1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
<chapter id="ataspectj" xreflabel="AtAspectJ">
<title>An Annotation Based Development Style</title>
<sect1 id="ataspectj-intro">
<title>Introduction</title>
<para>In addition to the familiar AspectJ code-based style of aspect
declaration, AspectJ 5 also supports an annotation-based style of
aspect declaration. We informally call the set of annotations that
support this development style the "@AspectJ" annotations.</para>
<para>
AspectJ 5 allows aspects and their members to be specified using
either the code style or the annotation style. Whichever style you
use, the AspectJ weaver ensures that your program has exactly the
same semantics. It is, to quote a famous advertising campaign,
"a choice, not a compromise". The two styles can be mixed within
a single application, and even within a single source file, though
we doubt this latter mix will be recommended in practice.
</para>
<para>
The use of the @AspectJ annotations means that there are large
classes of AspectJ applications that can be compiled by a regular
Java 5 compiler, and subsequently woven by the AspectJ weaver (for
example, as an additional build stage, or as late as class load-time).
In this chapter we introduce the @AspectJ annotations and show how
they can be used to declare aspects and aspect members.
</para>
</sect1>
<sect1 id="ataspectj-aspects">
<title>Aspect Declarations</title>
<para>
Aspect declarations are supported by the
<literal>org.aspectj.lang.annotation.Aspect</literal> annotation.
The declaration:
</para>
<programlisting><![CDATA[
@Aspect
public class Foo {}
]]></programlisting>
<para>Is equivalent to:</para>
<programlisting><![CDATA[
public aspect Foo {}
]]></programlisting>
<para>And since issingleton() is the default aspect instantiation model it is equivalent to:</para>
<programlisting><![CDATA[
@Aspect("issingleton()")
public class Foo {}
]]></programlisting>
<para>Privileged aspects are not supported by the annotation style</para>
<!--
<programlisting><![CDATA[
@Aspect(isPrivileged=true)
public class Foo {}
is equivalent to...
public privileged aspect Foo {}
]]></programlisting>
-->
<para>To specify an aspect an aspect instantiation model (the default is
singleton), provide the perclause as the
<literal>@Aspect</literal> value.
For example:
</para>
<programlisting><![CDATA[
@Aspect("perthis(execution(* abc..*(..)))")
public class Foo {}
is equivalent to...
public aspect Foo perthis(execution(* abc..*(..))) {}
]]></programlisting>
</sect1>
<sect1 id="ataspectj-pcadvice">
<title>Pointcuts and Advice</title>
<para>
Pointcut and advice declarations can be made using the
<literal>Pointcut, Before, After, AfterReturning, AfterThrowing,</literal>
and
<literal>Around</literal> annotations.
</para>
<sect2>
<title>Pointcuts</title>
<para>
Pointcuts are specified using the
<literal>org.aspectj.lang.annotation.Pointcut</literal> annotation
on a method declaration. The method should have a
<literal>void</literal>
return type. The parameters of the method correspond to the parameters
of the pointcut. The modifiers of the method correspond to the modifiers
of the pointcut.
</para>
<para>
As a general rule, the
<literal>@Pointcut</literal> annotated method must have an empty method body
and must not have any
<literal>throws</literal> clause. If formal are bound (using
<literal>args(), target(), this(), @args(), @target(), @this(), @annotation())</literal> in the
pointcut, then they must appear in the method signature.
</para>
<para>
There is one special case to the general rule for when you use
<literal>if()</literal> pointcut
as detailled in the next section.
