summaryrefslogtreecommitdiffstats
path: root/vendor/github.com
diff options
context:
space:
mode:
author6543 <6543@obermui.de>2020-02-28 10:51:18 +0100
committerGitHub <noreply@github.com>2020-02-28 10:51:18 +0100
commit8d2059a20184842d9a7a573d285956dd998d42c4 (patch)
treeea957536a3d71dc9a98b793fe9b0e8c89252ea12 /vendor/github.com
parent694f44660f51aa2e8be920c49461380b7db64755 (diff)
downloadgitea-8d2059a20184842d9a7a573d285956dd998d42c4.tar.gz
gitea-8d2059a20184842d9a7a573d285956dd998d42c4.zip
update: macaron cores,gzip,session (#10522)
Co-authored-by: zeripath <art27@cantab.net>
Diffstat (limited to 'vendor/github.com')
-rw-r--r--vendor/github.com/klauspost/compress/flate/deflate.go45
-rw-r--r--vendor/github.com/klauspost/compress/flate/fast_encoder.go27
-rw-r--r--vendor/github.com/klauspost/compress/flate/gen_inflate.go274
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go78
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_code.go83
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go178
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go201
-rw-r--r--vendor/github.com/klauspost/compress/flate/inflate.go113
-rw-r--r--vendor/github.com/klauspost/compress/flate/inflate_gen.go922
-rw-r--r--vendor/github.com/klauspost/compress/flate/level1.go25
-rw-r--r--vendor/github.com/klauspost/compress/flate/level2.go32
-rw-r--r--vendor/github.com/klauspost/compress/flate/level3.go58
-rw-r--r--vendor/github.com/klauspost/compress/flate/level4.go34
-rw-r--r--vendor/github.com/klauspost/compress/flate/level5.go47
-rw-r--r--vendor/github.com/klauspost/compress/flate/level6.go37
-rw-r--r--vendor/github.com/klauspost/compress/flate/stateless.go83
-rw-r--r--vendor/github.com/klauspost/compress/flate/token.go46
-rw-r--r--vendor/github.com/klauspost/compress/gzip/gzip.go4
18 files changed, 2000 insertions, 287 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/deflate.go b/vendor/github.com/klauspost/compress/flate/deflate.go
index 20c94f5968..2b101d26b2 100644
--- a/vendor/github.com/klauspost/compress/flate/deflate.go
+++ b/vendor/github.com/klauspost/compress/flate/deflate.go
@@ -48,6 +48,8 @@ const (
maxHashOffset = 1 << 24
skipNever = math.MaxInt32
+
+ debugDeflate = false
)
type compressionLevel struct {
@@ -59,15 +61,13 @@ type compressionLevel struct {
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
- // Level 1-4 uses specialized algorithm - values not used
+ // Level 1-6 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
- // For levels 5-6 we don't bother trying with lazy matches.
- // Lazy matching is at least 30% slower, with 1.5% increase.
- {6, 0, 12, 8, 12, 5},
- {8, 0, 24, 16, 16, 6},
+ {0, 0, 0, 0, 0, 5},
+ {0, 0, 0, 0, 0, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{8, 8, 24, 16, skipNever, 7},
@@ -203,9 +203,8 @@ func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
- // Do not fill window if we are in store-only mode,
- // use constant or Snappy compression.
- if d.level == 0 {
+ // Do not fill window if we are in store-only or huffman mode.
+ if d.level <= 0 {
return
}
if d.fast != nil {
@@ -368,7 +367,7 @@ func (d *compressor) deflateLazy() {
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
- const sanity = false
+ const sanity = debugDeflate
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
@@ -644,7 +643,7 @@ func (d *compressor) init(w io.Writer, level int) (err error) {
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
- d.w.logReusePenalty = uint(4)
+ d.w.logNewTablePenalty = 4
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
@@ -652,13 +651,13 @@ func (d *compressor) init(w io.Writer, level int) (err error) {
level = 5
fallthrough
case level >= 1 && level <= 6:
- d.w.logReusePenalty = uint(level + 1)
+ d.w.logNewTablePenalty = 6
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
- d.w.logReusePenalty = uint(level)
+ d.w.logNewTablePenalty = 10
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
@@ -667,6 +666,7 @@ func (d *compressor) init(w io.Writer, level int) (err error) {
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
+ d.level = level
return nil
}
@@ -720,6 +720,7 @@ func (d *compressor) close() error {
return d.w.err
}
d.w.flush()
+ d.w.reset(nil)
return d.w.err
}
@@ -750,8 +751,7 @@ func NewWriter(w io.Writer, level int) (*Writer, error) {
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
- dw := &dictWriter{w}
- zw, err := NewWriter(dw, level)
+ zw, err := NewWriter(w, level)
if err != nil {
return nil, err
}
@@ -760,14 +760,6 @@ func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
return zw, err
}
-type dictWriter struct {
- w io.Writer
-}
-
-func (w *dictWriter) Write(b []byte) (n int, err error) {
- return w.w.Write(b)
-}
-
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
@@ -805,11 +797,12 @@ func (w *Writer) Close() error {
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
- if dw, ok := w.d.w.writer.(*dictWriter); ok {
+ if len(w.dict) > 0 {
// w was created with NewWriterDict
- dw.w = dst
- w.d.reset(dw)
- w.d.fillWindow(w.dict)
+ w.d.reset(dst)
+ if dst != nil {
+ w.d.fillWindow(w.dict)
+ }
} else {
// w was created with NewWriter
w.d.reset(dst)
diff --git a/vendor/github.com/klauspost/compress/flate/fast_encoder.go b/vendor/github.com/klauspost/compress/flate/fast_encoder.go
index b0a470f92e..6d4c1e98bc 100644
--- a/vendor/github.com/klauspost/compress/flate/fast_encoder.go
+++ b/vendor/github.com/klauspost/compress/flate/fast_encoder.go
@@ -35,17 +35,17 @@ func newFastEnc(level int) fastEnc {
}
const (
- tableBits = 16 // Bits used in the table
+ tableBits = 15 // Bits used in the table
tableSize = 1 << tableBits // Size of the table
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
baseMatchOffset = 1 // The smallest match offset
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
maxMatchOffset = 1 << 15 // The largest match offset
- bTableBits = 18 // Bits used in the big tables
- bTableSize = 1 << bTableBits // Size of the table
- allocHistory = maxMatchOffset * 10 // Size to preallocate for history.
