diff options
author | 6543 <6543@obermui.de> | 2020-05-10 19:42:52 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-05-10 18:42:52 +0100 |
commit | 6e23a1b843a9bde7608e86cdddd3131047b2c70b (patch) | |
tree | d52adcd82ddc230ce3df38907144104370c6b079 | |
parent | da5e3fa299f6cac5ee9a4b0c50062dda1e91c8e2 (diff) | |
download | gitea-6e23a1b843a9bde7608e86cdddd3131047b2c70b.tar.gz gitea-6e23a1b843a9bde7608e86cdddd3131047b2c70b.zip |
[Vendor] mssqldb: 2019-11-28 -> 2020-04-28 (#11364)
update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)
27 files changed, 998 insertions, 1389 deletions
@@ -26,7 +26,7 @@ require ( github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect - github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 + github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc github.com/dgrijalva/jwt-go v3.2.0+incompatible github.com/dustin/go-humanize v1.0.0 github.com/editorconfig/editorconfig-core-go/v2 v2.1.1 @@ -102,7 +102,7 @@ require ( github.com/yohcop/openid-go v1.0.0 github.com/yuin/goldmark v1.1.25 github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60 - golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 + golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 golang.org/x/net v0.0.0-20200506145744-7e3656a0809f golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f @@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM= github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA= github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= -github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA= -github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= +github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg= +github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM= github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ= github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no= @@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM= golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= +golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88= +golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= diff --git a/vendor/github.com/denisenkom/go-mssqldb/README.md b/vendor/github.com/denisenkom/go-mssqldb/README.md index b655176bb6..94d87fe092 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/README.md +++ b/vendor/github.com/denisenkom/go-mssqldb/README.md @@ -18,7 +18,7 @@ Other supported formats are listed below. ### Common parameters: -* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. +* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string. * `password` * `database` * `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts. @@ -106,6 +106,26 @@ Other supported formats are listed below. * `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar" * `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar" +### Azure Active Directory authentication - preview + +The configuration of functionality might change in the future. + +Azure Active Directory (AAD) access tokens are relatively short lived and need to be +valid when a new connection is made. Authentication is supported using a callback func that +provides a fresh and valid token using a connector: +``` golang +conn, err := mssql.NewAccessTokenConnector( + "Server=test.database.windows.net;Database=testdb", + tokenProvider) +if err != nil { + // handle errors in DSN +} +db := sql.OpenDB(conn) +``` +Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements +actually trigger the retrieval of a token, this happens when the first statment is issued and a connection +is created. + ## Executing Stored Procedures To run a stored procedure, set the query text to the procedure name: diff --git a/vendor/github.com/denisenkom/go-mssqldb/accesstokenconnector.go b/vendor/github.com/denisenkom/go-mssqldb/accesstokenconnector.go new file mode 100644 index 0000000000..8dbe5099e4 --- /dev/null +++ b/vendor/github.com/denisenkom/go-mssqldb/accesstokenconnector.go @@ -0,0 +1,51 @@ +// +build go1.10 + +package mssql + +import ( + "context" + "database/sql/driver" + "errors" + "fmt" +) + +var _ driver.Connector = &accessTokenConnector{} + +// accessTokenConnector wraps Connector and injects a +// fresh access token when connecting to the database +type accessTokenConnector struct { + Connector + + accessTokenProvider func() (string, error) +} + +// NewAccessTokenConnector creates a new connector from a DSN and a token provider. +// The token provider func will be called when a new connection is requested and should return a valid access token. +// The returned connector may be used with sql.OpenDB. +func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) { + if tokenProvider == nil { + return nil, errors.New("mssql: tokenProvider cannot be nil") + } + + conn, err := NewConnector(dsn) + if err != nil { + return nil, err + } + + c := &accessTokenConnector{ + Connector: *conn, + accessTokenProvider: tokenProvider, + } + return c, nil +} + +// Connect returns a new database connection +func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) { + var err error + c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider() + if err != nil { + return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err) + } + + return c.Connector.Connect(ctx) +} diff --git a/vendor/github.com/denisenkom/go-mssqldb/conn_str.go b/vendor/github.com/denisenkom/go-mssqldb/conn_str.go index 4ff54b8955..26ac50f38d 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/conn_str.go +++ b/vendor/github.com/denisenkom/go-mssqldb/conn_str.go @@ -37,6 +37,7 @@ type connectParams struct { failOverPartner string failOverPort uint64 packetSize uint16 + fedAuthAccessToken string } func parseConnectParams(dsn string) (connectParams, error) { diff --git a/vendor/github.com/denisenkom/go-mssqldb/mssql.go b/vendor/github.com/denisenkom/go-mssqldb/mssql.go index 5d81516919..a74bc7e3fc 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/mssql.go +++ b/vendor/github.com/denisenkom/go-mssqldb/mssql.go @@ -397,7 +397,10 @@ func (s *Stmt) Close() error { } func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) { - to := uint32(timeout / time.Second) + // 2.2.5.3.1 Query Notifications Header + // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0 + // Timeout in milliseconds in TDS protocol. + to := uint32(timeout / time.Millisecond) if to < 1 { to = 1 } diff --git a/vendor/github.com/denisenkom/go-mssqldb/ntlm.go b/vendor/github.com/denisenkom/go-mssqldb/ntlm.go index 7c0cc4f785..ea9148aed0 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/ntlm.go +++ b/vendor/github.com/denisenkom/go-mssqldb/ntlm.go @@ -4,11 +4,14 @@ package mssql import ( "crypto/des" + "crypto/hmac" "crypto/md5" "crypto/rand" "encoding/binary" "errors" + "fmt" "strings" + "time" "unicode/utf16" "golang.org/x/crypto/md4" @@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password return response(hash, passwordHash) } -func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { - if string(bytes[0:8]) != "NTLMSSP\x00" { - return nil, errorNTLM +func ntlmHashNoPadding(val string) []byte { + hash := make([]byte, 16) + h := md4.New() + h.Write(utf16le(val)) + h.Sum(hash[:0]) + + return hash +} + +func hmacMD5(passwordHash, data []byte) []byte { + hmacEntity := hmac.New(md5.New, passwordHash) + hmacEntity.Write(data) + + return hmacEntity.Sum(nil) +} + +func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) { + // NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response + + ntlmHash := ntlmHashNoPadding(password) + usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain) + ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes) + targetInfoLength := len(targetInfoFields) + blob := make([]byte, 32+targetInfoLength) + binary.BigEndian.PutUint32(blob[:4], 0x01010000) + binary.BigEndian.PutUint32(blob[4:8], 0x00000000) + binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano())) + copy(blob[16:24], nonce[:]) + binary.BigEndian.PutUint32(blob[24:28], 0x00000000) + copy(blob[28:], targetInfoFields) + binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000) + challengeLength := len(challenge) + blobLength := len(blob) + challengeAndBlob := make([]byte, challengeLength+blobLength) + copy(challengeAndBlob[:challengeLength], challenge[:]) + copy(challengeAndBlob[challengeLength:], blob) + hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob) + ntlmV2Payload = append(hashedChallenge, blob...) + + // LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response + ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes) + challengeAndNonce := make([]byte, 16) + copy(challengeAndNonce[:8], challenge[:]) + copy(challengeAndNonce[8:], nonce[:]) + hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce) + lmV2Payload = append(hashedChallenge, nonce[:]...) + + return +} + +func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) { + nonce := clientChallenge() + + // Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4 + // Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html + if (flags & _NEGOTIATE_TARGET_INFO) != 0 { + targetInfoFields, err := getNTLMv2TargetInfoFields(message) + if err != nil { + return lm, nt, err + } + + nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now()) + + return lm, nt, nil } - if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE { - return nil, errorNTLM + + var lm_bytes [24]byte + copy(lm_bytes[:8], nonce[:]) + lm = lm_bytes[:] + nt_bytes := ntlmSessionResponse(nonce, challenge, password) + nt = nt_bytes[:] + + return lm, nt, nil +} + +func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) { + type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d" + type2MessageLength := len(type2Message) + if type2MessageLength < 20 { + return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20) } - flags := binary.LittleEndian.Uint32(bytes[20:24]) - var challenge [8]byte - copy(challenge[:], bytes[24:32]) - var lm, nt []byte - if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { - nonce := clientChallenge() - var lm_bytes [24]byte - copy(lm_bytes[:8], nonce[:]) - lm = lm_bytes[:] - nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password) - nt = nt_bytes[:] - } else { - lm_bytes := lmResponse(challenge, auth.Password) - lm = lm_bytes[:] - nt_bytes := ntResponse(challenge, auth.Password) - nt = nt_bytes[:] + targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16]) + targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20]) + endOfOffset := int(targetNameOffset + uint32(targetNameAllocated)) + if type2MessageLength < endOfOffset { + return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) } + + targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44]) + targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48]) + endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated)) + if type2MessageLength < endOfOffset { + return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) + } + + targetInformationBytes := make([]byte, targetInformationAllocated) + copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)]) + + return targetInformationBytes, nil +} + +func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) { lm_len := len(lm) nt_len := len(nt) - - domain16 := utf16le(auth.Domain) + domain16 := utf16le(domain) domain_len := len(domain16) - user16 := utf16le(auth.UserName) + user16 := utf16le(username) user_len := len(user16) - workstation16 := utf16le(auth.Workstation) + workstation16 := utf16le(workstation) workstation_len := len(workstation16) - msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len) copy(msg, []byte("NTLMSSP\x00")) binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE) + // Lm Challenge Response Fields binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len)) binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len)) binary.LittleEndian.PutUint32(msg[16:], 88) + // Nt Challenge Response Fields binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len)) binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len)) binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len)) + // Domain Name Fields binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len)) binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len)) binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len)) + // User Name Fields binary.LittleEndian.PutUint16(msg[36:], uint16(user_len)) binary.LittleEndian.PutUint16(msg[38:], uint16(user_len)) binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len)) + // Workstation Fields binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len)) binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len)) binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len)) + // Encrypted Random Session Key Fields binary.LittleEndian.PutUint16(msg[52:], 0) binary.LittleEndian.PutUint16(msg[54:], 0) binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len)) + // Negotiate Flags binary.LittleEndian.PutUint32(msg[60:], flags) + // Version binary.LittleEndian.PutUint32(msg[64:], 0) binary.LittleEndian.PutUint32(msg[68:], 0) + // MIC binary.LittleEndian.PutUint32(msg[72:], 0) binary.LittleEndian.PutUint32(msg[76:], 0) binary.LittleEndian.PutUint32(msg[88:], 0) binary.LittleEndian.PutUint32(msg[84:], 0) + // Payload copy(msg[88:], lm) copy(msg[88+lm_len:], nt) copy(msg[88+lm_len+nt_len:], domain16) copy(msg[88+lm_len+nt_len+domain_len:], user16) copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16) + return msg, nil } +func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { + signature := string(bytes[0:8]) + if signature != "NTLMSSP\x00" { + return nil, errorNTLM + } + + messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12]) + if messageTypeIndicator != _CHALLENGE_MESSAGE { + return nil, errorNTLM + } + + var challenge [8]byte + copy(challenge[:], bytes[24:32]) + flags := binary.LittleEndian.Uint32(bytes[20:24]) + if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { + lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain) + if err != nil { + return nil, err + } + + return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) + } + + lm_bytes := lmResponse(challenge, auth.Password) + lm := lm_bytes[:] + nt_bytes := ntResponse(challenge, auth.Password) + nt := nt_bytes[:] + + return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) +} + func (auth *ntlmAuth) Free() { } diff --git a/vendor/github.com/denisenkom/go-mssqldb/tds.go b/vendor/github.com/denisenkom/go-mssqldb/tds.go index 9419836448..832c4fd23a 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/tds.go +++ b/vendor/github.com/denisenkom/go-mssqldb/tds.go @@ -100,13 +100,15 @@ const ( // prelogin fields // http://msdn.microsoft.com/en-us/library/dd357559.aspx const ( - preloginVERSION = 0 - preloginENCRYPTION = 1 - preloginINSTOPT = 2 - preloginTHREADID = 3 - preloginMARS = 4 - preloginTRACEID = 5 - preloginTERMINATOR = 0xff + preloginVERSION = 0 + preloginENCRYPTION = 1 + preloginINSTOPT = 2 + preloginTHREADID = 3 + preloginMARS = 4 + preloginTRACEID = 5 + preloginFEDAUTHREQUIRED = 6 + preloginNONCEOPT = 7 + preloginTERMINATOR = 0xff ) const ( @@ -245,6 +247,12 @@ const ( fReadOnlyIntent = 32 ) +// OptionFlags3 +// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac +const ( + fExtension = 0x10 +) + type login struct { TDSVersion uint32 PacketSize uint32 @@ -269,6 +277,89 @@ type login struct { SSPI []byte AtchDBFile string ChangePassword string + FeatureExt featureExts +} + +type featureExts struct { + features map[byte]featureExt +} + +type featureExt interface { + featureID() byte + toBytes() []byte +} + +func (e *featureExts) Add(f featureExt) error { + if f == nil { + return nil + } + id := f.featureID() + if _, exists := e.features[id]; exists { + f := "Login error: Feature with ID '%v' is already present in FeatureExt block." + return fmt.Errorf(f, id) + } + if e.features == nil { + e.features = make(map[byte]featureExt) + } + e.features[id] = f + return nil +} + +func (e featureExts) toBytes() []byte { + if len(e.features) == 0 { + return nil + } + var d []byte + for featureID, f := range e.features { + featureData := f.toBytes() + + hdr := make([]byte, 5) + hdr[0] = featureID // FedAuth feature extension BYTE + binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD + d = append(d, hdr...) + + d = append(d, featureData...) // FeatureData *BYTE + } + if d != nil { + d = append(d, 0xff) // Terminator + } + return d +} + +type featureExtFedAuthSTS struct { + FedAuthEcho bool + FedAuthToken string + Nonce []byte +} + +func (e *featureExtFedAuthSTS) featureID() byte { + return 0x02 +} + +func (e *featureExtFedAuthSTS) toBytes() []byte { + if e == nil { + return nil + } + + options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT + if e.FedAuthEcho { + options |= 1 // fFedAuthEcho + } + + d := make([]byte, 5) + d[0] = options + + // looks like string in + // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508 + tokenBytes := str2ucs2(e.FedAuthToken) + binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work + d = append(d, tokenBytes...) + + if len(e.Nonce) == 32 { + d = append(d, e.Nonce...) + } + + return d } type loginHeader struct { @@ -295,7 +386,7 @@ type loginHeader struct { ServerNameOffset uint16 ServerNameLength uint16 ExtensionOffset uint16 - ExtensionLenght uint16 + ExtensionLength uint16 CtlIntNameOffset uint16 CtlIntNameLength uint16 LanguageOffset uint16 @@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error { database := str2ucs2(login.Database) atchdbfile := str2ucs2(login.AtchDBFile) changepassword := str2ucs2(login.ChangePassword) + featureExt := login.FeatureExt.toBytes() + hdr := loginHeader{ TDSVersion: login.TDSVersion, PacketSize: login.PacketSize, @@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error { offset += uint16(len(atchdbfile)) hdr.ChangePasswordOffset = offset offset += uint16(len(changepassword)) - hdr.Length = uint32(offset) + + featureExtOffset := uint32(0) + featureExtLen := len(featureExt) + if featureExtLen > 0 { + hdr.OptionFlags3 |= fExtension + hdr.ExtensionOffset = offset + hdr.ExtensionLength = 4 + offset += hdr.ExtensionLength // DWORD + featureExtOffset = uint32(offset) + } + hdr.Length = uint32(offset) + uint32(featureExtLen) + var err error err = binary.Write(w, binary.LittleEndian, &hdr) if err != nil { @@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error { if err != nil { return err } + if featureExtOffset > 0 { + err = binary.Write(w, binary.LittleEndian, featureExtOffset) + if err != nil { + return err + } + _, err = w.Write(featureExt) + if err != nil { + return err + } + } return w.FinishPacket() } @@ -844,15 +958,23 @@ initiate_connection: AppName: p.appname, TypeFlags: p.typeFlags, } - auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation) - if auth_ok { + auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation) + switch { + case p.fedAuthAccessToken != "": // accesstoken ignores user/password + featurext := &featureExtFedAuthSTS{ + FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1, + FedAuthToken: p.fedAuthAccessToken, + Nonce: fields[preloginNONCEOPT], + } + login.FeatureExt.Add(featurext) + case authOk: login.SSPI, err = auth.InitialBytes() if err != nil { return nil, err } login.OptionFlags2 |= fIntSecurity defer auth.Free() - } else { + default: login.UserName = p.user login.Password = p.password } diff --git a/vendor/github.com/denisenkom/go-mssqldb/token.go b/vendor/github.com/denisenkom/go-mssqldb/token.go index 1acac8a5d2..25385e89dc 100644 --- a/vendor/github.com/denisenkom/go-mssqldb/token.go +++ b/vendor/github.com/denisenkom/go-mssqldb/token.go @@ -17,20 +17,21 @@ type token byte // token ids const ( - tokenReturnStatus token = 121 // 0x79 - tokenColMetadata token = 129 // 0x81 - tokenOrder token = 169 // 0xA9 - tokenError token = 170 // 0xAA - tokenInfo token = 171 // 0xAB - tokenReturnValue token = 0xAC - tokenLoginAck token = 173 // 0xad - tokenRow token = 209 // 0xd1 - tokenNbcRow token = 210 // 0xd2 - tokenEnvChange token = 227 // 0xE3 - tokenSSPI token = 237 // 0xED - tokenDone token = 253 // 0xFD - tokenDoneProc token = 254 - tokenDoneInProc token = 255 + tokenReturnStatus token = 121 // 0x79 + tokenColMetadata token = 129 // 0x81 + tokenOrder token = 169 // 0xA9 + tokenError token = 170 // 0xAA + tokenInfo token = 171 // 0xAB + tokenReturnValue token = 0xAC + tokenLoginAck token = 173 // 0xad + tokenFeatureExtAck token = 174 // 0xae + tokenRow token = 209 // 0xd1 + tokenNbcRow token = 210 // 0xd2 + tokenEnvChange token = 227 // 0xE3 + tokenSSPI token = 237 // 0xED + tokenDone token = 253 // 0xFD + tokenDoneProc token = 254 + tokenDoneInProc token = 255 ) // done flags @@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct { return res } +// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a +func parseFeatureExtAck(r *tdsBuffer) { + // at most 1 featureAck per feature in featureExt + // go-mssqldb will add at most 1 feature, the spec defines 7 different features + for i := 0; i < 8; i++ { + featureID := r.byte() // FeatureID + if featureID == 0xff { + return + } + size := r.uint32() // FeatureAckDataLen + d := make([]byte, size) + r.ReadFull(d) + } + panic("parsed more than 7 featureAck's, protocol implementation error?") +} + // http://msdn.microsoft.com/en-us/library/dd357363.aspx func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) { count := r.uint16() @@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin case tokenLoginAck: loginAck := parseLoginAck(sess.buf) ch <- loginAck + case tokenFeatureExtAck: + parseFeatureExtAck(sess.buf) case tokenOrder: order := parseOrder(sess.buf) ch <- order diff --git a/vendor/golang.org/x/crypto/blake2b/blake2b.go b/vendor/golang.org/x/crypto/blake2b/blake2b.go index c160e1a4e3..d2e98d4295 100644 --- a/vendor/golang.org/x/crypto/blake2b/blake2b.go +++ b/vendor/golang.org/x/crypto/blake2b/blake2b.go @@ -5,6 +5,8 @@ // Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 // and the extendable output function (XOF) BLAKE2Xb. // +// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and +// produces digests of any size between 1 and 64 bytes. // For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf // and for BLAKE2Xb see https://blake2.net/blake2x.pdf // diff --git a/vendor/golang.org/x/crypto/chacha20/chacha_generic.go b/vendor/golang.org/x/crypto/chacha20/chacha_generic.go index 7c498e90d9..a2ecf5c325 100644 --- a/vendor/golang.org/x/crypto/chacha20/chacha_generic.go +++ b/vendor/golang.org/x/crypto/chacha20/chacha_generic.go @@ -42,10 +42,14 @@ type Cipher struct { // The last len bytes of buf are leftover key stream bytes from the previous // XORKeyStream invocation. The size of buf depends on how many blocks are - // computed at a time. + // computed at a time by xorKeyStreamBlocks. buf [bufSize]byte len int + // overflow is set when the counter overflowed, no more blocks can be + // generated, and the next XORKeyStream call should panic. + overflow bool + // The counter-independent results of the first round are cached after they // are computed the first time. precompDone bool @@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) { return nil, errors.New("chacha20: wrong nonce size") } + key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint c.key = [8]uint32{ binary.LittleEndian.Uint32(key[0:4]), binary.LittleEndian.Uint32(key[4:8]), @@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) { // SetCounter sets the Cipher counter. The next invocation of XORKeyStream will // behave as if (64 * counter) bytes had been encrypted so far. // -// To prevent accidental counter reuse, SetCounter panics if counter is -// less than the current value. +// To prevent accidental counter reuse, SetCounter panics if counter is less +// than the current value. +// +// Note that the execution time of XORKeyStream is not independent of the +// counter value. func (s *Cipher) SetCounter(counter uint32) { // Internally, s may buffer multiple blocks, which complicates this // implementation slightly. When checking whether the counter has rolled // back, we must use both s.counter and s.len to determine how many blocks // we have already output. outputCounter := s.counter - uint32(s.len)/blockSize - if counter < outputCounter { + if s.overflow || counter < outputCounter { panic("chacha20: SetCounter attempted to rollback counter") } @@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) { dst[i] = src[i] ^ b } s.len -= len(keyStream) - src = src[len(keyStream):] - dst = dst[len(keyStream):] + dst, src = dst[len(keyStream):], src[len(keyStream):] + } + if len(src) == 0 { + return } - const blocksPerBuf = bufSize / blockSize - numBufs := (uint64(len(src)) + bufSize - 1) / bufSize - if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 { + // If we'd need to let the counter overflow and keep generating output, + // panic immediately. If instead we'd only reach the last block, remember + // not to generate any more output after the buffer is drained. + numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize + if s.overflow || uint64(s.counter)+numBlocks > 1<<32 { panic("chacha20: counter overflow") + } else if uint64(s.counter)+numBlocks == 1<<32 { + s.overflow = true } // xorKeyStreamBlocks implementations expect input lengths that are a // multiple of bufSize. Platform-specific ones process multiple blocks at a // time, so have bufSizes that are a multiple of blockSize. - rem := len(src) % bufSize - full := len(src) - rem - + full := len(src) - len(src)%bufSize if full > 0 { s.xorKeyStreamBlocks(dst[:full], src[:full]) } + dst, src = dst[full:], src[full:] + + // If using a multi-block xorKeyStreamBlocks would overflow, use the generic + // one that does one block at a time. + const blocksPerBuf = bufSize / blockSize + if uint64(s.counter)+blocksPerBuf > 1<<32 { + s.buf = [bufSize]byte{} + numBlocks := (len(src) + blockSize - 1) / blockSize + buf := s.buf[bufSize-numBlocks*blockSize:] + copy(buf, src) + s.xorKeyStreamBlocksGeneric(buf, buf) + s.len = len(buf) - copy(dst, buf) + return + } // If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and // keep the leftover keystream for the next XORKeyStream invocation. - if rem > 0 { + if len(src) > 0 { s.buf = [bufSize]byte{} - copy(s.buf[:], src[full:]) + copy(s.buf[:], src) s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) - s.len = bufSize - copy(dst[full:], s.buf[:]) + s.len = bufSize - copy(dst, s.buf[:]) } } @@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { s.precompDone = true } - for i := 0; i < len(src); i += blockSize { + // A condition of len(src) > 0 would be sufficient, but this also + // acts as a bounds check elimination hint. + for len(src) >= 64 && len(dst) >= 64 { // The remainder of the first column round. fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) @@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) } - // Finally, add back the initial state to generate the key stream. - x0 += c0 - x1 += c1 - x2 += c2 - x3 += c3 - x4 += c4 - x5 += c5 - x6 += c6 - x7 += c7 - x8 += c8 - x9 += c9 - x10 += c10 - x11 += c11 - x12 += s.counter - x13 += c13 - x14 += c14 - x15 += c15 + // Add back the initial state to generate the key stream, then + // XOR the key stream with the source and write out the result. + addXor(dst[0:4], src[0:4], x0, c0) + addXor(dst[4:8], src[4:8], x1, c1) + addXor(dst[8:12], src[8:12], x2, c2) + addXor(dst[12:16], src[12:16], x3, c3) + addXor(dst[16:20], src[16:20], x4, c4) + addXor(dst[20:24], src[20:24], x5, c5) + addXor(dst[24:28], src[24:28], x6, c6) + addXor(dst[28:32], src[28:32], x7, c7) + addXor(dst[32:36], src[32:36], x8, c8) + addXor(dst[36:40], src[36:40], x9, c9) + addXor(dst[40:44], src[40:44], x10, c10) + addXor(dst[44:48], src[44:48], x11, c11) + addXor(dst[48:52], src[48:52], x12, s.counter) + addXor(dst[52:56], src[52:56], x13, c13) + addXor(dst[56:60], src[56:60], x14, c14) + addXor(dst[60:64], src[60:64], x15, c15) s.counter += 1 - if s.counter == 0 { - panic("chacha20: internal error: counter overflow") - } - in, out := src[i:], dst[i:] - in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint - - // XOR the key stream with the source and write out the result. - xor(out[0:], in[0:], x0) - xor(out[4:], in[4:], x1) - xor(out[8:], in[8:], x2) - xor(out[12:], in[12:], x3) - xor(out[16:], in[16:], x4) - xor(out[20:], in[20:], x5) - xor(out[24:], in[24:], x6) - xor(out[28:], in[28:], x7) - xor(out[32:], in[32:], x8) - xor(out[36:], in[36:], x9) - xor(out[40:], in[40:], x10) - xor(out[44:], in[44:], x11) - xor(out[48:], in[48:], x12) - xor(out[52:], in[52:], x13) - xor(out[56:], in[56:], x14) - xor(out[60:], in[60:], x15) + src, dst = src[blockSize:], dst[blockSize:] } } diff --git a/vendor/golang.org/x/crypto/chacha20/xor.go b/vendor/golang.org/x/crypto/chacha20/xor.go index 0110c9865a..c2d04851e0 100644 --- a/vendor/golang.org/x/crypto/chacha20/xor.go +++ b/vendor/golang.org/x/crypto/chacha20/xor.go @@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" || runtime.GOARCH == "ppc64le" || runtime.GOARCH == "s390x" -// xor reads a little endian uint32 from src, XORs it with u and +// addXor reads a little endian uint32 from src, XORs it with (a + b) and // places the result in little endian byte order in dst. -func xor(dst, src []byte, u uint32) { - _, _ = src[3], dst[3] // eliminate bounds checks +func addXor(dst, src []byte, a, b uint32) { + _, _ = src[3], dst[3] // bounds check elimination hint if unaligned { // The compiler should optimize this code into // 32-bit unaligned little endian loads and stores. @@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) { v |= uint32(src[1]) << 8 v |= uint32(src[2]) << 16 v |= uint32(src[3]) << 24 - v ^= u + v ^= a + b dst[0] = byte(v) dst[1] = byte(v >> 8) dst[2] = byte(v >> 16) dst[3] = byte(v >> 24) } else { - dst[0] = src[0] ^ byte(u) - dst[1] = src[1] ^ byte(u>>8) - dst[2] = src[2] ^ byte(u>>16) - dst[3] = src[3] ^ byte(u>>24) + a += b + dst[0] = src[0] ^ byte(a) + dst[1] = src[1] ^ byte(a>>8) + dst[2] = src[2] ^ byte(a>>16) + dst[3] = src[3] ^ byte(a>>24) } } diff --git a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go index b0c2cd0561..d118f30ed5 100644 --- a/vendor/golang.org/x/crypto/poly1305/mac_noasm.go +++ b/vendor/golang.org/x/crypto/poly1305/mac_noasm.go @@ -2,10 +2,8 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build !amd64,!ppc64le gccgo purego +// +build !amd64,!ppc64le,!s390x gccgo purego package poly1305 type mac struct{ macGeneric } - -func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} } diff --git a/vendor/golang.org/x/crypto/poly1305/poly1305.go b/vendor/golang.org/x/crypto/poly1305/poly1305.go index 066159b797..9d7a6af09f 100644 --- a/vendor/golang.org/x/crypto/poly1305/poly1305.go +++ b/vendor/golang.org/x/crypto/poly1305/poly1305.go @@ -26,7 +26,9 @@ const TagSize = 16 // 16-byte result into out. Authenticating two different messages with the same // key allows an attacker to forge messages at will. func Sum(out *[16]byte, m []byte, key *[32]byte) { - sum(out, m, key) + h := New(key) + h.Write(m) + h.Sum(out[:0]) } // Verify returns true if mac is a valid authenticator for m with the given key. @@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool { // two different messages with the same key allows an attacker // to forge messages at will. func New(key *[32]byte) *MAC { - return &MAC{ - mac: newMAC(key), - finalized: false, - } + m := &MAC{} + initialize(key, &m.macState) + return m } // MAC is an io.Writer computing an authentication tag @@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC { // MAC cannot be used like common hash.Hash implementations, // because using a poly1305 key twice breaks its security. // Therefore writing data to a running MAC after calling -// Sum causes it to panic. +// Sum or Verify causes it to panic. type MAC struct { mac // platform-dependent implementation @@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize } // Write adds more data to the running message authentication code. // It never returns an error. // -// It must not be called after the first call of Sum. +// It must not be called after the first call of Sum or Verify. func (h *MAC) Write(p []byte) (n int, err error) { if h.finalized { - panic("poly1305: write to MAC after Sum") + panic("poly1305: write to MAC after Sum or Verify") } return h.mac.Write(p) } @@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte { h.finalized = true return append(b, mac[:]...) } + +// Verify returns whether the authenticator of all data written to +// the message authentication code matches the expected value. +func (h *MAC) Verify(expected []byte) bool { + var mac [TagSize]byte + h.mac.Sum(&mac) + h.finalized = true + return subtle.ConstantTimeCompare(expected, mac[:]) == 1 +} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_amd64.go b/vendor/golang.org/x/crypto/poly1305/sum_amd64.go index 35b9e38c90..99e5a1d50e 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_amd64.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_amd64.go @@ -9,17 +9,6 @@ package poly1305 //go:noescape func update(state *macState, msg []byte) -func sum(out *[16]byte, m []byte, key *[32]byte) { - h := newMAC(key) - h.Write(m) - h.Sum(out) -} - -func newMAC(key *[32]byte) (h mac) { - initialize(key, &h.r, &h.s) - return -} - // mac is a wrapper for macGeneric that redirects calls that would have gone to // updateGeneric to update. // diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go index 1187eab78f..c942a65904 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_generic.go @@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { h.Sum(out) } -func newMACGeneric(key *[32]byte) (h macGeneric) { - initialize(key, &h.r, &h.s) - return +func newMACGeneric(key *[32]byte) macGeneric { + m := macGeneric{} + initialize(key, &m.macState) + return m } // macState holds numbers in saturated 64-bit little-endian limbs. That is, // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. type macState struct { // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but - // can grow larger during and after rounds. + // can grow larger during and after rounds. It must, however, remain below + // 2 * (2¹³⁰ - 5). h [3]uint64 // r and s are the private key components. r [2]uint64 @@ -97,11 +99,12 @@ const ( rMask1 = 0x0FFFFFFC0FFFFFFC ) -func initialize(key *[32]byte, r, s *[2]uint64) { - r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 - r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 - s[0] = binary.LittleEndian.Uint64(key[16:24]) - s[1] = binary.LittleEndian.Uint64(key[24:32]) +// initialize loads the 256-bit key into the two 128-bit secret values r and s. +func initialize(key *[32]byte, m *macState) { + m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 + m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 + m.s[0] = binary.LittleEndian.Uint64(key[16:24]) + m.s[1] = binary.LittleEndian.Uint64(key[24:32]) } // uint128 holds a 128-bit number as two 64-bit limbs, for use with the diff --git a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go b/vendor/golang.org/x/crypto/poly1305/sum_noasm.go deleted file mode 100644 index 2e3ae34c7d..0000000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go +++ /dev/null @@ -1,13 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego - -package poly1305 - -func sum(out *[TagSize]byte, msg []byte, key *[32]byte) { - h := newMAC(key) - h.Write(msg) - h.Sum(out) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go b/vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go index 92597bb8c2..2e7a120b19 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go @@ -9,17 +9,6 @@ package poly1305 //go:noescape func update(state *macState, msg []byte) -func sum(out *[16]byte, m []byte, key *[32]byte) { - h := newMAC(key) - h.Write(m) - h.Sum(out) -} - -func newMAC(key *[32]byte) (h mac) { - initialize(key, &h.r, &h.s) - return -} - // mac is a wrapper for macGeneric that redirects calls that would have gone to // updateGeneric to update. // diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go index 5f91ff84a9..958fedc079 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go @@ -2,7 +2,7 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build go1.11,!gccgo,!purego +// +build !gccgo,!purego package poly1305 @@ -10,30 +10,66 @@ import ( "golang.org/x/sys/cpu" ) -// poly1305vx is an assembly implementation of Poly1305 that uses vector +// updateVX is an assembly implementation of Poly1305 that uses vector // instructions. It must only be called if the vector facility (vx) is // available. //go:noescape -func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte) +func updateVX(state *macState, msg []byte) -// poly1305vmsl is an assembly implementation of Poly1305 that uses vector -// instructions, including VMSL. It must only be called if the vector facility (vx) is -// available and if VMSL is supported. -//go:noescape -func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte) +// mac is a replacement for macGeneric that uses a larger buffer and redirects +// calls that would have gone to updateGeneric to updateVX if the vector +// facility is installed. +// +// A larger buffer is required for good performance because the vector +// implementation has a higher fixed cost per call than the generic +// implementation. +type mac struct { + macState + + buffer [16 * TagSize]byte // size must be a multiple of block size (16) + offset int +} -func sum(out *[16]byte, m []byte, key *[32]byte) { - if cpu.S390X.HasVX { - var mPtr *byte - if len(m) > 0 { - mPtr = &m[0] +func (h *mac) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < len(h.buffer) { + h.offset += n + return nn, nil } - if cpu.S390X.HasVXE && len(m) > 256 { - poly1305vmsl(out, mPtr, uint64(len(m)), key) + p = p[n:] + h.offset = 0 + if cpu.S390X.HasVX { + updateVX(&h.macState, h.buffer[:]) } else { - poly1305vx(out, mPtr, uint64(len(m)), key) + updateGeneric(&h.macState, h.buffer[:]) } - } else { - sumGeneric(out, m, key) } + + tail := len(p) % len(h.buffer) // number of bytes to copy into buffer + body := len(p) - tail // number of bytes to process now + if body > 0 { + if cpu.S390X.HasVX { + updateVX(&h.macState, p[:body]) + } else { + updateGeneric(&h.macState, p[:body]) + } + } + h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0 + return nn, nil +} + +func (h *mac) Sum(out *[TagSize]byte) { + state := h.macState + remainder := h.buffer[:h.offset] + + // Use the generic implementation if we have 2 or fewer blocks left + // to sum. The vector implementation has a higher startup time. + if cpu.S390X.HasVX && len(remainder) > 2*TagSize { + updateVX(&state, remainder) + } else if len(remainder) > 0 { + updateGeneric(&state, remainder) + } + finalize(out, &state.h, &state.s) } diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s index 806d1694b0..0fa9ee6e0b 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s +++ b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s @@ -2,115 +2,187 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build go1.11,!gccgo,!purego +// +build !gccgo,!purego #include "textflag.h" -// Implementation of Poly1305 using the vector facility (vx). - -// constants -#define MOD26 V0 -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 - -// key (r) -#define R_0 V9 -#define R_1 V10 -#define R_2 V11 -#define R_3 V12 -#define R_4 V13 -#define R5_1 V14 -#define R5_2 V15 -#define R5_3 V16 -#define R5_4 V17 -#define RSAVE_0 R5 -#define RSAVE_1 R6 -#define RSAVE_2 R7 -#define RSAVE_3 R8 -#define RSAVE_4 R9 -#define R5SAVE_1 V28 -#define R5SAVE_2 V29 -#define R5SAVE_3 V30 -#define R5SAVE_4 V31 - -// message block -#define F_0 V18 -#define F_1 V19 -#define F_2 V20 -#define F_3 V21 -#define F_4 V22 - -// accumulator -#define H_0 V23 -#define H_1 V24 -#define H_2 V25 -#define H_3 V26 -#define H_4 V27 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $64 -// MOD26 -DATA ·constants<>+0(SB)/8, $0x3ffffff -DATA ·constants<>+8(SB)/8, $0x3ffffff +// This implementation of Poly1305 uses the vector facility (vx) +// to process up to 2 blocks (32 bytes) per iteration using an +// algorithm based on the one described in: +// +// NEON crypto, Daniel J. Bernstein & Peter Schwabe +// https://cryptojedi.org/papers/neoncrypto-20120320.pdf +// +// This algorithm uses 5 26-bit limbs to