blob: 5379d5daa15ee9ed911e23f6db7b094951b1a72d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
<chapter id="pitfalls" xreflabel="Pitfalls">
<title>Pitfalls</title>
<sect1><!-- About this Chapter -->
<title>About this Chapter</title>
<para>This chapter consists of aspectj programs that may lead to surprising
behaviour and how to understand them.
</para>
</sect1>
<sect1>
<title>Infinite loops</title>
<para>Here is a Java program with peculiar behavior </para>
<programlisting><![CDATA[
public class Main {
public static void main(String[] args) {
foo();
System.out.println("done with call to foo");
}
static void foo() {
try {
foo();
} finally {
foo();
}
}
}
]]></programlisting>
<para>This program will never reach the println call, but when it aborts
will have no stack trace. </para>
<para>This silence is caused by multiple StackOverflowExceptions. First
the infinite loop in the body of the method generates one, which the
finally clause tries to handle. But this finally clause also generates an
infinite loop which the current JVMs can't handle gracefully leading to the
completely silent abort. </para>
<para> The following short aspect will also generate this behavior:
</para>
<programlisting><![CDATA[
aspect A {
before(): call(* *(..)) { System.out.println("before"); }
after(): call(* *(..)) { System.out.println("after"); }
}
]]></programlisting>
<para>Why? Because the call to println is also a call matched by the
pointcut <literal>call (* *(..))</literal>. We get no output because we
used simple after() advice. If the aspect were changed to</para>
<programlisting><![CDATA[
aspect A {
before(): call(* *(..)) { System.out.println("before"); }
after() returning: call(* *(..)) { System.out.println("after"); }
}
]]></programlisting>
<para>Then at least a StackOverflowException with a stack trace would be
seen. In both cases, though, the overall problem is advice applying within
its own body. </para>
<para>There's a simple idiom to use if you ever have a worry that your
advice might apply in this way. Just restrict the advice from occurring in
join points caused within the aspect. So: </para>
<programlisting><![CDATA[
aspect A {
before(): call(* *(..)) && !within(A) { System.out.println("before"); }
after() returning: call(* *(..)) && !within(A) { System.out.println("after"); }
}
]]></programlisting>
<para>Other solutions might be to more closely restrict the pointcut in
other ways, for example: </para>
<programlisting><![CDATA[
aspect A {
before(): call(* MyObject.*(..)) { System.out.println("before"); }
after() returning: call(* MyObject.*(..)) { System.out.println("after"); }
}
]]></programlisting>
<para>The moral of the story is that unrestricted generic pointcuts can
pick out more join points than intended. </para>
</sect1>
</chapter>
<!--
Local variables:
compile-command: "java sax.SAXCount -v progguide.xml && java com.icl.saxon.StyleSheet -w0 progguide.xml progguide.html.xsl"
fill-column: 79
sgml-local-ecat-files: "progguide.ced"
sgml-parent-document:("progguide.xml" "book" "chapter")
End:
-->
|