- bufferReset = (1 << 31) - allocHistory - maxStoreBlockSize // Reset the buffer offset when reaching this.
+ bTableBits = 17 // Bits used in the big tables
+ bTableSize = 1 << bTableBits // Size of the table
+ allocHistory = maxStoreBlockSize * 10 // Size to preallocate for history.
+ bufferReset = (1 << 31) - allocHistory - maxStoreBlockSize - 1 // Reset the buffer offset when reaching this.
)
const (
@@ -92,7 +92,6 @@ func hash(u uint32) uint32 {
}
type tableEntry struct {
- val uint32
offset int32
}
@@ -210,16 +209,14 @@ func (e *fastGen) matchlenLong(s, t int32, src []byte) int32 {
// Reset the encoding table.
func (e *fastGen) Reset() {
- if cap(e.hist) < int(maxMatchOffset*8) {
- l := maxMatchOffset * 8
- // Make it at least 1MB.
- if l < 1<<20 {
- l = 1 << 20
- }
- e.hist = make([]byte, 0, l)
+ if cap(e.hist) < allocHistory {
+ e.hist = make([]byte, 0, allocHistory)
+ }
+ // We offset current position so everything will be out of reach.
+ // If we are above the buffer reset it will be cleared anyway since len(hist) == 0.
+ if e.cur <= bufferReset {
+ e.cur += maxMatchOffset + int32(len(e.hist))
}
- // We offset current position so everything will be out of reach
- e.cur += maxMatchOffset + int32(len(e.hist))
e.hist = e.hist[:0]
}
diff --git a/vendor/github.com/klauspost/compress/flate/gen_inflate.go b/vendor/github.com/klauspost/compress/flate/gen_inflate.go
new file mode 100644
index 0000000000..c74a95fe7f
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/gen_inflate.go
@@ -0,0 +1,274 @@
+// +build generate
+
+//go:generate go run $GOFILE && gofmt -w inflate_gen.go
+
+package main
+
+import (
+ "os"
+ "strings"
+)
+
+func main() {
+ f, err := os.Create("inflate_gen.go")
+ if err != nil {
+ panic(err)
+ }
+ defer f.Close()
+ types := []string{"*bytes.Buffer", "*bytes.Reader", "*bufio.Reader", "*strings.Reader"}
+ names := []string{"BytesBuffer", "BytesReader", "BufioReader", "StringsReader"}
+ imports := []string{"bytes", "bufio", "io", "strings", "math/bits"}
+ f.WriteString(`// Code generated by go generate gen_inflate.go. DO NOT EDIT.
+
+package flate
+
+import (
+`)
+
+ for _, imp := range imports {
+ f.WriteString("\t\"" + imp + "\"\n")
+ }
+ f.WriteString(")\n\n")
+
+ template := `
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) $FUNCNAME$() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.($TYPE$)
+ moreBits := func() error {
+ c, err := fr.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+ }
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var n uint // number of bits extra
+ var length int
+ var err error
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).$FUNCNAME$
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).$FUNCNAME$ // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+`
+ for i, t := range types {
+ s := strings.Replace(template, "$FUNCNAME$", "huffman"+names[i], -1)
+ s = strings.Replace(s, "$TYPE$", t, -1)
+ f.WriteString(s)
+ }
+ f.WriteString("func (f *decompressor) huffmanBlockDecoder() func() {\n")
+ f.WriteString("\tswitch f.r.(type) {\n")
+ for i, t := range types {
+ f.WriteString("\t\tcase " + t + ":\n")
+ f.WriteString("\t\t\treturn f.huffman" + names[i] + "\n")
+ }
+ f.WriteString("\t\tdefault:\n")
+ f.WriteString("\t\t\treturn f.huffmanBlockGeneric")
+ f.WriteString("\t}\n}\n")
+}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
index 5ed476aa0d..53fe1d06e2 100644
--- a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
+++ b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
@@ -93,12 +93,12 @@ type huffmanBitWriter struct {
err error
lastHeader int
// Set between 0 (reused block can be up to 2x the size)
- logReusePenalty uint
- lastHuffMan bool
- bytes [256]byte
- literalFreq [lengthCodesStart + 32]uint16
- offsetFreq [32]uint16
- codegenFreq [codegenCodeCount]uint16
+ logNewTablePenalty uint
+ lastHuffMan bool
+ bytes [256]byte
+ literalFreq [lengthCodesStart + 32]uint16
+ offsetFreq [32]uint16
+ codegenFreq [codegenCodeCount]uint16
// codegen must have an extra space for the final symbol.
codegen [literalCount + offsetCodeCount + 1]uint8
@@ -119,7 +119,7 @@ type huffmanBitWriter struct {
// If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
//
// An incoming block estimates the output size of a new table using a 'fresh' by calculating the
-// optimal size and adding a penalty in 'logReusePenalty'.
+// optimal size and adding a penalty in 'logNewTablePenalty'.
// A Huffman table is not optimal, which is why we add a penalty, and generating a new table
// is slower both for compression and decompression.
@@ -135,7 +135,6 @@ func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
func (w *huffmanBitWriter) reset(writer io.Writer) {
w.writer = writer
w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
- w.bytes = [256]byte{}
w.lastHeader = 0
w.lastHuffMan = false
}
@@ -178,6 +177,11 @@ func (w *huffmanBitWriter) flush() {
w.nbits = 0
return
}
+ if w.lastHeader > 0 {
+ // We owe an EOB
+ w.writeCode(w.literalEncoding.codes[endBlockMarker])
+ w.lastHeader = 0
+ }
n := w.nbytes
for w.nbits != 0 {
w.bytes[n] = byte(w.bits)
@@ -351,6 +355,13 @@ func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
}
// dynamicSize returns the size of dynamically encoded data in bits.
+func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
+ size = litEnc.bitLength(w.literalFreq[:]) +
+ offEnc.bitLength(w.offsetFreq[:])
+ return size
+}
+
+// dynamicSize returns the size of dynamically encoded data in bits.
func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
header, numCodegens := w.headerSize()
size = header +
@@ -452,30 +463,30 @@ func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, n
i := 0
for {
- var codeWord int = int(w.codegen[i])
+ var codeWord = uint32(w.codegen[i])
i++
if codeWord == badCode {
break
}
- w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
+ w.writeCode(w.codegenEncoding.codes[codeWord])
switch codeWord {
case 16:
w.writeBits(int32(w.codegen[i]), 2)
i++
- break
case 17:
w.writeBits(int32(w.codegen[i]), 3)
i++
- break
case 18:
w.writeBits(int32(w.codegen[i]), 7)
i++
- break
}
}
}
+// writeStoredHeader will write a stored header.