represent a 130-bit +// value. These limbs are, for the most part, zero extended and +// placed into 64-bit vector register elements. Each vector +// register is 128-bits wide and so holds 2 of these elements. +// Using 26-bit limbs allows us plenty of headroom to accomodate +// accumulations before and after multiplication without +// overflowing either 32-bits (before multiplication) or 64-bits +// (after multiplication). +// +// In order to parallelise the operations required to calculate +// the sum we use two separate accumulators and then sum those +// in an extra final step. For compatibility with the generic +// implementation we perform this summation at the end of every +// updateVX call. +// +// To use two accumulators we must multiply the message blocks +// by r² rather than r. Only the final message block should be +// multiplied by r. +// +// Example: +// +// We want to calculate the sum (h) for a 64 byte message (m): +// +// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r +// +// To do this we split the calculation into the even indices +// and odd indices of the message. These form our SIMD 'lanes': +// +// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 +// m[16:32]r³ + m[48:64]r <- lane 1 +// +// To calculate this iteratively we refactor so that both lanes +// are written in terms of r² and r: +// +// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 +// (m[16:32]r² + m[48:64])r <- lane 1 +// ^ ^ +// | coefficients for second iteration +// coefficients for first iteration +// +// So in this case we would have two iterations. In the first +// both lanes are multiplied by r². In the second only the +// first lane is multiplied by r² and the second lane is +// instead multiplied by r. This gives use the odd and even +// powers of r that we need from the original equation. +// +// Notation: +// +// h - accumulator +// r - key +// m - message +// +// [a, b] - SIMD register holding two 64-bit values +// [a, b, c, d] - SIMD register holding four 32-bit values +// xᵢ[n] - limb n of variable x with bit width i +// +// Limbs are expressed in little endian order, so for 26-bit +// limbs x₂₆[4] will be the most significant limb and x₂₆[0] +// will be the least significant limb. + +// masking constants +#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits +#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits + +// expansion constants (see EXPAND macro) +#define EX0 V2 +#define EX1 V3 +#define EX2 V4 + +// key (r², r or 1 depending on context) +#define R_0 V5 +#define R_1 V6 +#define R_2 V7 +#define R_3 V8 +#define R_4 V9 + +// precalculated coefficients (5r², 5r or 0 depending on context) +#define R5_1 V10 +#define R5_2 V11 +#define R5_3 V12 +#define R5_4 V13 + +// message block (m) +#define M_0 V14 +#define M_1 V15 +#define M_2 V16 +#define M_3 V17 +#define M_4 V18 + +// accumulator (h) +#define H_0 V19 +#define H_1 V20 +#define H_2 V21 +#define H_3 V22 +#define H_4 V23 + +// temporary registers (for short-lived values) +#define T_0 V24 +#define T_1 V25 +#define T_2 V26 +#define T_3 V27 +#define T_4 V28 + +GLOBL ·constants<>(SB), RODATA, $0x30 // EX0 -DATA ·constants<>+16(SB)/8, $0x0006050403020100 -DATA ·constants<>+24(SB)/8, $0x1016151413121110 +DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 +DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 // EX1 -DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706 -DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716 +DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 +DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 // EX2 -DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d -DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d - -// h = (f*g) % (2**130-5) [partial reduction] +DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d +DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d + +// MULTIPLY multiplies each lane of f and g, partially reduced +// modulo 2¹³⁰ - 5. The result, h, consists of partial products +// in each lane that need to be reduced further to produce the +// final result. +// +// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ +// +// Note that the multiplication by 5 of the high bits is +// achieved by precalculating the multiplication of four of the +// g coefficients by 5. These are g51-g54. #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ VMLOF f0, g0, h0 \ - VMLOF f0, g1, h1 \ - VMLOF f0, g2, h2 \ VMLOF f0, g3, h3 \ + VMLOF f0, g1, h1 \ VMLOF f0, g4, h4 \ + VMLOF f0, g2, h2 \ VMLOF f1, g54, T_0 \ - VMLOF f1, g0, T_1 \ - VMLOF f1, g1, T_2 \ VMLOF f1, g2, T_3 \ + VMLOF f1, g0, T_1 \ VMLOF f1, g3, T_4 \ + VMLOF f1, g1, T_2 \ VMALOF f2, g53, h0, h0 \ - VMALOF f2, g54, h1, h1 \ - VMALOF f2, g0, h2, h2 \ VMALOF f2, g1, h3, h3 \ + VMALOF f2, g54, h1, h1 \ VMALOF f2, g2, h4, h4 \ + VMALOF f2, g0, h2, h2 \ VMALOF f3, g52, T_0, T_0 \ - VMALOF f3, g53, T_1, T_1 \ - VMALOF f3, g54, T_2, T_2 \ VMALOF f3, g0, T_3, T_3 \ + VMALOF f3, g53, T_1, T_1 \ VMALOF f3, g1, T_4, T_4 \ + VMALOF f3, g54, T_2, T_2 \ VMALOF f4, g51, h0, h0 \ - VMALOF f4, g52, h1, h1 \ - VMALOF f4, g53, h2, h2 \ VMALOF f4, g54, h3, h3 \ + VMALOF f4, g52, h1, h1 \ VMALOF f4, g0, h4, h4 \ + VMALOF f4, g53, h2, h2 \ VAG T_0, h0, h0 \ - VAG T_1, h1, h1 \ - VAG T_2, h2, h2 \ VAG T_3, h3, h3 \ - VAG T_4, h4, h4 - -// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4 + VAG T_1, h1, h1 \ + VAG T_4, h4, h4 \ + VAG T_2, h2, h2 + +// REDUCE performs the following carry operations in four +// stages, as specified in Bernstein & Schwabe: +// +// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] +// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] +// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] +// 4: h₂₆[3]->h₂₆[4] +// +// The result is that all of the limbs are limited to 26-bits +// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. +// +// Note that although each limb is aligned at 26-bit intervals +// they may contain values that exceed 2²⁶ - 1, hence the need +// to carry the excess bits in each limb. #define REDUCE(h0, h1, h2, h3, h4) \ VESRLG $26, h0, T_0 \ VESRLG $26, h3, T_1 \ @@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d VN MOD26, h3, h3 \ VAG T_2, h4, h4 -// expand in0 into d[0] and in1 into d[1] +// EXPAND splits the 128-bit little-endian values in0 and in1 +// into 26-bit big-endian limbs and places the results into +// the first and second lane of d₂₆[0:4] respectively. +// +// The EX0, EX1 and EX2 constants are arrays of byte indices +// for permutation. The permutation both reverses the bytes +// in the input and ensures the bytes are copied into the +// destination limb ready to be shifted into their final +// position. #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ - VGBM $0x0707, d1 \ // d1=tmp - VPERM in0, in1, EX2, d4 \ VPERM in0, in1, EX0, d0 \ VPERM in0, in1, EX1, d2 \ - VN d1, d4, d4 \ + VPERM in0, in1, EX2, d4 \ VESRLG $26, d0, d1 \ VESRLG $30, d2, d3 \ VESRLG $4, d2, d2 \ - VN MOD26, d0, d0 \ - VN MOD26, d1, d1 \ - VN MOD26, d2, d2 \ - VN MOD26, d3, d3 - -// pack h4:h0 into h1:h0 (no carry) -#define PACK(h0, h1, h2, h3, h4) \ - VESLG $26, h1, h1 \ - VESLG $26, h3, h3 \ - VO h0, h1, h0 \ - VO h2, h3, h2 \ - VESLG $4, h2, h2 \ - VLEIB $7, $48, h1 \ - VSLB h1, h2, h2 \ - VO h0, h2, h0 \ - VLEIB $7, $104, h1 \ - VSLB h1, h4, h3 \ - VO h3, h0, h0 \ - VLEIB $7, $24, h1 \ - VSRLB h1, h4, h1 - -// if h > 2**130-5 then h -= 2**130-5 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 - -// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vx(SB), $0-32 - // This code processes up to 2 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - - // load MOD26, EX0, EX1 and EX2 + VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] + VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] + VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] + VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] + VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] + +// func updateVX(state *macState, msg []byte) +TEXT ·updateVX(SB), NOSPLIT, $0 + MOVD state+0(FP), R1 + LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len + + // load EX0, EX1 and EX2 MOVD $·constants<>(SB), R5 - VLM (R5), MOD26, EX2 - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4) - - // setup r*5 - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - - // store r (for final block) - VMLOF T_0, R_1, R5SAVE_1 - VMLOF T_0, R_2, R5SAVE_2 - VMLOF T_0, R_3, R5SAVE_3 - VMLOF T_0, R_4, R5SAVE_4 - VLGVG $0, R_0, RSAVE_0 - VLGVG $0, R_1, RSAVE_1 - VLGVG $0, R_2, RSAVE_2 - VLGVG $0, R_3, RSAVE_3 - VLGVG $0, R_4, RSAVE_4 - - // skip r**2 calculation + VLM (R5), EX0, EX2 + + // generate masks + VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] + VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] + + // load h (accumulator) and r (key) from state + VZERO T_1 // [0, 0] + VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] + VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] + VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] + VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] + VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] + + // unpack h and r into 26-bit limbs + // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value + VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] + VZERO H_1 // [0, 0] + VZERO H_3 // [0, 0] + VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out + VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] + VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] + VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only + VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] + VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only + VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete + VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete + + // replicate r across all 4 vector elements + VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] + VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] + VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] + VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] + VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] + + // zero