</para>
<para>A simple example:</para>
<programlisting><![CDATA[
@Pointcut("call(* *.*(..))")
void anyCall() {}
is equivalent to...
pointcut anyCall() : call(* *.*(..));
]]></programlisting>
<para>An example with formal bindings:</para>
<programlisting><![CDATA[
@Pointcut("call(* *.*(int)) && args(i) && target(callee)")
void someCall(int i, Foo callee) {}
is equivalent to...
pointcut anyCall(int i, Foo callee) : call(* *.*(int)) && args(i) && target(callee);
]]></programlisting>
<para>An example with modifiers (it is also good to remember that Java 5 annotations are not inherited):</para>
<programlisting><![CDATA[
@Pointcut("")
protected abstract void anyCall();
is equivalent to...
protected abstract pointcut anyCall();
]]></programlisting>
<para>
Using the code style, types referenced in pointcut expressions are
resolved with respect to the imported types in the compilation unit.
When using the annotation style, types referenced in pointcut
expressions are resolved in the absence of any imports and so have
to be fully qualified if they are not by default visible to the
declaring type (outside of the declaring package and
<literal>java.lang</literal>). This
to not apply to type patterns with wildcards, which are always resolved
in a global scope.
</para>
<para>
Consider the following compilation unit:
</para>
<programlisting><![CDATA[
package org.aspectprogrammer.examples;
import java.util.List;
public aspect Foo {
pointcut listOperation() : call(* List.*(..));
pointcut anyUtilityCall() : call(* java.util..*(..));
}
]]></programlisting>
<para>
Using the annotation style this would be written as:
</para>
<programlisting><![CDATA[
package org.aspectprogrammer.examples;
import java.util.List; // redundant but harmless
@Aspect
public class Foo {
@Pointcut("call(* java.util.List.*(..))") // must qualify
void listOperation() {}
@Pointcut("call(* java.util..*(..))")
void anyUtilityCall() {}
}
]]></programlisting>
<para>The
<literal>value</literal> attribute of the
<literal>Pointcut</literal> declaration may contain any valid
AspectJ pointcut declaration - though <literal>if()</literal> pointcut is a special case explained below.
</para>
<para>The special case for the <literal>if()</literal> pointcut.</para>
<para>In code style, it is possible to use the <literal>if(...)</literal> poincut to implement
conditional pointcut whose residual if form will be evaluated at runtime. The <literal>if(...)</literal>
body can be any valid Java boolean expression, and can use any exposed formal, as well as the join point forms
<literal>thisJoinPoint, thisJoinPointStaticPart and thisJoinPointEnclosingStaticPart</literal>.
</para>
<para>
When using the annotation style, it would be really a pain to write a valid Java expression within
the annotation value so the syntax differs sligthly, whilst providing the very same
semantics and runtime behaviour. Take the following examples:
</para>
<programlisting><![CDATA[
@Pointcut("call(* *.*(int)) && args(i) && if()")
public static boolean someCallWithIfTest(int i) {
return i > 0;
}
is equivalent to...
pointcut someCallWithIfTest(int i) : call(* *.*(int)) && args(i) && if(i > 0);
]]></programlisting>
<para> and the following is also a valid form:</para>
<programlisting><![CDATA[
static int COUNT = 0;
@Pointcut("call(* *.*(int)) && args(i) && if()")
public static boolean someCallWithIfTest(int i, JoinPoint jp, JoinPoint.EnclosingStaticPart esjp) {
// can call any kind of method (though this method is a static one)
return i > 0
&& jp.getSignature().getName.startsWith("doo")
&& esjp.getSignature().getName().startsWith("test")
&& COUNT++ < 10;
}
@Before("someCallWithIfTest(arg0, jp, enc)") // see how the pointcut is referenced: we obey its exact signature
public void beforeAdviceWithRuntimeTest(int arg0, JoinPoint jp, JoinPoint.EnclosingStaticPart enc) {
//...
}
// Note that the following is NOT valid
/*
@Before("call(* *.*(int)) && args(i) && if()")
public void advice(int i) {
// so you were writing an advice or an if body ?
}
*/
]]></programlisting>
<para>
It is thus possible with the annotation style to use the <literal>if()</literal> pointcut
only within an <literal>@Pointcut</literal> expression. The <literal>if()</literal> must not contain any
body. The so annotated <literal>@Pointcut</literal> method must then be of the form <literal>public static boolean</literal>
and can use formal bindings as usual.