+// If the stored block is only used for EOF,
+// it is replaced with a fixed huffman block.
func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
if w.err != nil {
return
@@ -485,6 +496,16 @@ func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
w.writeCode(w.literalEncoding.codes[endBlockMarker])
w.lastHeader = 0
}
+
+ // To write EOF, use a fixed encoding block. 10 bits instead of 5 bytes.
+ if length == 0 && isEof {
+ w.writeFixedHeader(isEof)
+ // EOB: 7 bits, value: 0
+ w.writeBits(0, 7)
+ w.flush()
+ return
+ }
+
var flag int32
if isEof {
flag = 1
@@ -591,8 +612,8 @@ func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []b
tokens.AddEOB()
}
- // We cannot reuse pure huffman table.
- if w.lastHuffMan && w.lastHeader > 0 {
+ // We cannot reuse pure huffman table, and must mark as EOF.
+ if (w.lastHuffMan || eof) && w.lastHeader > 0 {
// We will not try to reuse.
w.writeCode(w.literalEncoding.codes[endBlockMarker])
w.lastHeader = 0
@@ -606,14 +627,14 @@ func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []b
var size int
// Check if we should reuse.
if w.lastHeader > 0 {
- // Estimate size for using a new table
+ // Estimate size for using a new table.
+ // Use the previous header size as the best estimate.
newSize := w.lastHeader + tokens.EstimatedBits()
+ newSize += newSize >> w.logNewTablePenalty
// The estimated size is calculated as an optimal table.
// We add a penalty to make it more realistic and re-use a bit more.
- newSize += newSize >> (w.logReusePenalty & 31)
- extra := w.extraBitSize()
- reuseSize, _ := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extra)
+ reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + w.extraBitSize()
// Check if a new table is better.
if newSize < reuseSize {
@@ -805,21 +826,30 @@ func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
}
// Add everything as literals
- estBits := histogramSize(input, w.literalFreq[:], !eof && !sync) + 15
+ // We have to estimate the header size.
+ // Assume header is around 70 bytes:
+ // https://stackoverflow.com/a/25454430
+ const guessHeaderSizeBits = 70 * 8
+ estBits, estExtra := histogramSize(input, w.literalFreq[:], !eof && !sync)
+ estBits += w.lastHeader + 15
+ if w.lastHeader == 0 {
+ estBits += guessHeaderSizeBits
+ }
+ estBits += estBits >> w.logNewTablePenalty
// Store bytes, if we don't get a reasonable improvement.
ssize, storable := w.storedSize(input)
- if storable && ssize < (estBits+estBits>>4) {
+ if storable && ssize < estBits {
w.writeStoredHeader(len(input), eof)
w.writeBytes(input)
return
}
if w.lastHeader > 0 {
- size, _ := w.dynamicSize(w.literalEncoding, huffOffset, w.lastHeader)
- estBits += estBits >> (w.logReusePenalty)
+ reuseSize := w.literalEncoding.bitLength(w.literalFreq[:256])
+ estBits += estExtra
- if estBits < size {
+ if estBits < reuseSize {
// We owe an EOB
w.writeCode(w.literalEncoding.codes[endBlockMarker])
w.lastHeader = 0
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_code.go b/vendor/github.com/klauspost/compress/flate/huffman_code.go
index d0099599c5..4c39a30187 100644
--- a/vendor/github.com/klauspost/compress/flate/huffman_code.go
+++ b/vendor/github.com/klauspost/compress/flate/huffman_code.go
@@ -7,7 +7,6 @@ package flate
import (
"math"
"math/bits"
- "sort"
)
const (
@@ -25,8 +24,6 @@ type huffmanEncoder struct {
codes []hcode
freqcache []literalNode
bitCount [17]int32
- lns byLiteral // stored to avoid repeated allocation in generate
- lfs byFreq // stored to avoid repeated allocation in generate
}
type literalNode struct {
@@ -85,17 +82,14 @@ func generateFixedLiteralEncoding() *huffmanEncoder {
// size 8, 000110000 .. 10111111
bits = ch + 48
size = 8
- break
case ch < 256:
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144
size = 9
- break
case ch < 280:
// size 7, 0000000 .. 0010111
bits = ch - 256
size = 7
- break
default:
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280
@@ -115,8 +109,8 @@ func generateFixedOffsetEncoding() *huffmanEncoder {
return h
}
-var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
-var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
+var fixedLiteralEncoding = generateFixedLiteralEncoding()
+var fixedOffsetEncoding = generateFixedOffsetEncoding()
func (h *huffmanEncoder) bitLength(freq []uint16) int {
var total int
@@ -273,7 +267,7 @@ func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalN
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
- h.lns.sort(chunk)
+ sortByLiteral(chunk)
for _, node := range chunk {
h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
code++
@@ -318,7 +312,7 @@ func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
}
return
}
- h.lfs.sort(list)
+ sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
@@ -326,59 +320,44 @@ func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
h.assignEncodingAndSize(bitCount, list)
}
-type byLiteral []literalNode
-
-func (s *byLiteral) sort(a []literalNode) {
- *s = byLiteral(a)
- sort.Sort(s)
-}
-
-func (s byLiteral) Len() int { return len(s) }
-
-func (s byLiteral) Less(i, j int) bool {
- return s[i].literal < s[j].literal
-}
-
-func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
-type byFreq []literalNode
-
-func (s *byFreq) sort(a []literalNode) {
- *s = byFreq(a)
- sort.Sort(s)
-}
-
-func (s byFreq) Len() int { return len(s) }
-
-func (s byFreq) Less(i, j int) bool {
- if s[i].freq == s[j].freq {
- return s[i].literal < s[j].literal
+func atLeastOne(v float32) float32 {
+ if v < 1 {
+ return 1
}
- return s[i].freq < s[j].freq
+ return v
}
-func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
// histogramSize accumulates a histogram of b in h.
// An estimated size in bits is returned.
// Unassigned values are assigned '1' in the histogram.
// len(h) must be >= 256, and h's elements must be all zeroes.
