeList]
[dominates TypeList]
{ Body }

Pointcut definitions in types

private pointcut pc() : call(void Foo.m()) ;
a pointcut visible only from the defining type

pointcut pc(int i) : set(int Foo.x) && args(i) ;
a package-visible pointcut that exposes an int.

public abstract pointcut pc() ;

an abstract pointcut that can be referred to from anywhere.
abstract pointcut pc(Object o) ;

an abstract pointcut visible from the defining package.
Any pointcut that implements this must expose an Object.

general form:
abstract [Modifiers] pointcut Id (Formals) ;
[Modifiers] pointcut Id (Formals) : Pointcut ;

Advice declarations in aspects

before () : get(int Foo.y) { ... }
runs before reading the field int Foo.y

after () returning : call(int Foo.m(int)) { ... }

runs after calls to int Foo.m(int) that return normally.
after () returning (int x) : call(int Foo.m(int)) { ... }

same, but the return value is named x in the body.

after () throwing : call(int Foo.m(int)) { ... }

runs after calls to int Foo.m(int) that return abruptly by
throwing an exception.

after () throwing (NotFoundException e) :
call(int Foo.m(int)) { ... }

runs after calls to int Foo.m(int) that return abruptly by
throwing a NotFoundException. The thrown exception is
named e in the body.

after () : call(int Foo.m(int)) { ... }

runs after calls to int Foo.m(int) regardless of how returned

before(int i) : set(int Foo.x) && args(i) { ... }
runs before field assignment to int Foo.x. The value to be
assigned is named i in the body

before(Object o) : set(* Foo.*) && args(o) { ... }
runs before field assignment to any field of Foo. The
value to be assigned is converted to an object type (int to
Integer, for example) and named o in the body

int around () : call(int Foo.m(int)) { ... }
runs instead of calls to int Foo.m(int), and returns an int.
In the body, continue the call by using proceed(), which
has the same signature as the around advice.

int around () throws IOException :
call(int Foo.m(int)) { ... }

same, but the body is allowed to throw IOException
Object around () : call(int Foo.m(int)) { ... }

same, but the value of proceed() is converted to an
Integer, and the body should also return an Integer which
will be converted into an int

general form:

[strictfp] AdviceType : Pointcut { Body }
where AdviceType is one of

before (Formals)
after (Formals)
after (Formals) returning [(Formal)]
after (Formals) throwing [(Formal)]
Type around (Formals) [throws TypeList]

Special forms in advice

thisJoinPoint
 reflective information about the join point.
thisJoinPointStaticPart

the equivalent of thisJoinPoint.getStaticPart(), but may
use fewer resources.

thisEnclosingJoinPointStaticPart
 the static part of the join point enclosing this one.

proceed (Arguments)

only available in around advice. The Arguments must be
the same number and type of the parameters of the advice.

Inter-type Member Declarations in aspects

int Foo . m (int i) { ... }
a method int m(int) owned by Foo, visible anywhere in the
defining package. In the body, this refers to the instance
of Foo, not the aspect.

private int Foo . m (int i) throws IOException { ... }
a method int m(int) that is declared to throw IOException,
only visible in the defining aspect. In the body, this refers
to the instance of Foo, not the aspect.

abstract int Foo . m (int i) ;
 an abstract method int m(int) owned by Foo

Point . new (int x, int y) { ... }

a constructor owned by Point. In the body, this refers to
the new Point, not the aspect.

private static int Point . x ;
a static int field named x owned by Point and visible only
in the declaring aspect

private int Point . x = foo() ;
a non-static field initialized to the result of calling foo().
In the initializer, this refers to the instance of Foo, not the
aspect.

general form:

[Modifiers] Type TypePat . Id (Formals)
[throws TypeList] { Body }

abstract [Modifiers] Type TypePat . Id (Formals)
[throws TypeList] ;

[Modifiers] TypePat . new (Formals)
[throws TypeList] { Body }

[Modifiers] Type TypePat . Id [= Expression] ;