out lane 1 of h + VLEIG $1, $0, H_0 // [h₂₆[0], 0] + VLEIG $1, $0, H_1 // [h₂₆[1], 0] + VLEIG $1, $0, H_2 // [h₂₆[2], 0] + VLEIG $1, $0, H_3 // [h₂₆[3], 0] + VLEIG $1, $0, H_4 // [h₂₆[4], 0] + + // calculate 5r (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] + + // skip r² calculation if we are only calculating one block CMPBLE R3, $16, skip - // calculate r**2 - MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4) - REDUCE(H_0, H_1, H_2, H_3, H_4) - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - VMLOF T_0, H_1, R5_1 - VMLOF T_0, H_2, R5_2 - VMLOF T_0, H_3, R5_3 - VMLOF T_0, H_4, R5_4 - VLR H_0, R_0 - VLR H_1, R_1 - VLR H_2, R_2 - VLR H_3, R_3 - VLR H_4, R_4 - - // initialize h - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 + // calculate r² + MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) + REDUCE(M_0, M_1, M_2, M_3, M_4) + VGBM $0x0f0f, T_0 + VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] + VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] + VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] + VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] + VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] + + // calculate 5r² (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] loop: - CMPBLE R3, $32, b2 - VLM (R2), T_0, T_1 - SUB $32, R3 - MOVD $32(R2), R2 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) - VLEIB $4, $1, F_4 - VLEIB $12, $1, F_4 + CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients + + // load next 2 blocks from message + VLM (R2), T_0, T_1 + + // update message slice + SUB $32, R3 + MOVD $32(R2), R2 + + // unpack message blocks into 26-bit big-endian limbs + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // add 2¹²⁸ to each message block value + VLEIB $4, $1, M_4 + VLEIB $12, $1, M_4 multiply: - VAG H_0, F_0, F_0 - VAG H_1, F_1, F_1 - VAG H_2, F_2, F_2 - VAG H_3, F_3, F_3 - VAG H_4, F_4, F_4 - MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) + // accumulate the incoming message + VAG H_0, M_0, M_0 + VAG H_3, M_3, M_3 + VAG H_1, M_1, M_1 + VAG H_4, M_4, M_4 + VAG H_2, M_2, M_2 + + // multiply the accumulator by the key coefficient + MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) + + // carry and partially reduce the partial products REDUCE(H_0, H_1, H_2, H_3, H_4) + CMPBNE R3, $0, loop finish: - // sum vectors + // sum lane 0 and lane 1 and put the result in lane 1 VZERO T_0 VSUMQG H_0, T_0, H_0 - VSUMQG H_1, T_0, H_1 - VSUMQG H_2, T_0, H_2 VSUMQG H_3, T_0, H_3 + VSUMQG H_1, T_0, H_1 VSUMQG H_4, T_0, H_4 + VSUMQG H_2, T_0, H_2 - // h may be >= 2*(2**130-5) so we need to reduce it again + // reduce again after summation + // TODO(mundaym): there might be a more efficient way to do this + // now that we only have 1 active lane. For example, we could + // simultaneously pack the values as we reduce them. REDUCE(H_0, H_1, H_2, H_3, H_4) - // carry h1->h4 + // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 + // TODO(mundaym): in testing this final carry was unnecessary. + // Needs a proof before it can be removed though. VESRLG $26, H_1, T_1 VN MOD26, H_1, H_1 VAQ T_1, H_2, H_2 @@ -284,95 +367,137 @@ finish: VN MOD26, H_3, H_3 VAQ T_3, H_4, H_4 - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H_0, H_1, H_2, H_3, H_4) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H_0, H_1, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H_0, H_0 - VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little) - VST H_0, (R1) - + // h is now < 2(2¹³⁰ - 5) + // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. + VESLG $26, H_1, H_1 + VESLG $26, H_3, H_3 + VO H_0, H_1, H_0 + VO H_2, H_3, H_2 + VESLG $4, H_2, H_2 + VLEIB $7, $48, H_1 + VSLB H_1, H_2, H_2 + VO H_0, H_2, H_0 + VLEIB $7, $104, H_1 + VSLB H_1, H_4, H_3 + VO H_3, H_0, H_0 + VLEIB $7, $24, H_1 + VSRLB H_1, H_4, H_1 + + // update state + VSTEG $1, H_0, 0(R1) + VSTEG $0, H_0, 8(R1) + VSTEG $1, H_1, 16(R1) RET -b2: +b2: // 2 or fewer blocks remaining CMPBLE R3, $16, b1 - // 2 blocks remaining - SUB $17, R3 - VL (R2), T_0 - VLL R3, 16(R2), T_1 - ADD $1, R3 + // Load the 2 remaining blocks (17-32 bytes remaining). + MOVD $-17(R3), R0 // index of final byte to load modulo 16 + VL (R2), T_0 // load full 16 byte block + VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) + MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) + CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long + VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 + + // Split both blocks into 26-bit limbs in the appropriate lanes. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the second to last block. + VLEIB $4, $1, M_4 + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. CMPBNE R3, $16, 2(PC) - VLEIB $12, $1, F_4 - VLEIB $4, $1, F_4 - - // setup [r²,r] - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, RSAVE_3, R_3 - VLVGG $1, RSAVE_4, R_4 - VPDI $0, R5_1, R5SAVE_1, R5_1 - VPDI $0, R5_2, R5SAVE_2, R5_2 - VPDI $0, R5_3, R5SAVE_3, R5_3 - VPDI $0, R5_4, R5SAVE_4, R5_4 + VLEIB $12, $1, M_4 + + // Finally, set up the coefficients for the final multiplication. + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r² so that can be kept the + // same. We want lane 1 to be multiplied by r so we need to move + // the saved r value into the 32-bit odd index in lane 1 by + // rotating the 64-bit lane by 32. + VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only + VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] + VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] + VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] + VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] + VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] + VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] + VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] + VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] + VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] MOVD $0, R3 BR multiply skip: - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 - CMPBEQ R3, $0, finish -b1: - // 1 block remaining - SUB $1, R3 - VLL R3, (R2), T_0 - ADD $1, R3 +b1: // 1 block remaining + + // Load the final block (1-16 bytes). This will be placed into + // lane 0. + MOVD $-1(R3), R0 + VLL R0, (R2), T_0 // pad to 16 bytes with zeros + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, T_0 - VZERO T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) + + // Set the message block in lane 1 to the value 0 so that it + // can be accumulated without affecting the final result. + VZERO T_1 + + // Split the final message block into 26-bit limbs in lane 0. + // Lane 1 will be contain 0. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. CMPBNE R3, $16, 2(PC) - VLEIB $4, $1, F_4 - VLEIG $1, $1, R_0 - VZERO R_1 - VZERO R_2 - VZERO R_3 - VZERO R_4 - VZERO R5_1 - VZERO R5_2 - VZERO R5_3 - VZERO R5_4 - - // setup [r, 1] - VLVGG $0, RSAVE_0, R_0 - VLVGG $0, RSAVE_1, R_1 - VLVGG $0, RSAVE_2, R_2 - VLVGG $0, RSAVE_3, R_3 - VLVGG $0, RSAVE_4, R_4 - VPDI $0, R5SAVE_1, R5_1, R5_1 - VPDI $0, R5SAVE_2, R5_2, R5_2 - VPDI $0, R5SAVE_3, R5_3, R5_3 - VPDI $0, R5SAVE_4, R5_4, R5_4 + VLEIB $4, $1, M_4 + + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r so we need to move the + // saved r value into the 32-bit odd index in lane 0. We want + // lane 1 to be set to the value 1. This makes multiplication + // a no-op. We do this by setting lane 1 in every register to 0 + // and then just setting the 32-bit index 3 in R_0 to 1. + VZERO T_0 + MOVD $0, R0 + MOVD $0x10111213, R12 + VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] + VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] + VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] + VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] + VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] + VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] + VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] + VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] + VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] + VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] + + // Set the value of lane 1 to be 1. + VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] MOVD $0, R3 BR multiply diff --git a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s deleted file mode 100644 index b439af9369..0000000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s +++ /dev/null @@ -1,909 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.11,!gccgo,!purego - -#include "textflag.h" - -// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. - -// constants -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 -#define T_5 V9 -#define T_6 V10 -#define T_7 V11 -#define T_8 V12 -#define T_9 V13 -#define T_10 V14 - -// r**2 & r**4 -#define R_0 V15 -#define R_1 V16 -#define R_2 V17 -#define R5_1 V18 -#define R5_2 V19 -// key (r) -#define RSAVE_0 R7 -#define RSAVE_1 R8 -#define RSAVE_2 R9 -#define R5SAVE_1 R10 -#define R5SAVE_2 R11 - -// message block -#define M0 V20 -#define M1 V21 -#define M2 V22 -#define M3 V23 -#define M4 V24 -#define M5 V25 - -// accumulator -#define H0_0 V26 -#define H1_0 V27 -#define H2_0 V28 -#define H0_1 V29 -#define H1_1 V30 -#define H2_1 V31 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $48 -// EX0 -DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+8(SB)/8, $0x0000050403020100 -// EX1 -DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+24(SB)/8, $0x00000a0908070605 -// EX2 -DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b - -GLOBL ·c<>(SB), RODATA, $48 -// EX0 -DATA ·c<>+0(SB)/8, $0x0000050403020100 -DATA ·c<>+8(SB)/8, $0x0000151413121110 -// EX1 -DATA ·c<>+16(SB)/8, $0x00000a0908070605 -DATA ·c<>+24(SB)/8, $0x00001a1918171615 -// EX2 -DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b -DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b - -GLOBL ·reduce<>(SB), RODATA, $32 -// 44 bit -DATA ·reduce<>+0(SB)/8, $0x0 -DATA ·reduce<>+8(SB)/8, $0xfffffffffff -// 42 