-func histogramSize(b []byte, h []uint16, fill bool) int {
+func histogramSize(b []byte, h []uint16, fill bool) (int, int) {
h = h[:256]
for _, t := range b {
h[t]++
}
- invTotal := 1.0 / float64(len(b))
- shannon := 0.0
- single := math.Ceil(-math.Log2(invTotal))
- for i, v := range h[:] {
- if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- } else if fill {
- shannon += single
- h[i] = 1
+ invTotal := 1.0 / float32(len(b))
+ shannon := float32(0.0)
+ var extra float32
+ if fill {
+ oneBits := atLeastOne(-mFastLog2(invTotal))
+ for i, v := range h[:] {
+ if v > 0 {
+ n := float32(v)
+ shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
+ } else {
+ h[i] = 1
+ extra += oneBits
+ }
+ }
+ } else {
+ for _, v := range h[:] {
+ if v > 0 {
+ n := float32(v)
+ shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
+ }
}
}
- return int(shannon + 0.99)
+
+ return int(shannon + 0.99), int(extra + 0.99)
}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go b/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go
new file mode 100644
index 0000000000..2077802990
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_sortByFreq.go
@@ -0,0 +1,178 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// Sort sorts data.
+// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
+// data.Less and data.Swap. The sort is not guaranteed to be stable.
+func sortByFreq(data []literalNode) {
+ n := len(data)
+ quickSortByFreq(data, 0, n, maxDepth(n))
+}
+
+func quickSortByFreq(data []literalNode, a, b, maxDepth int) {
+ for b-a > 12 { // Use ShellSort for slices <= 12 elements
+ if maxDepth == 0 {
+ heapSort(data, a, b)
+ return
+ }
+ maxDepth--
+ mlo, mhi := doPivotByFreq(data, a, b)
+ // Avoiding recursion on the larger subproblem guarantees
+ // a stack depth of at most lg(b-a).
+ if mlo-a < b-mhi {
+ quickSortByFreq(data, a, mlo, maxDepth)
+ a = mhi // i.e., quickSortByFreq(data, mhi, b)
+ } else {
+ quickSortByFreq(data, mhi, b, maxDepth)
+ b = mlo // i.e., quickSortByFreq(data, a, mlo)
+ }
+ }
+ if b-a > 1 {
+ // Do ShellSort pass with gap 6
+ // It could be written in this simplified form cause b-a <= 12
+ for i := a + 6; i < b; i++ {
+ if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq {
+ data[i], data[i-6] = data[i-6], data[i]
+ }
+ }
+ insertionSortByFreq(data, a, b)
+ }
+}
+
+// siftDownByFreq implements the heap property on data[lo, hi).
+// first is an offset into the array where the root of the heap lies.
+func siftDownByFreq(data []literalNode, lo, hi, first int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) {
+ child++
+ }
+ if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq {
+ return
+ }
+ data[first+root], data[first+child] = data[first+child], data[first+root]
+ root = child
+ }
+}
+func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) {
+ m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
+ if hi-lo > 40 {
+ // Tukey's ``Ninther,'' median of three medians of three.
+ s := (hi - lo) / 8
+ medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s)
+ medianOfThreeSortByFreq(data, m, m-s, m+s)
+ medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s)
+ }
+ medianOfThreeSortByFreq(data, lo, m, hi-1)
+
+ // Invariants are:
+ // data[lo] = pivot (set up by ChoosePivot)
+ // data[lo < i < a] < pivot
+ // data[a <= i < b] <= pivot
+ // data[b <= i < c] unexamined
+ // data[c <= i < hi-1] > pivot
+ // data[hi-1] >= pivot
+ pivot := lo
+ a, c := lo+1, hi-1
+
+ for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ {
+ }
+ b := a
+ for {
+ for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot
+ }
+ for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot
+ }
+ if b >= c {
+ break
+ }
+ // data[b] > pivot; data[c-1] <= pivot
+ data[b], data[c-1] = data[c-1], data[b]
+ b++
+ c--
+ }
+ // If hi-c<3 then there are duplicates (by property of median of nine).
+ // Let's be a bit more conservative, and set border to 5.
+ protect := hi-c < 5
+ if !protect && hi-c < (hi-lo)/4 {
+ // Lets test some points for equality to pivot
+ dups := 0
+ if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot
+ data[c], data[hi-1] = data[hi-1], data[c]
+ c++
+ dups++
+ }
+ if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot
+ b--
+ dups++
+ }
+ // m-lo = (hi-lo)/2 > 6
+ // b-lo > (hi-lo)*3/4-1 > 8
+ // ==> m < b ==> data[m] <= pivot
+ if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot
+ data[m], data[b-1] = data[b-1], data[m]
+ b--
+ dups++
+ }
+ // if at least 2 points are equal to pivot, assume skewed distribution
+ protect = dups > 1
+ }
+ if protect {
+ // Protect against a lot of duplicates
+ // Add invariant:
+ // data[a <= i < b] unexamined
+ // data[b <= i < c] = pivot
+ for {
+ for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot
+ }
+ for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot
+ }
+ if a >= b {
+ break
+ }
+ // data[a] == pivot; data[b-1] < pivot
+ data[a], data[b-1] = data[b-1], data[a]
+ a++
+ b--
+ }
+ }
+ // Swap pivot into middle
+ data[pivot], data[b-1] = data[b-1], data[pivot]
+ return b - 1, c
+}
+
+// Insertion sort
+func insertionSortByFreq(data []literalNode, a, b int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- {
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+}
+
+// quickSortByFreq, loosely following Bentley and McIlroy,
+// ``Engineering a Sort Function,'' SP&E November 1993.
+
+// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
+func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) {
+ // sort 3 elements
+ if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ // data[m0] <= data[m1]
+ if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq {
+ data[m2], data[m1] = data[m1], data[m2]
+ // data[m0] <= data[m2] && data[m1] < data[m2]
+ if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ }
+ // now data[m0] <= data[m1] <= data[m2]
+}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go b/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go
new file mode 100644
index 0000000000..93f1aea109
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/huffman_sortByLiteral.go
@@ -0,0 +1,201 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// Sort sorts data.
+// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
+// data.Less and data.Swap. The sort is not guaranteed to be stable.
+func sortByLiteral(data []literalNode) {
+ n := len(data)
+ quickSort(data, 0, n, maxDepth(n))
+}
+
+func quickSort(data []literalNode, a, b, maxDepth int) {
+ for b-a > 12 { // Use ShellSort for slices <= 12 elements
+ if maxDepth == 0 {
+ heapSort(data, a, b)
+ return
+ }
+ maxDepth--
+ mlo, mhi := doPivot(data, a, b)
+ // Avoiding recursion on the larger subproblem guarantees
+ // a stack depth of at most lg(b-a).