Extra <emphasis>implicit</emphasis> (thus unbound) arguments of type JoinPoint, JoinPoint.StaticPart and JoinPoint.EnclosingStaticPart can also be used
(they can't for regular pointcut without <literal>if()</literal> form).
</para>
<para>
The special forms <literal>if(true)</literal> and <literal>if(false)</literal> can be used in a more
general way and don't imply that the pointcut method must have a body.
You can thus write <literal>@Before("somePoincut() && if(false)")</literal>.
</para>
</sect2>
<sect2>
<title>Advice</title>
<para>In this section we first discuss the use of annotations for
simple advice declarations. Then we show how
<literal>thisJoinPoint</literal>
and its siblings are handled in the body of advice and discuss the
treatment of
<literal>proceed</literal> in around advice.
</para>
<para>Using the annotation style, an advice declaration is written as
a regular Java method with one of the
<literal>Before, After, AfterReturning,
AfterThrowing,</literal> or
<literal>Around</literal> annotations. Except in
the case of around advice, the method should return void. The method should
be declared public.
</para>
<para>A method that has an advice annotation is treated exactly as an
advice declaration by AspectJ's weaver. This includes the join points that
arise when the advice is executed (an adviceexecution join point, not a
method execution join point), and the restriction that advice cannot be
invoked explicitly (the weaver will issue an error if an advice method
is explicitly invoked).</para>
<para>The following example shows a simple before advice declaration in
both styles:</para>
<programlisting><![CDATA[
before() : call(* org.aspectprogrammer..*(..)) && this(Foo) {
System.out.println("Call from Foo");
}
is equivalent to...
@Before("call(* org.aspectprogrammer..*(..)) && this(Foo)")
public void callFromFoo() {
System.out.println("Call from Foo");
}
]]></programlisting>
<para>Notice one slight difference between the two advice declarations: in
the annotation style, the advice has a name, "callFromFoo". Even though
advice cannot be invoked explicitly, this name is useful in join point
matching when advising advice execution. For this reason, and to preserve
exact semantic equivalence between the two styles, we also support the
<literal>org.aspectj.lang.annotation.AdviceName</literal> annotation.
The exact equivalent declarations are:
</para>
<programlisting><![CDATA[
@AdviceName("callFromFoo")
before() : call(* org.aspectprogrammer..*(..)) && this(Foo) {
System.out.println("Call from Foo");
}
is equivalent to...
@Before("call(* org.aspectprogrammer..*(..)) && this(Foo)")
public void callFromFoo() {
System.out.println("Call from Foo");
}
]]></programlisting>
<para>If the advice body needs to know which particular
<literal>Foo</literal>
was doing the calling, just add a parameter to the advice declaration.
</para>
<programlisting><![CDATA[
@AdviceName("callFromFoo")
before(Foo foo) : call(* org.aspectprogrammer..*(..)) && this(foo) {
System.out.println("Call from Foo: " + foo);
}
is equivalent to...
@Before("call(* org.aspectprogrammer..*(..)) && this(foo)")
public void callFromFoo(Foo foo) {
System.out.println("Call from Foo: " + foo);
}
]]></programlisting>
<para>If the advice body needs access to
<literal>thisJoinPoint</literal>,
<literal>thisJoinPointStaticPart</literal>,
<literal>thisEnclosingJoinPointStaticPart</literal> then these need to
be declared as additional method parameters when using the annotation
style. <!-- TODO AV - not any more - In AspectJ 1.5.0 we require that these parameters be declared
first in the parameter list, in later releases we may relax this
requirement.-->
</para>
<programlisting><![CDATA[
@AdviceName("callFromFoo")
before(Foo foo) : call(* org.aspectprogrammer..*(..)) && this(foo) {
System.out.println("Call from Foo: " + foo + " at "
+ thisJoinPoint);
}
is equivalent to...