Other Inter-type Declarations in aspects

declare parents : C extends D;
declares that the superclass of C is D. This is only legal if
D is declared to extend the original superclass of C.

declare parents : C implements I, J ;
 C implements I and J

declare warning : set(* Point.*) && !within(Point) :

“bad set” ;
the compiler warns “bad set” if it finds a set to any field
of Point outside of the code for Point

declare error : call(Singleton.new(..)) :
 “bad construction” ;

the compiler signals an error “bad construction” if it finds
a call to any constructor of Singleton

declare soft : IOException || NotFoundException :

execution(Foo.new(..));
any IOException or NotFoundException thrown from
executions of the constructors of Foo are wrapped in
org.aspectj.SoftException

general form
declare parents : TypePat extends Type ;
declare parents : TypePat implements TypeList ;
declare warning : Pointcut : String ;
declare error : Pointcut : String ;
declare soft : TypePat : Pointcut ;

Primitive Pointcuts

call (void Foo.m(int))
 a call to the method void Foo.m(int)
call (Foo.new(..))
 a call to any constructor of Foo
execution (* Foo.*(..) throws IOException)

the execution of any method of Foo that is declared to
throw IOException

execution (!public Foo .new(..))
the execution of any non-public constructor of Foo

initialization (Foo.new(int))
the initialization of any Foo object that is started with the
constructor Foo(int)

staticinitialization(Foo)
 when the type Foo is initialized, after loading
get (int Point.x)
 when int Point.x is read

set (!private * Point.*)
 when any non-private field of Point is assigned
handler (IOException+)

when an IOException or its subtype is handled with a catch
block

within (com.bigboxco.*)
any join point where the associated code is defined in the
package com.bigboxco

withincode (void Figure.move())
any join point where the associated code is defined in the
method void Figure.move()

withincode (com.bigboxco.*.new(..))
any join point where the associated code is defined in any
constructor in the package com.bigoxco.

cflow (call(void Figure.move()))

any join point in the control flow of each call to void
Figure.move(). This includes the call itself.

cflowbelow (call(void Figure.move()))
any join point below the control flow of each call to void
Figure.move(). This does not include the call.

if (Tracing.isEnabled())
any join point where Tracing.isEnabled() is true. The
boolean expression used can only access static members,
variables bound in the same pointcut, and thisJoinPoint
forms.

this (Point || Line)
any join point where the currently executing object is an
instance of either Point or Line

target (java.io.InputPort)
any join point where the target object is an instance of
java.io.InputPort

args (java.io.InputPort, int)
any join point where there are two arguments, the first an
instance of java.io.InputPort, and the second an int

args (*, int)
any join point where there are two arguments, the second
of which is an int.

args (short, .., short)
any join point with at least two arguments, the first and last
of which are shorts

any position in this, target, and args can be replaced with a
variable bound in the advice or pointcut.

general form:
call(MethodPat)
call(ConstructorPat)
execution(MethodPat)
execution(ConstructorPat)
initialization(ConstructorPat)
staticinitialization(TypePat)
get(FieldPat)
set(FieldPat)
handler(TypePat)

within(TypePat)
withincode(MethodPat)
withincode(ConstructorPat)

cflow(Pointcut)
cflowbelow(Pointcut)

if(Expression)

this(TypePat | Var)
target(TypePat | Var)
args(TypePat | Var , …)

where
MethodPat:
 [ModifiersPat] TypePat [TypePat .] IdPat (TypePat , …)

[throws ThrowsPat]
ConstructorPat:
 [ModifiersPat] [TypePat .] new (TypePat , …)

[throws ThrowsPat]
FieldPat:
 [ModifiersPat] TypePat [TypePat .] IdPat
TypePat:
 IdPat [+] [[] …]
 ! TypePat
 TypePat && TypePat
 TypePat || TypePat
 (TypePat)

This is a draft reference sheet corresponding to AspectJ 1.0.6.

(c) Copyright 2002 Palo Alto Research Center Incorporated
All rights reserved.