+ if mlo-a < b-mhi {
+ quickSort(data, a, mlo, maxDepth)
+ a = mhi // i.e., quickSort(data, mhi, b)
+ } else {
+ quickSort(data, mhi, b, maxDepth)
+ b = mlo // i.e., quickSort(data, a, mlo)
+ }
+ }
+ if b-a > 1 {
+ // Do ShellSort pass with gap 6
+ // It could be written in this simplified form cause b-a <= 12
+ for i := a + 6; i < b; i++ {
+ if data[i].literal < data[i-6].literal {
+ data[i], data[i-6] = data[i-6], data[i]
+ }
+ }
+ insertionSort(data, a, b)
+ }
+}
+func heapSort(data []literalNode, a, b int) {
+ first := a
+ lo := 0
+ hi := b - a
+
+ // Build heap with greatest element at top.
+ for i := (hi - 1) / 2; i >= 0; i-- {
+ siftDown(data, i, hi, first)
+ }
+
+ // Pop elements, largest first, into end of data.
+ for i := hi - 1; i >= 0; i-- {
+ data[first], data[first+i] = data[first+i], data[first]
+ siftDown(data, lo, i, first)
+ }
+}
+
+// siftDown implements the heap property on data[lo, hi).
+// first is an offset into the array where the root of the heap lies.
+func siftDown(data []literalNode, lo, hi, first int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
+ child++
+ }
+ if data[first+root].literal > data[first+child].literal {
+ return
+ }
+ data[first+root], data[first+child] = data[first+child], data[first+root]
+ root = child
+ }
+}
+func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
+ m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
+ if hi-lo > 40 {
+ // Tukey's ``Ninther,'' median of three medians of three.
+ s := (hi - lo) / 8
+ medianOfThree(data, lo, lo+s, lo+2*s)
+ medianOfThree(data, m, m-s, m+s)
+ medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
+ }
+ medianOfThree(data, lo, m, hi-1)
+
+ // Invariants are:
+ // data[lo] = pivot (set up by ChoosePivot)
+ // data[lo < i < a] < pivot
+ // data[a <= i < b] <= pivot
+ // data[b <= i < c] unexamined
+ // data[c <= i < hi-1] > pivot
+ // data[hi-1] >= pivot
+ pivot := lo
+ a, c := lo+1, hi-1
+
+ for ; a < c && data[a].literal < data[pivot].literal; a++ {
+ }
+ b := a
+ for {
+ for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
+ }
+ for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
+ }
+ if b >= c {
+ break
+ }
+ // data[b] > pivot; data[c-1] <= pivot
+ data[b], data[c-1] = data[c-1], data[b]
+ b++
+ c--
+ }
+ // If hi-c<3 then there are duplicates (by property of median of nine).
+ // Let's be a bit more conservative, and set border to 5.
+ protect := hi-c < 5
+ if !protect && hi-c < (hi-lo)/4 {
+ // Lets test some points for equality to pivot
+ dups := 0
+ if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
+ data[c], data[hi-1] = data[hi-1], data[c]
+ c++
+ dups++
+ }
+ if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
+ b--
+ dups++
+ }
+ // m-lo = (hi-lo)/2 > 6
+ // b-lo > (hi-lo)*3/4-1 > 8
+ // ==> m < b ==> data[m] <= pivot
+ if data[m].literal > data[pivot].literal { // data[m] = pivot
+ data[m], data[b-1] = data[b-1], data[m]
+ b--
+ dups++
+ }
+ // if at least 2 points are equal to pivot, assume skewed distribution
+ protect = dups > 1
+ }
+ if protect {
+ // Protect against a lot of duplicates
+ // Add invariant:
+ // data[a <= i < b] unexamined
+ // data[b <= i < c] = pivot
+ for {
+ for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
+ }
+ for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
+ }
+ if a >= b {
+ break
+ }
+ // data[a] == pivot; data[b-1] < pivot
+ data[a], data[b-1] = data[b-1], data[a]
+ a++
+ b--
+ }
+ }
+ // Swap pivot into middle
+ data[pivot], data[b-1] = data[b-1], data[pivot]
+ return b - 1, c
+}
+
+// Insertion sort
+func insertionSort(data []literalNode, a, b int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+}
+
+// maxDepth returns a threshold at which quicksort should switch
+// to heapsort. It returns 2*ceil(lg(n+1)).
+func maxDepth(n int) int {
+ var depth int
+ for i := n; i > 0; i >>= 1 {
+ depth++
+ }
+ return depth * 2
+}
+
+// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
+func medianOfThree(data []literalNode, m1, m0, m2 int) {
+ // sort 3 elements
+ if data[m1].literal < data[m0].literal {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ // data[m0] <= data[m1]
+ if data[m2].literal < data[m1].literal {
+ data[m2], data[m1] = data[m1], data[m2]
+ // data[m0] <= data[m2] && data[m1] < data[m2]
+ if data[m1].literal < data[m0].literal {
+ data[m1], data[m0] = data[m0], data[m1]
+ }
+ }
+ // now data[m0] <= data[m1] <= data[m2]
+}
diff --git a/vendor/github.com/klauspost/compress/flate/inflate.go b/vendor/github.com/klauspost/compress/flate/inflate.go
index 6dc5b5d06e..7f175a4ec2 100644
--- a/vendor/github.com/klauspost/compress/flate/inflate.go
+++ b/vendor/github.com/klauspost/compress/flate/inflate.go
@@ -106,7 +106,7 @@ const (
)
type huffmanDecoder struct {
- min int // the minimum code length
+ maxRead int // the maximum number of bits we can read and not overread
chunks *[huffmanNumChunks]uint16 // chunks as described above
links [][]uint16 // overflow links
linkMask uint32 // mask the width of the link table
@@ -126,12 +126,12 @@ func (h *huffmanDecoder) init(lengths []int) bool {
if h.chunks == nil {
h.chunks = &[huffmanNumChunks]uint16{}
}
- if h.min != 0 {
+ if h.maxRead != 0 {
*h = huffmanDecoder{chunks: h.chunks, links: h.links}
}
// Count number of codes of each length,
- // compute min and max length.