@Before("call(* org.aspectprogrammer..*(..)) && this(foo)")
public void callFromFoo(JoinPoint thisJoinPoint, Foo foo) {
System.out.println("Call from Foo: " + foo + " at "
+ thisJoinPoint);
}
]]></programlisting>
<para>Advice that needs all three variables would be declared:</para>
<programlisting><![CDATA[
@Before("call(* org.aspectprogrammer..*(..)) && this(Foo)")
public void callFromFoo(JoinPoint thisJoinPoint,
JoinPoint.StaticPart thisJoinPointStaticPart,
JoinPoint.EnclosingStaticPart thisEnclosingJoinPointStaticPart) {
// ...
}
]]></programlisting>
<para>
<literal>JoinPoint.EnclosingStaticPart</literal> is a new (empty) sub-interface
of
<literal>JoinPoint.StaticPart</literal> which allows the AspectJ weaver to
distinguish based on type which of
<literal>thisJoinPointStaticPart</literal> and
<literal>thisEnclosingJoinPointStaticPart</literal> should be passed in a given
parameter position.
</para>
<para>
<literal>After</literal> advice declarations take exactly the same form
as
<literal>Before</literal>, as do the forms of
<literal>AfterReturning</literal>
and
<literal>AfterThrowing</literal> that do not expose the return type or
thrown exception respectively.
</para>
<para>
To expose a return value with after returning advice simply declare the returning
parameter as a parameter in the method body and bind it with the "returning"
attribute:
</para>
<programlisting><![CDATA[
after() returning : criticalOperation() {
System.out.println("phew");
}
after() returning(Foo f) : call(Foo+.new(..)) {
System.out.println("It's a Foo: " + f);
}
can be written as...
@AfterReturning("criticalOperation()")
public void phew() {
System.out.println("phew");
}
@AfterReturning(pointcut="call(Foo+.new(..))",returning="f")
public void itsAFoo(Foo f) {
System.out.println("It's a Foo: " + f);
}
]]></programlisting>
<para>(Note the use of the "pointcut=" prefix in front of the pointcut
expression in the returning case).</para>
<para>After throwing advice works in a similar fashion, using the
<literal>throwing</literal> attribute when needing to expose a
thrown exception.
</para>
<para>For around advice, we have to tackle the problem of
<literal>proceed</literal>.
One of the design goals for the annotation style is that a large class of
AspectJ applications should be compilable with a standard Java 5 compiler.
A straight call to
<literal>proceed</literal> inside a method body:
</para>
<programlisting><![CDATA[
@Around("call(* org.aspectprogrammer..*(..))")
public Object doNothing() {
return proceed(); // CE on this line
}
]]></programlisting>
<para>will result in a "No such method" compilation error. For this
reason AspectJ 5 defines a new sub-interface of
<literal>JoinPoint</literal>,
<literal>ProceedingJoinPoint</literal>.
</para>
<programlisting><![CDATA[
public interface ProceedingJoinPoint extends JoinPoint {
public Object proceed(Object[] args);
}
]]></programlisting>
<para>The around advice given above can now be written as:</para>
<programlisting><![CDATA[
@Around("call(* org.aspectprogrammer..*(..))")
public Object doNothing(ProceedingJoinPoint thisJoinPoint) {
return thisJoinPoint.proceed();
}
]]></programlisting>
<para>Here's an example that uses parameters for the proceed call:</para>
<programlisting><![CDATA[
public aspect ProceedAspect {
pointcut setAge(int i): call(* setAge(..)) && args(i);
Object around(int i): setAge(i) {
return proceed(i*2);
}
}
can be written as...
