Aspectd Quick Reference

Aspects

aspect A{ ... }
defines the aspeét
privileged aspect A{ ... }
A can access private fields and methods
aspect A extends B implementsl, J{ ... }
B is a class or abstract aspéandJ are interfaces
aspect A percflow(call(void Foo.m()) { ... }
an instance oA is instantiated for every control flow through
calls tom()

at top-level (orstatic in types)

general form:
[privileged] [Modifiers] aspect Id
[extends Type] [implements TypeList] [PerClause]
{ Body}
wherePerClauses one of
pertarget (Pointcut)
perthis (Pointcut)
per cflow (Pointcut)
per cflowbelow (Pointcut)
issingleton

Pointcut definitions in types

private pointcut pg) : call(void Foo.m());
a pointcut visible only from the defining type
pointcut pc(int i) : set(int Foo.x) && args(i);
a package-visible pointcut that exposesmn
public abstract pointcut pd) ;
an abstract pointcut that can be referred to fragwaere.
abstract pointcut po(Object 9 ;
an abstract pointcut visible from the defining pegpl. Any
pointcut that implements this must exposeddnject

general form:
abstract [Modifierg pointcut Id (Formals) ;
[Modifierd pointcut Id (Formals) : Pointcut;

Advice declarations

before () : get(int Foo.y) ... }
runs before reading the fieidt Foo.y
after () returning : call(int Foo.m(int)){ ... }
runs after calls tint Foo.m(int)that return normally
after () returning (int x) : call(int Foo.m(int)){ ... }
same, but the return value is nanxdd the body
after () throwing : call(int Foo.m(int)){ ... }

in aspects

runs after calls ton that exit abruptly by throwing an exception

after () throwing (NotFoundException)e call(int Foo.m(int)){ ...

runs after calls ton that exit abruptly by throwing a
NotFoundException The exception is namedn the body
after () : call(int Foo.m(int)){ ... }
runs after calls ton regardless of how they exit
before(int i) : set(int Foo.x) && args(iY ... }
runs before field assignmentitd Foo.x The value to be
assigned is namedn the body
before(Object 9 : set(* Foo.*) && args(o){ ... }
runs before field assignment to any field=afo. The value to
be assigned is converted to an object typietd Integer,for
example) and namedlin the body

int around () : call(int Foo.m(int)){ ... }
runs instead of calls ot Foo.m(int) and returns amt. In the
body, continue the call by usimpgoceed(), which has the same
signature as the around advice.

int around () throws IOException: call(int Foo.m(int)){ ... }
same, but the body is allowed to thrd®Exception

Objectaround () : call(int Foo.m(int){ ... }
same, but the value pfoceed() is converted to amteger,
and the body should also returnlategerwhich will be
converted into amt

general form:

[strictfp] AdviceSpe¢ throws TypelList] : Pointcut{ Body}
whereAdviceSpeds one of

before (Formals)

after (Formals)

after (Formals) returning [(Formal)]

after (Formals) throwing [(Formal)]

Typearound (Formals)

Special forms in advice

thisJoinPoint
reflective information about the join point.
thisJoinPointStaticPart
the equivalent ofhisJoinPoint.getStaticPart(), but may use
fewer resources.
thisEnclosingJoinPointStaticPart
the static part of the join point enclosing thigon

proceed (Argumentg
only available ireround advice. TheéArgumentsnust be the
same number and type as the parameters of thesadvic

Inter-type Member Declarations

intFoo.m(inti){...}
a methodnt m(int) owned byFoo, visible anywhere in the
defining package. In the bodyis refers to the instance of
Foo, not the aspect.

privateint Foo . m(inti) throwsIOExceptior{ ... }
a methodnt m(int) that is declared to throlDExceptiononly
visible in the defining aspect. In the botlyis refers to the
instance ofo0, not the aspect.

abstract int Foo . m(inti) ;
an abstract methddt m(int) owned byFoo

Point .new (intx, inty){...}
a constructor owned Hoint In the bodythis refers to the
new Point, not the aspect.

private static int Point . x;
a statidnt field namedk owned byPoint and visible only in
the declaring aspect

privateint Point . x=foo();
a non-static field initialized to the result of ldad) foo(). In the
initializer, this refers to the instance Bbo, not the aspect.

in aspects

generaform:

[Modifiers] TypeType. Id (Formals)
[throws TypelList] { Body}

abstract [Modifiers] TypeType. Id (Formals)
[throws TypelList] ;