+ // compute maxRead and max length.
var count [maxCodeLen]int
var min, max int
for _, n := range lengths {
@@ -178,7 +178,7 @@ func (h *huffmanDecoder) init(lengths []int) bool {
return false
}
- h.min = min
+ h.maxRead = min
chunks := h.chunks[:]
for i := range chunks {
chunks[i] = 0
@@ -342,7 +342,7 @@ func (f *decompressor) nextBlock() {
// compressed, fixed Huffman tables
f.hl = &fixedHuffmanDecoder
f.hd = nil
- f.huffmanBlock()
+ f.huffmanBlockDecoder()()
case 2:
// compressed, dynamic Huffman tables
if f.err = f.readHuffman(); f.err != nil {
@@ -350,7 +350,7 @@ func (f *decompressor) nextBlock() {
}
f.hl = &f.h1
f.hd = &f.h2
- f.huffmanBlock()
+ f.huffmanBlockDecoder()()
default:
// 3 is reserved.
if debugDecode {
@@ -543,12 +543,18 @@ func (f *decompressor) readHuffman() error {
return CorruptInputError(f.roffset)
}
- // As an optimization, we can initialize the min bits to read at a time
+ // As an optimization, we can initialize the maxRead bits to read at a time
// for the HLIT tree to the length of the EOB marker since we know that
// every block must terminate with one. This preserves the property that
// we never read any extra bytes after the end of the DEFLATE stream.
- if f.h1.min < f.bits[endBlockMarker] {
- f.h1.min = f.bits[endBlockMarker]
+ if f.h1.maxRead < f.bits[endBlockMarker] {
+ f.h1.maxRead = f.bits[endBlockMarker]
+ }
+ if !f.final {
+ // If not the final block, the smallest block possible is
+ // a predefined table, BTYPE=01, with a single EOB marker.
+ // This will take up 3 + 7 bits.
+ f.h1.maxRead += 10
}
return nil
@@ -558,7 +564,7 @@ func (f *decompressor) readHuffman() error {
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively. If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
-func (f *decompressor) huffmanBlock() {
+func (f *decompressor) huffmanBlockGeneric() {
const (
stateInit = iota // Zero value must be stateInit
stateDict
@@ -574,19 +580,64 @@ func (f *decompressor) huffmanBlock() {
readLiteral:
// Read literal and/or (length, distance) according to RFC section 3.2.3.
{
- v, err := f.huffSym(f.hl)
- if err != nil {
- f.err = err
- return
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := f.r.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
}
+
var n uint // number of bits extra
var length int
+ var err error
switch {
case v < 256:
f.dict.writeByte(byte(v))
if f.dict.availWrite() == 0 {
f.toRead = f.dict.readFlush()
- f.step = (*decompressor).huffmanBlock
+ f.step = (*decompressor).huffmanBlockGeneric
f.stepState = stateInit
return
}
@@ -714,7 +765,7 @@ copyHistory:
if f.dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = f.dict.readFlush()
- f.step = (*decompressor).huffmanBlock // We need to continue this work
+ f.step = (*decompressor).huffmanBlockGeneric // We need to continue this work
f.stepState = stateDict
return
}
@@ -726,21 +777,33 @@ copyHistory:
func (f *decompressor) dataBlock() {
// Uncompressed.
// Discard current half-byte.
- f.nb = 0
- f.b = 0
+ left := (f.nb) & 7
+ f.nb -= left
+ f.b >>= left
+
+ offBytes := f.nb >> 3
+ // Unfilled values will be overwritten.
+ f.buf[0] = uint8(f.b)
+ f.buf[1] = uint8(f.b >> 8)
+ f.buf[2] = uint8(f.b >> 16)
+ f.buf[3] = uint8(f.b >> 24)
+
+ f.roffset += int64(offBytes)
+ f.nb, f.b = 0, 0
// Length then ones-complement of length.
- nr, err := io.ReadFull(f.r, f.buf[0:4])
+ nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
f.roffset += int64(nr)
if err != nil {
f.err = noEOF(err)
return
}
- n := int(f.buf[0]) | int(f.buf[1])<<8
- nn := int(f.buf[2]) | int(f.buf[3])<<8
- if uint16(nn) != uint16(^n) {
+ n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
+ nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
+ if nn != ^n {
if debugDecode {
- fmt.Println("uint16(nn) != uint16(^n)", nn, ^n)
+ ncomp := ^n
+ fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
}
f.err = CorruptInputError(f.roffset)
return
@@ -752,7 +815,7 @@ func (f *decompressor) dataBlock() {
return
}
- f.copyLen = n
+ f.copyLen = int(n)
f.copyData()
}
@@ -816,7 +879,7 @@ func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
- n := uint(h.min)
+ n := uint(h.maxRead)
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// inline call to moreBits and reassign b,nb back to f on return.
diff --git a/vendor/github.com/klauspost/compress/flate/inflate_gen.go b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
new file mode 100644
index 0000000000..397dc1b1a1
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
@@ -0,0 +1,922 @@
+// Code generated by go generate gen_inflate.go. DO NOT EDIT.