@Aspect
public class ProceedAspect {
@Pointcut("call(* setAge(..)) && args(i)")
void setAge(int i) {}
@Around("setAge(i)")
public Object twiceAsOld(ProceedingJoinPoint thisJoinPoint, int i) {
return thisJoinPoint.proceed(new Object[]{i*2}); //using Java 5 autoboxing
}
}
Note that the ProceedingJoinPoint does not need to be passed as the proceed(..) arguments.
]]></programlisting>
</sect2>
</sect1>
<sect1 id="ataspectj-itds">
<title>Inter-type Declarations</title>
<para>
Inter-type declarations are challenging to support using an annotation style.
It's very important to preserve the exact same semantics between the code style
and the annotation style. We also want to support compilation of a large set
of AspectJ applications using a standard Java 5 compiler. For these reasons, in
the initial release of AspectJ 5 we will only support inter-type declarations
on interfaces using the annotation style.
</para>
<para>
Consider the following aspect:
</para>
<programlisting><![CDATA[
public aspect MoodIndicator {
public interface Moody {};
private Mood Moody.mood = Mood.HAPPY;
public Mood Moody.getMood() {
return mood;
}
declare parents : org.xyz..* implements Moody;
before(Moody m) : execution(* *.*(..)) && this(m) {
System.out.println("I'm feeling " + m.getMood());
}
}
]]></programlisting>
<para>
This declares an interface
<literal>Moody</literal>, and then makes two
inter-type declarations on the interface - a field that is private to the
aspect, and a method that returns the mood. Within the body of the inter-type
declared method
<literal>getMoody</literal>, the type of
<literal>this</literal>
is
<literal>Moody</literal> (the target type of the inter-type declaration).
</para>
<para>Using the annotation style this aspect can be written:
</para>
<programlisting><![CDATA[
@Aspect
public class MoodIndicator {
public interface Moody {
Mood getMood();
};
@DeclareParents("org.xzy..*")
class MoodyImpl implements Moody {
private Mood mood = Mood.HAPPY;
public Mood getMood() {
return mood;
}
}
@Before("execution(* *.*(..)) && this(m)")
void feelingMoody(Moody m) {
System.out.println("I'm feeling " + m.getMood());
}
}
]]></programlisting>
<para>
This is very similar to the mixin mechanism supported by AspectWerkz. The
effect of the
<literal>@DeclareParents</literal> annotation is equivalent to
a declare parents statement that all types matching the type pattern implement
the interface implemented by the annotated class. In addition, the member
declarations within the annotated class are treated as inter-type declarations
on the implemented interface. Note how this scheme operates within the constraints
of Java type checking and ensures that
<literal>this</literal> has access
to the exact same set of members as in the code style example.
</para>
<para>The annotated class may only extend
<literal>Object</literal>, and may
only implement a single interface. The interface implemented by the class may
itself extend other interfaces.
</para>
</sect1>
<sect1 id="ataspectj-declare">
<title>Declare statements</title>
<para>The previous section on inter-type declarations covered the case
of declare parents ... implements. The 1.5.0 release of AspectJ 5 will
not support annotation style declarations for declare parents ... extends
and declare soft (programs with these declarations would not in general
be compilable by a regular Java 5 compiler, reducing the priority of
their implementation). These may be supported in a future release.</para>
<para>Declare precedence and declare annotation
<emphasis>will</emphasis>
be supported. For declare precedence, use the
<literal>@DeclarePrecedence</literal>
annotation as in the following example:
</para>
<programlisting><![CDATA[
public aspect SystemArchitecture {
declare precedence : Security*, TransactionSupport, Persistence;
// ...
}
can be written as:
@Aspect
@DeclarePrecedence("Security*,org.xyz.TransactionSupport,org.xyz.Persistence")
public class SystemArchitecture {
// ...
}
]]></programlisting>
<para>
Declare annotation is supported via annotations on a dummy type member. If the
<literal>Target</literal> specification of the annotation allows it, use a field,
otherwise declare a member of the type required by the
<literal>Target</literal>.