bit -DATA ·reduce<>+16(SB)/8, $0x0 -DATA ·reduce<>+24(SB)/8, $0x3ffffffffff - -// h = (f*g) % (2**130-5) [partial reduction] -// uses T_0...T_9 temporary registers -// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 -// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 -#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ - \ // Eliminate the dependency for the last 2 VMSLs - VMSLG m02_0, r_2, m4_2, m4_2 \ - VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined - VMSLG m02_0, r_0, m4_0, m4_0 \ - VMSLG m02_1, r5_2, V0, T_0 \ - VMSLG m02_0, r_1, m4_1, m4_1 \ - VMSLG m02_1, r_0, V0, T_1 \ - VMSLG m02_1, r_1, V0, T_2 \ - VMSLG m02_2, r5_1, V0, T_3 \ - VMSLG m02_2, r5_2, V0, T_4 \ - VMSLG m13_0, r_0, m5_0, m5_0 \ - VMSLG m13_1, r5_2, V0, T_5 \ - VMSLG m13_0, r_1, m5_1, m5_1 \ - VMSLG m13_1, r_0, V0, T_6 \ - VMSLG m13_1, r_1, V0, T_7 \ - VMSLG m13_2, r5_1, V0, T_8 \ - VMSLG m13_2, r5_2, V0, T_9 \ - VMSLG m02_2, r_0, m4_2, m4_2 \ - VMSLG m13_2, r_0, m5_2, m5_2 \ - VAQ m4_0, T_0, m02_0 \ - VAQ m4_1, T_1, m02_1 \ - VAQ m5_0, T_5, m13_0 \ - VAQ m5_1, T_6, m13_1 \ - VAQ m02_0, T_3, m02_0 \ - VAQ m02_1, T_4, m02_1 \ - VAQ m13_0, T_8, m13_0 \ - VAQ m13_1, T_9, m13_1 \ - VAQ m4_2, T_2, m02_2 \ - VAQ m5_2, T_7, m13_2 \ - -// SQUARE uses three limbs of r and r_2*5 to output square of r -// uses T_1, T_5 and T_7 temporary registers -// input: r_0, r_1, r_2, r5_2 -// temp: TEMP0, TEMP1, TEMP2 -// output: p0, p1, p2 -#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ - VMSLG r_0, r_0, p0, p0 \ - VMSLG r_1, r5_2, V0, TEMP0 \ - VMSLG r_2, r5_2, p1, p1 \ - VMSLG r_0, r_1, V0, TEMP1 \ - VMSLG r_1, r_1, p2, p2 \ - VMSLG r_0, r_2, V0, TEMP2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - -// carry h0->h1->h2->h0 || h3->h4->h5->h3 -// uses T_2, T_4, T_5, T_7, T_8, T_9 -// t6, t7, t8, t9, t10, t11 -// input: h0, h1, h2, h3, h4, h5 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 -// output: h0, h1, h2, h3, h4, h5 -#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ - VLM (R12), t6, t7 \ // 44 and 42 bit clear mask - VLEIB $7, $0x28, t10 \ // 5 byte shift mask - VREPIB $4, t8 \ // 4 bit shift mask - VREPIB $2, t11 \ // 2 bit shift mask - VSRLB t10, h0, t0 \ // h0 byte shift - VSRLB t10, h1, t1 \ // h1 byte shift - VSRLB t10, h2, t2 \ // h2 byte shift - VSRLB t10, h3, t3 \ // h3 byte shift - VSRLB t10, h4, t4 \ // h4 byte shift - VSRLB t10, h5, t5 \ // h5 byte shift - VSRL t8, t0, t0 \ // h0 bit shift - VSRL t8, t1, t1 \ // h2 bit shift - VSRL t11, t2, t2 \ // h2 bit shift - VSRL t8, t3, t3 \ // h3 bit shift - VSRL t8, t4, t4 \ // h4 bit shift - VESLG $2, t2, t9 \ // h2 carry x5 - VSRL t11, t5, t5 \ // h5 bit shift - VN t6, h0, h0 \ // h0 clear carry - VAQ t2, t9, t2 \ // h2 carry x5 - VESLG $2, t5, t9 \ // h5 carry x5 - VN t6, h1, h1 \ // h1 clear carry - VN t7, h2, h2 \ // h2 clear carry - VAQ t5, t9, t5 \ // h5 carry x5 - VN t6, h3, h3 \ // h3 clear carry - VN t6, h4, h4 \ // h4 clear carry - VN t7, h5, h5 \ // h5 clear carry - VAQ t0, h1, h1 \ // h0->h1 - VAQ t3, h4, h4 \ // h3->h4 - VAQ t1, h2, h2 \ // h1->h2 - VAQ t4, h5, h5 \ // h4->h5 - VAQ t2, h0, h0 \ // h2->h0 - VAQ t5, h3, h3 \ // h5->h3 - VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves - VREPG $1, t7, t7 \ - VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] - VSLDB $8, h1, h1, h1 \ - VSLDB $8, h2, h2, h2 \ - VO h0, h3, h3 \ - VO h1, h4, h4 \ - VO h2, h5, h5 \ - VESRLG $44, h3, t0 \ // 44 bit shift right - VESRLG $44, h4, t1 \ - VESRLG $42, h5, t2 \ - VN t6, h3, h3 \ // clear carry bits - VN t6, h4, h4 \ - VN t7, h5, h5 \ - VESLG $2, t2, t9 \ // multiply carry by 5 - VAQ t9, t2, t2 \ - VAQ t0, h4, h4 \ - VAQ t1, h5, h5 \ - VAQ t2, h3, h3 \ - -// carry h0->h1->h2->h0 -// input: h0, h1, h2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 -// output: h0, h1, h2 -#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ - VLEIB $7, $0x28, t3 \ // 5 byte shift mask - VREPIB $4, t4 \ // 4 bit shift mask - VREPIB $2, t7 \ // 2 bit shift mask - VGBM $0x003F, t5 \ // mask to clear carry bits - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VESRLG $4, t5, t5 \ // 44 bit clear mask - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VESRLG $2, t5, t6 \ // 42 bit clear mask - VESLG $2, t2, t8 \ - VAQ t8, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VESLG $2, t2, t8 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t8, t2, t2 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - -// expands two message blocks into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in1, in2, d0, d1, d2, d3, d4, d5 -// temp: TEMP0, TEMP1, TEMP2, TEMP3 -// output: d0, d1, d2, d3, d4, d5 -#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ - VGBM $0xff3f, TEMP0 \ - VGBM $0xff1f, TEMP1 \ - VESLG $4, d1, TEMP2 \ - VESLG $4, d4, TEMP3 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in1, d0, EX0, d0 \ - VPERM in2, d3, EX0, d3 \ - VPERM in1, d2, EX2, d2 \ - VPERM in2, d5, EX2, d5 \ - VPERM in1, TEMP2, EX1, d1 \ - VPERM in2, TEMP3, EX1, d4 \ - VN TEMP0, d0, d0 \ - VN TEMP0, d3, d3 \ - VESRLG $4, d1, d1 \ - VESRLG $4, d4, d4 \ - VN TEMP1, d2, d2 \ - VN TEMP1, d5, d5 \ - VN TEMP0, d1, d1 \ - VN TEMP0, d4, d4 \ - -// expands one message block into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in, d0, d1, d2 -// temp: TEMP0, TEMP1, TEMP2 -// output: d0, d1, d2 -#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ - VGBM $0xff3f, TEMP0 \ - VESLG $4, d1, TEMP2 \ - VGBM $0xff1f, TEMP1 \ - VPERM in, d0, EX0, d0 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in, d2, EX2, d2 \ - VPERM in, TEMP2, EX1, d1 \ - VN TEMP0, d0, d0 \ - VN TEMP1, d2, d2 \ - VESRLG $4, d1, d1 \ - VN TEMP0, d1, d1 \ - -// pack h2:h0 into h1:h0 (no carry) -// input: h0, h1, h2 -// output: h0, h1, h2 -#define PACK(h0, h1, h2) \ - VMRLG h1, h2, h2 \ // copy h1 to upper half h2 - VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 - VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 - VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 - VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 - VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) - VLEIG $0, $0, h2 \ // clear upper half of h2 - VESRLG $40, h2, h1 \ // h1 now has upper two bits of result - VLEIB $7, $88, h1 \ // for byte shift (11 bytes) - VSLB h1, h2, h2 \ // shift h2 11 bytes to the left - VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 - VLEIG $0, $0, h1 \ // clear upper half of h1 - -// if h > 2**130-5 then h -= 2**130-5 -// input: h0, h1 -// temp: t0, t1, t2 -// output: h0 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 \ - -// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vmsl(SB), $0-32 - // This code processes 6 + up to 4 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - // And as moddified for VMSL as described in - // Accelerating Poly1305 Cryptographic Message Authentication on the z14 - // O'Farrell et al, CASCON 2017, p48-55 - // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht - - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - VZERO V0 // c - - // load EX0, EX1 and EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 // c - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - VZERO T_2 // limbs for r - VZERO T_3 - VZERO T_4 - EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) - - // T_2, T_3, T_4: [0, r] - - // setup r*20 - VLEIG $0, $0, T_0 - VLEIG $1, $20, T_0 // T_0: [0, 20] - VZERO T_5 - VZERO T_6 - VMSLG T_0, T_3, T_5, T_5 - VMSLG T_0, T_4, T_6, T_6 - - // store r for final block in GR - VLGVG $1, T_2, RSAVE_0 // c - VLGVG $1, T_3, RSAVE_1 // c - VLGVG $1, T_4, RSAVE_2 // c - VLGVG $1, T_5, R5SAVE_1 // c - VLGVG $1, T_6, R5SAVE_2 // c - - // initialize h - VZERO H0_0 - VZERO H1_0 - VZERO H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - // initialize pointer for reduce constants - MOVD $·reduce<>(SB), R12 - - // calculate r**2 and 20*(r**2) - VZERO R_0 - VZERO R_1 - VZERO R_2 - SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) - REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) - VZERO R5_1 - VZERO R5_2 - VMSLG T_0, R_1, R5_1, R5_1 - VMSLG T_0, R_2, R5_2, R5_2 - - // skip r**4 calculation if 3 blocks or less - CMPBLE R3, $48, b4 - - // calculate r**4 and 20*(r**4) - VZERO T_8 - VZERO T_9 - VZERO T_10 - SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) - REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) - VZERO T_2 - VZERO T_3 - VMSLG T_0, T_9, T_2, T_2 - VMSLG T_0, T_10, T_3, T_3 - - // put r**2 to the right and r**4 to the left of R_0, R_1, R_2 - VSLDB $8, T_8, T_8, T_8 - VSLDB $8, T_9, T_9, T_9 - VSLDB $8, T_10, T_10, T_10 - VSLDB $8, T_2, T_2, T_2 - VSLDB $8, T_3, T_3, T_3 - - VO T_8, R_0, R_0 - VO T_9, R_1, R_1 - VO T_10, R_2, R_2 - VO T_2, R5_1, R5_1 - VO T_3, R5_2, R5_2 - - CMPBLE R3, $80, load // less than or equal to 5 blocks in message - - // 6(or 5+1) blocks - SUB $81, R3 - VLM (R2), M0, M4 - VLL R3, 80(R2), M5 - ADD $1, R3 - MOVBZ $1, R0 - CMPBGE R3, $16, 2(PC) - VLVGB R3, R0, M5 - MOVD $96(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $2, $1, H2_0 - VLEIB $2, $1, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO T_4 - VZERO T_10 - EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M4 - VLEIB $10, $1, M2 - CMPBLT R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - SUB $16, R3 - CMPBLE R3, $0, square - -load: - // load EX0, EX1 and EX2 - MOVD $·c<>(SB), R5 - VLM (R5), EX0, EX2 - -loop: - CMPBLE R3, $64, add // b4 // last 4 or less blocks left - - // next 4 full blocks - VLM (R2), M2, M5 - SUB $64, R3 - MOVD $64(R2), R2 - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) - - // expacc in-lined to create [m2, m3] limbs - VGBM $0x3f3f, T_0 // 44 bit clear mask - VGBM $0x1f1f, T_1 // 40 bit clear mask - VPERM M2, M3, EX0, T_3 - VESRLG $4, T_0, T_0 // 44 bit clear mask ready - VPERM M2, M3, EX1, T_4 - VPERM M2, M3, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG H0_1, T_3, H0_0 - VMRHG H1_1, T_4, H1_0 - VMRHG H2_1, T_5, H2_0 - VMRLG H0_1, T_3, H0_1 - VMRLG H1_1, T_4, H1_1 - VMRLG H2_1, T_5, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VPERM