+
+package flate
+
+import (
+ "bufio"
+ "bytes"
+ "fmt"
+ "math/bits"
+ "strings"
+)
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesBuffer() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bytes.Buffer)
+ moreBits := func() error {
+ c, err := fr.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+ }
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var n uint // number of bits extra
+ var length int
+ var err error
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBytesBuffer
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBytesBuffer // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bytes.Reader)
+ moreBits := func() error {
+ c, err := fr.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+ }
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var n uint // number of bits extra
+ var length int
+ var err error
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBytesReader
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBytesReader // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBufioReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bufio.Reader)
+ moreBits := func() error {
+ c, err := fr.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+ }
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var n uint // number of bits extra
+ var length int
+ var err error
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBufioReader
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanBufioReader // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanStringsReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*strings.Reader)
+ moreBits := func() error {
+ c, err := fr.ReadByte()
+ if err != nil {
+ return noEOF(err)
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+ }
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ nb, b := f.nb, f.b
+ for {
+ for nb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b = b
+ f.nb = nb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ b |= uint32(c) << (nb & 31)
+ nb += 8
+ }
+ chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= nb {
+ if n == 0 {
+ f.b = b
+ f.nb = nb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ f.b = b >> (n & 31)
+ f.nb = nb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var n uint // number of bits extra
+ var length int
+ var err error
+ switch {
+ case v < 256:
+ f.dict.writeByte(byte(v))
+ if f.dict.availWrite() == 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanStringsReader
+ f.stepState = stateInit
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ case v < maxNumLit:
+ length = 258
+ n = 0
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ if debugDecode {
+ fmt.Println("huffsym:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = moreBits(); err != nil {
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ default:
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > f.dict.histSize() {
+ if debugDecode {
+ fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if f.dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = f.dict.readFlush()
+ f.step = (*decompressor).huffmanStringsReader // We need to continue this work
+ f.stepState = stateDict
+ return
+ }
+ goto readLiteral
+ }
+}
+
+func (f *decompressor) huffmanBlockDecoder() func() {
+ switch f.r.(type) {
+ case *bytes.Buffer:
+ return f.huffmanBytesBuffer
+ case *bytes.Reader:
+ return f.huffmanBytesReader
+ case *bufio.Reader:
+ return f.huffmanBufioReader
+ case *strings.Reader:
+ return f.huffmanStringsReader
+ default:
+ return f.huffmanBlockGeneric
+ }
+}
diff --git a/vendor/github.com/klauspost/compress/flate/level1.go b/vendor/github.com/klauspost/compress/flate/level1.go
index 20de8f11f4..1e5eea3968 100644
--- a/vendor/github.com/klauspost/compress/flate/level1.go
+++ b/vendor/github.com/klauspost/compress/flate/level1.go
@@ -1,5 +1,7 @@
package flate
+import "fmt"
+
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
@@ -14,6 +16,9 @@ func (e *fastEncL1) Encode(dst *tokens, src []byte) {
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
@@ -76,12 +81,12 @@ func (e *fastEncL1) Encode(dst *tokens, src []byte) {
}
now := load6432(src, nextS)
- e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hash(uint32(now))
offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset && cv == candidate.val {
- e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
@@ -91,11 +96,11 @@ func (e *fastEncL1) Encode(dst *tokens, src []byte) {
nextS++
candidate = e.table[nextHash]
now >>= 8
- e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
- if offset < maxMatchOffset && cv == candidate.val {
- e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
cv = uint32(now)
@@ -134,7 +139,7 @@ func (e *fastEncL1) Encode(dst *tokens, src []byte) {
// Index first pair after match end.
if int(s+l+4) < len(src) {
cv := load3232(src, s)
- e.table[hash(cv)] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[hash(cv)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
@@ -148,14 +153,14 @@ func (e *fastEncL1) Encode(dst *tokens, src []byte) {
x := load6432(src, s-2)
o := e.cur + s - 2
prevHash := hash(uint32(x))
- e.table[prevHash] = tableEntry{offset: o, val: uint32(x)}
+ e.table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hash(uint32(x))
candidate = e.table[currHash]
- e.table[currHash] = tableEntry{offset: o + 2, val: uint32(x)}
+ e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
- if offset > maxMatchOffset || uint32(x) != candidate.val {
+ if offset > maxMatchOffset || uint32(x) != load3232(src, candidate.offset-e.cur) {
cv = uint32(x >> 8)
s++
break
diff --git a/vendor/github.com/klauspost/compress/flate/level2.go b/vendor/github.com/klauspost/compress/flate/level2.go
index 7c824431e6..5b986a1944 100644
--- a/vendor/github.com/klauspost/compress/flate/level2.go
+++ b/vendor/github.com/klauspost/compress/flate/level2.go
@@ -1,5 +1,7 @@
package flate
+import "fmt"
+
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
@@ -16,6 +18,10 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
+
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
@@ -77,12 +83,12 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
}
candidate = e.table[nextHash]
now := load6432(src, nextS)
- e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hash4u(uint32(now), bTableBits)
offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset && cv == candidate.val {
- e.table[nextHash] = tableEntry{offset: nextS + e.cur, val: uint32(now)}
+ if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
+ e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
@@ -92,10 +98,10 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
nextS++
candidate = e.table[nextHash]
now >>= 8
- e.table[nextHash] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
- if offset < maxMatchOffset && cv == candidate.val {
+ if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
break
}
cv = uint32(now)
@@ -142,7 +148,7 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
// Index first pair after match end.
if int(s+l+4) < len(src) {
cv := load3232(src, s)
- e.table[hash4u(cv, bTableBits)] = tableEntry{offset: s + e.cur, val: cv}
+ e.table[hash4u(cv, bTableBits)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
@@ -151,15 +157,15 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
for i := s - l + 2; i < s-5; i += 7 {
x := load6432(src, int32(i))
nextHash := hash4u(uint32(x), bTableBits)
- e.table[nextHash] = tableEntry{offset: e.cur + i, val: uint32(x)}
+ e.table[nextHash] = tableEntry{offset: e.cur + i}
// Skip one
x >>= 16
nextHash = hash4u(uint32(x), bTableBits)
- e.table[nextHash] = tableEntry{offset: e.cur + i + 2, val: uint32(x)}
+ e.table[nextHash] = tableEntry{offset: e.cur + i + 2}
// Skip one
x >>= 16
nextHash = hash4u(uint32(x), bTableBits)
- e.table[nextHash] = tableEntry{offset: e.cur + i + 4, val: uint32(x)}
+ e.table[nextHash] = tableEntry{offset: e.cur + i + 4}
}
// We could immediately start working at s now, but to improve
@@ -172,14 +178,14 @@ func (e *fastEncL2) Encode(dst *tokens, src []byte) {
o := e.cur + s - 2
prevHash := hash4u(uint32(x), bTableBits)
prevHash2 := hash4u(uint32(x>>8), bTableBits)
- e.table[prevHash] = tableEntry{offset: o, val: uint32(x)}
- e.table[prevHash2] = tableEntry{offset: o + 1, val: uint32(x >> 8)}
+ e.table[prevHash] = tableEntry{offset: o}
+ e.table[prevHash2] = tableEntry{offset: o + 1}
currHash := hash4u(uint32(x>>16), bTableBits)
candidate = e.table[currHash]
- e.table[currHash] = tableEntry{offset: o + 2, val: uint32(x >> 16)}
+ e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
- if offset > maxMatchOffset || uint32(x>>16) != candidate.val {
+ if offset > maxMatchOffset || uint32(x>>16) != load3232(src, candidate.offset-e.cur) {
cv = uint32(x >> 24)
s++
break
diff --git a/vendor/github.com/klauspost/compress/flate/level3.go b/vendor/github.com/klauspost/compress/flate/level3.go
index 4153d24c95..c22b4244a5 100644
--- a/vendor/github.com/klauspost/compress/flate/level3.go
+++ b/vendor/github.com/klauspost/compress/flate/level3.go
@@ -1,5 +1,7 @@
package flate
+import "fmt"
+
// fastEncL3
type fastEncL3 struct {
fastGen
@@ -13,6 +15,10 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
+
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
@@ -75,22 +81,26 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
}
candidates := e.table[nextHash]
now := load3232(src, nextS)
- e.table[nextHash] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
+
+ // Safe offset distance until s + 4...