For example:
</para>
<programlisting><![CDATA[
public aspect DeclareAnnotationExamples {
declare annotation : org.xyz.model..* : @BusinessDomain;
declare annotation : public * BankAccount+.*(..) : @Secured(role="supervisor");
declare anotation : * DAO+.* : @Persisted;
}
can be written as...
@Aspect
public class DeclareAnnotationExamples {
@DeclareAnnotation("org.xyz.model..*)
@BusinessDomain Object modelClass;
// this example assumes that the @Secured annotation has a Target
// annotation with value ElementType.METHOD
@DeclareAnnotation("public * org.xyz.banking.BankAccount+.*(..)")
@Secured(role="supervisor) void bankAccountMethod();
@DeclareAnnotation("* DAO+.*")
@Persisted Object daoFields;
}
]]></programlisting>
<para>
Note: Declare annotation is not available in AspectJ 1.5 M3 and syntax might change
when it will be available.
</para>
<para>We also support annotation style declarations for declare warning and
declare error - any corresponding warnings and errors will be emitted at
weave time, not when the aspects containing the declarations are compiled.
(This is the same behaviour as when using declare warning or error with the
code style). Declare warning and error declarations are made by annotating
a string constant whose value is the message to be issued.</para>
<para>Note that the String must be a constant and not the result of the invocation
of a static method for example.</para>
<programlisting><![CDATA[
declare warning : call(* javax.sql..*(..)) && !within(org.xyz.daos..*)
: "Only DAOs should be calling JDBC.";
declare error : execution(* IFoo+.*(..)) && !within(org.foo..*)
: "Only foo types can implement IFoo";
can be written as...
@DeclareWarning("call(* javax.sql..*(..)) && !within(org.xyz.daos..*)")
static final String aMessage = "Only DAOs should be calling JDBC.";
@DeclareError("execution(* IFoo+.*(..)) && !within(org.foo..*)")
static final String badIFooImplementors = "Only foo types can implement IFoo";
// the following is not valid since the message is not a String constant
@DeclareError("execution(* IFoo+.*(..)) && !within(org.foo..*)")
static final String badIFooImplementorsCorrupted = getMessage();
static String getMessage() {
return "Only foo types can implement IFoo " + System.currentTimeMillis();
}
]]></programlisting>
</sect1>
<sect1 id="ataspectj-aspectof">
<title>aspectOf() and hasAspect() methods</title>
<para>A central part of AspectJ's programming model is that aspects
written using the code style and compiled using ajc support
<literal>aspectOf</literal> and
<literal>hasAspect</literal> static
methods. When developing an aspect using the annotation style and compiling
using a regular Java 5 compiler, these methods will not be visible to the
compiler and will result in a compilation error if another part of the
program tries to call them.
</para>
<para>To provide equivalent support for AspectJ applications compiled with
a standard Java 5 compiler, AspectJ 5 defines the
<literal>Aspects</literal>
utility class:
</para>
<programlisting><![CDATA[
public class Aspects {
/* variation used for singleton, percflow, percflowbelow */
static<T> public static T aspectOf(T aspectType) {...}
/* variation used for perthis, pertarget */
static<T> public static T aspectOf(T aspectType, Object forObject) {...}
/* variation used for pertypewithin */
static<T> public static T aspectOf(T aspectType, Class forType) {...}
/* variation used for singleton, percflow, percflowbelow */
public static boolean hasAspect(Object anAspect) {...}
/* variation used for perthis, pertarget */
public static boolean hasAspect(Object anAspect, Object forObject) {...}
/* variation used for pertypewithin */
public static boolean hasAspect(Object anAspect, Class forType) {...}
}
]]></programlisting>
<!-- TODO AV - stuff below is not done -->
<!--
<para>When the AspectJ weaver sees calls to these methods, it will convert
them into the most efficient form possible (to get performance equivalent
to a direct <literal>MyAspect.aspectOf()</literal> call).</para>
-->
</sect1>
</chapter>
|