M4, M5, EX0, T_3 - VPERM M4, M5, EX1, T_4 - VPERM M4, M5, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG V0, T_3, M0 - VMRHG V0, T_4, M1 - VMRHG V0, T_5, M2 - VMRLG V0, T_3, M3 - VMRLG V0, T_4, M4 - VMRLG V0, T_5, M5 - VLEIB $10, $1, M2 - VLEIB $10, $1, M5 - - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - CMPBNE R3, $0, loop - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - // sum vectors - VAQ H0_0, H0_1, H0_0 - VAQ H1_0, H1_1, H1_0 - VAQ H2_0, H2_1, H2_0 - - // h may be >= 2*(2**130-5) so we need to reduce it again - // M0...M4 are used as temps here - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - -next: // carry h1->h2 - VLEIB $7, $0x28, T_1 - VREPIB $4, T_2 - VGBM $0x003F, T_3 - VESRLG $4, T_3 - - // byte shift - VSRLB T_1, H1_0, T_4 - - // bit shift - VSRL T_2, T_4, T_4 - - // clear h1 carry bits - VN T_3, H1_0, H1_0 - - // add carry - VAQ T_4, H2_0, H2_0 - - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H0_0, H1_0, H2_0) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H0_0, H1_0, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H0_0, H0_0 - VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) - VST H0_0, (R1) - RET - -add: - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - CMPBLE R3, $64, b4 - -b4: - CMPBLE R3, $48, b3 // 3 blocks or less - - // 4(3+1) blocks remaining - SUB $49, R3 - VLM (R2), M0, M2 - VLL R3, 48(R2), M3 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M3 - MOVD $64(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VZERO M0 - VZERO M1 - VZERO M4 - VZERO M5 - VZERO T_4 - VZERO T_10 - EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M2 - VLEIB $10, $1, M4 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - SUB $16, R3 - CMPBLE R3, $0, square // this condition must always hold true! - -b3: - CMPBLE R3, $32, b2 - - // 3 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) - - SUB $33, R3 - VLM (R2), M0, M1 - VLL R3, 32(R2), M2 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M2 - - // H += m0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAG H0_0, T_1, H0_0 - VAG H1_0, T_2, H1_0 - VAG H2_0, T_3, H2_0 - - VZERO M0 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - - // (H+m0)*r - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) - - // H += m1 - VZERO V0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - - // [H, m2] * [r**2, r] - EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, H2_0 - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) - SUB $16, R3 - CMPBLE R3, $0, next // this condition must always hold true! - -b2: - CMPBLE R3, $16, b1 - - // 2 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // move h to the left and 0s at the right - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - - // get message blocks and append 1 to start - SUB $17, R3 - VL (R2), M0 - VLL R3, 16(R2), M1 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M1 - VZERO T_6 - VZERO T_7 - VZERO T_8 - EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) - EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) - VLEIB $2, $1, T_8 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_8 - - // add [m0, m1] to h - VAG H0_0, T_6, H0_0 - VAG H1_0, T_7, H1_0 - VAG H2_0, T_8, H2_0 - - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - VZERO M0 - - // at this point R_0 .. R5_2 look like [r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - SUB $16, R3, R3 - CMPBLE R3, $0, next - -b1: - CMPBLE R3, $0, next - - // 1 block remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - // set up [0, m0] limbs - SUB $1, R3 - VLL R3, (R2), M0 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_3 - - // h+m0 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - BR next - -square: - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // (h0*r**2) + (h1*r) - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - BR next diff --git a/vendor/golang.org/x/crypto/ssh/agent/client.go b/vendor/golang.org/x/crypto/ssh/agent/client.go index 51f740500e..b909471cc0 100644 --- a/vendor/golang.org/x/crypto/ssh/agent/client.go +++ b/vendor/golang.org/x/crypto/ssh/agent/client.go @@ -102,8 +102,9 @@ type ConstraintExtension struct { // AddedKey describes an SSH key to be added to an Agent. type AddedKey struct { - // PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey or - // *ecdsa.PrivateKey, which will be inserted into the agent. + // PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey, + // ed25519.PrivateKey or *ecdsa.PrivateKey, which will be inserted into the + // agent. PrivateKey interface{} // Certificate, if not nil, is communicated to the agent and will be // stored with the key. @@ -566,6 +567,17 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er Comments: comment, Constraints: constraints, }) + case ed25519.PrivateKey: + req = ssh.Marshal(ed25519KeyMsg{ + Type: ssh.KeyAlgoED25519, + Pub: []byte(k)[32:], + Priv: []byte(k), + Comments: comment, + Constraints: constraints, + }) + // This function originally supported only *ed25519.PrivateKey, however the + // general idiom is to pass ed25519.PrivateKey by value, not by pointer. + // We still support the pointer variant for backwards compatibility. case *ed25519.PrivateKey: req = ssh.Marshal(ed25519KeyMsg{ Type: ssh.KeyAlgoED25519, @@ -683,6 +695,18 @@ func (c *client) insertCert(s interface{}, cert *ssh.Certificate, comment string Comments: comment, Constraints: constraints, }) + case ed25519.PrivateKey: + req = ssh.Marshal(ed25519CertMsg{ + Type: cert.Type(), + CertBytes: cert.Marshal(), + Pub: []byte(k)[32:], + Priv: []byte(k), + Comments: comment, + Constraints: constraints, + }) + // This function originally supported only *ed25519.PrivateKey, however the + // general idiom is to pass ed25519.PrivateKey by value, not by pointer. + // We still support the pointer variant for backwards compatibility. case *ed25519.PrivateKey: req = ssh.Marshal(ed25519CertMsg{ Type: cert.Type(), diff --git a/vendor/golang.org/x/crypto/ssh/certs.go b/vendor/golang.org/x/crypto/ssh/certs.go index 0f89aec1c7..916c840b69 100644 --- a/vendor/golang.org/x/crypto/ssh/certs.go +++ b/vendor/golang.org/x/crypto/ssh/certs.go @@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error { return nil } -// SignCert sets c.SignatureKey to the authority's public key and stores a -// Signature, by authority, in the certificate. +// SignCert signs the certificate with an authority, setting the Nonce, +// SignatureKey, and Signature fields. func (c *Certificate) SignCert(rand io.Reader, authority Signer) error { c.Nonce = make([]byte, 32) if _, err := io.ReadFull(rand, c.Nonce); err != nil { diff --git a/vendor/golang.org/x/crypto/ssh/cipher.go b/vendor/golang.org/x/crypto/ssh/cipher.go index b0204ee59f..8bd6b3daff 100644 --- a/vendor/golang.org/x/crypto/ssh/cipher.go +++ b/vendor/golang.org/x/crypto/ssh/cipher.go @@ -119,7 +119,7 @@ var cipherModes = map[string]*cipherMode{ chacha20Poly1305ID: {64, 0, newChaCha20Cipher}, // CBC mode is insecure and so is not included in the default config. - // (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely + // (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely // needed, it's possible to specify a custom Config to enable it. // You should expect that an active attacker can recover plaintext if // you do. diff --git a/vendor/golang.org/x/crypto/ssh/kex.go b/vendor/golang.org/x/crypto/ssh/kex.go index 6c3c648fc9..7eedb209fa 100644 --- a/vendor/golang.org/x/crypto/ssh/kex.go +++ b/vendor/golang.org/x/crypto/ssh/kex.go @@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil } -func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { +func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { // Send GexRequest kexDHGexRequest := kexDHGexRequestMsg{ MinBits: dhGroupExchangeMinimumBits, @@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak // Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256. // // This is a minimal implementation to satisfy the automated tests. -func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { +func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { // Receive GexRequest packet, err := c.readPacket() if err != nil { diff --git a/vendor/golang.org/x/crypto/ssh/keys.go b/vendor/golang.org/x/crypto/ssh/keys.go index 06f537c135..31f26349a0 100644 --- a/vendor/golang.org/x/crypto/ssh/keys.go +++ b/vendor/golang.org/x/crypto/ssh/keys.go @@ -1246,15 +1246,23 @@ func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc { } key, iv := k[:32], k[32:] - if cipherName != "aes256-ctr" { - return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q", cipherName, "aes256-ctr") - } c, err := aes.NewCipher(key) if err != nil { return nil, err } - ctr := cipher.NewCTR(c, iv) - ctr.XORKeyStream(privKeyBlock, privKeyBlock) + switch cipherName { + case "aes256-ctr": + ctr := cipher.NewCTR(c, iv) + ctr.XORKeyStream(privKeyBlock, privKeyBlock) + case "aes256-cbc": + if len(privKeyBlock)%c.BlockSize() != 0 { + return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size") + } + cbc := cipher.NewCBCDecrypter(c, iv) + cbc.CryptBlocks(privKeyBlock, privKeyBlock) + default: + return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc") + } return privKeyBlock, nil } diff --git a/vendor/modules.txt b/vendor/modules.txt index 503c845f57..bf6aacb506 100644 --- a/vendor/modules.txt +++ b/vendor/modules.txt @@ -158,7 +158,7 @@ github.com/couchbaselabs/go-couchbase ## explicit # github.com/davecgh/go-spew v1.1.1 github.com/davecgh/go-spew/spew -# github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 +# github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc ## explicit github.com/denisenkom/go-mssqldb github.com/denisenkom/go-mssqldb/internal/cp @@ -670,7 +670,7 @@ go.mongodb.org/mongo-driver/bson/bsonrw go.mongodb.org/mongo-driver/bson/bsontype go.mongodb.org/mongo-driver/bson/primitive go.mongodb.org/mongo-driver/x/bsonx/bsoncore -# golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 +# golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 ## explicit golang.org/x/crypto/acme golang.org/x/crypto/acme/autocert |