[Modifiers] Type. new (Formals)
[throws TypelList] { Body}

[Modifiers] TypeType. Id [= Expression ;

Other Inter-type Declarations in aspects

declare parents: C extendsD;
declares that the superclassCos D. This is only legal iD is
declared to extend the original superclas§.of

declare parents: Cimplementsl, J;
C implementd andJ

declarewarning : set(* Point.*) && !within(Point): “bad set” ;
the compiler warn$bad set” if it finds a set to any field of
Point outside of the code fdroint

declareerror : call(Singleton.new(..))*bad construction”;
the compiler signals an errtivad construction”if it finds a
call to any constructor @ingleton

declare soft : IOException: execution(Foo.new(.;))

any IOExceptiorthrown from executions of the constructors of

Foo are wrapped ir g.aspectj.SoftException
declare precedence : Security, Logging, *
at each join point, advice froBecurityhas precedence over

advice fromLogging which has precedence over other advice.

general form
declare parents : TypePatextends Type;
declare parents : TypePatimplements TypeList ;
declare warning : Pointcut: String;
declareerror : Pointcut: String;
declare soft : Type: Pointcut;
declare precedence : TypePatList

Primitive Pointcuts

call (void Foo.m(int)
a call to the methodoid Foo.m(int)
call (Foo.new(..)
a call to any constructor &oo
execution (* Foo.*(..) throws IOException
the execution of any method Bbo that is declared to throw
IOException
execution (!public Foo .new(..)
the execution of any non-public constructoFob
initialization (Foo.new(int))
the initialization of anyFoo object that is started with the
constructo~oo(int)
preinitialization (Foo.new(int))
the pre-initialization (before th&iper constructor is called)
that is started with the constructoo(int)
staticinitialization(Foo)
when the typ&oois initialized, after loading
get (int Point.x)
whenint Point.xis read
set (!private * Point.*)
when any non-private field #fointis assigned
handler (IOException+)
when anOExceptionor its subtype is handled with a catch
block
adviceexecution()
the execution of all advice bodies
within (com.bigboxco.)
any join point where the associated code is define¢de
packagecom.bigboxco
withincode (void Figure.move()
any join point where the associated code is defin¢de
methodvoid Figure.move()
withincode (com.bigboxco.*.new(.))
any join point where the associated code is definedhy
constructor in the packagem.bigoxco.

cflow (call(void Figure.move())
any join point in the control flow of each callvoid
Figure.move().This includes the call itself.

cflowbelow (call(void Figure.move())
any join point below the control flow of each dalivoid
Figure.move(). This does not include the call.

if (Tracing.isEnabled())
any join point wher@racing.isEnabled()istrue. The
boolean expression used can only access static eremb
variables bound in the same pointcut, #mnigJoinPoint forms.

this (Point)
any join point where the currently executing objean
instance ofPoint

target (java.io.lnputPort)
any join point where the target object is an instaof
java.io.lnputPort

args (java.io.InputPort, inf)
any join point where there are two arguments, itis¢ dn
instance ofava.io.InputPortand the second ant

args(* int)
any join point where there are two arguments, gwosd of
which is anint.

args (short, .., short)
any join point with at least two arguments, thetfand last of
which areshors

Note: any position irthis, target, andargs can be replaced with a

variable bound in the advice or pointcut.

general form:
call(MethodPa}
call(ConstructorPak
execution(MethodPa}
execution(ConstructorPa
initialization(ConstructorPax
preinitialization(ConstructorPa
staticinitialization(TypePa}
get(FieldPal
set(FieldPa
handler (TypePa}
adviceexecution()
within(TypePa}t
withincode(MethodPa}
withincode(ConstructorPa
cflow(Pointcu)
cflowbelow(Pointcu)
if(Expression
this(Type| Var)
target(Type| Var)
args(Type| Var, ...)
whereMethodPats:
[ModifiersPat TypePafTypePat] IdPat(TypePay .., ...)
[throws ThrowsPat]
ConstructorPats:
[ModifiersPat] [TypePat] new (TypePat | ., ...)
[throws ThrowsPat]
FieldPatis:
[ModifiersPat TypePaTypePat] IdPat
TypePats one of:
ldPat[+][[] ...]
I TypePat
TypePa®& & TypePat
TypePaf| TypePat
(TypePai)