+ minOffset := e.cur + s - (maxMatchOffset - 4)
+ e.table[nextHash] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur}}
// Check both candidates
candidate = candidates.Cur
- offset := s - (candidate.offset - e.cur)
- if cv == candidate.val {
- if offset > maxMatchOffset {
- cv = now
- // Previous will also be invalid, we have nothing.
- continue
- }
- o2 := s - (candidates.Prev.offset - e.cur)
- if cv != candidates.Prev.val || o2 > maxMatchOffset {
+ if candidate.offset < minOffset {
+ cv = now
+ // Previous will also be invalid, we have nothing.
+ continue
+ }
+
+ if cv == load3232(src, candidate.offset-e.cur) {
+ if candidates.Prev.offset < minOffset || cv != load3232(src, candidates.Prev.offset-e.cur) {
break
}
// Both match and are valid, pick longest.
+ offset := s - (candidate.offset - e.cur)
+ o2 := s - (candidates.Prev.offset - e.cur)
l1, l2 := matchLen(src[s+4:], src[s-offset+4:]), matchLen(src[s+4:], src[s-o2+4:])
if l2 > l1 {
candidate = candidates.Prev
@@ -100,11 +110,8 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- break
- }
+ if candidate.offset > minOffset && cv == load3232(src, candidate.offset-e.cur) {
+ break
}
}
cv = now
@@ -152,7 +159,7 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
nextHash := hash(cv)
e.table[nextHash] = tableEntryPrev{
Prev: e.table[nextHash].Cur,
- Cur: tableEntry{offset: e.cur + t, val: cv},
+ Cur: tableEntry{offset: e.cur + t},
}
}
goto emitRemainder
@@ -164,21 +171,21 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
prevHash := hash(uint32(x))
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
- Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
+ Cur: tableEntry{offset: e.cur + s - 3},
}
x >>= 8
prevHash = hash(uint32(x))
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
- Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
+ Cur: tableEntry{offset: e.cur + s - 2},
}
x >>= 8
prevHash = hash(uint32(x))
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
- Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
+ Cur: tableEntry{offset: e.cur + s - 1},
}
x >>= 8
currHash := hash(uint32(x))
@@ -186,21 +193,18 @@ func (e *fastEncL3) Encode(dst *tokens, src []byte) {
cv = uint32(x)
e.table[currHash] = tableEntryPrev{
Prev: candidates.Cur,
- Cur: tableEntry{offset: s + e.cur, val: cv},
+ Cur: tableEntry{offset: s + e.cur},
}
// Check both candidates
candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- continue
- }
- } else {
+ minOffset := e.cur + s - (maxMatchOffset - 4)
+
+ if candidate.offset > minOffset && cv != load3232(src, candidate.offset-e.cur) {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
- if cv == candidate.val {
+ if candidate.offset > minOffset && cv == load3232(src, candidate.offset-e.cur) {
offset := s - (candidate.offset - e.cur)
if offset <= maxMatchOffset {
continue
diff --git a/vendor/github.com/klauspost/compress/flate/level4.go b/vendor/github.com/klauspost/compress/flate/level4.go
index c689ac771b..e62f0c02b1 100644
--- a/vendor/github.com/klauspost/compress/flate/level4.go
+++ b/vendor/github.com/klauspost/compress/flate/level4.go
@@ -13,7 +13,9 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
-
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
@@ -90,24 +92,24 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
- entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
e.bTable[nextHashL] = entry
t = lCandidate.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == lCandidate.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.offset-e.cur) {
// We got a long match. Use that.
break
}
t = sCandidate.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
lCandidate = e.bTable[hash7(next, tableBits)]
// If the next long is a candidate, check if we should use that instead...
lOff := nextS - (lCandidate.offset - e.cur)
- if lOff < maxMatchOffset && lCandidate.val == uint32(next) {
+ if lOff < maxMatchOffset && load3232(src, lCandidate.offset-e.cur) == uint32(next) {
l1, l2 := matchLen(src[s+4:], src[t+4:]), matchLen(src[nextS+4:], src[nextS-lOff+4:])
if l2 > l1 {
s = nextS
@@ -135,7 +137,7 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
if nextEmit < s {
emitLiteral(dst, src[nextEmit:s])
}
- if false {
+ if debugDeflate {
if t >= s {
panic("s-t")
}
@@ -158,8 +160,8 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
// Index first pair after match end.
if int(s+8) < len(src) {
cv := load6432(src, s)
- e.table[hash4x64(cv, tableBits)] = tableEntry{offset: s + e.cur, val: uint32(cv)}
- e.bTable[hash7(cv, tableBits)] = tableEntry{offset: s + e.cur, val: uint32(cv)}
+ e.table[hash4x64(cv, tableBits)] = tableEntry{offset: s + e.cur}
+ e.bTable[hash7(cv, tableBits)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
@@ -169,20 +171,20 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
i := nextS
if i < s-1 {
cv := load6432(src, i)
- t := tableEntry{offset: i + e.cur, val: uint32(cv)}
- t2 := tableEntry{val: uint32(cv >> 8), offset: t.offset + 1}
+ t := tableEntry{offset: i + e.cur}
+ t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
- e.table[hash4u(t2.val, tableBits)] = t2
+ e.table[hash4u(uint32(cv>>8), tableBits)] = t2
i += 3
for ; i < s-1; i += 3 {
cv := load6432(src, i)
- t := tableEntry{offset: i + e.cur, val: uint32(cv)}
- t2 := tableEntry{val: uint32(cv >> 8), offset: t.offset + 1}
+ t := tableEntry{offset: i + e.cur}
+ t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
- e.table[hash4u(t2.val, tableBits)] = t2
+ e.table[hash4u(uint32(cv>>8), tableBits)] = t2
}
}
}
@@ -193,8 +195,8 @@ func (e *fastEncL4) Encode(dst *tokens, src []byte) {
o := e.cur + s - 1
prevHashS := hash4x64(x, tableBits)
prevHashL := hash7(x, tableBits)
- e.table[prevHashS] = tableEntry{offset: o, val: uint32(x)}
- e.bTable[prevHashL] = tableEntry{offset: o, val: uint32(x)}
+ e.table[prevHashS] = tableEntry{offset: o}
+ e.bTable[prevHashL] = tableEntry{offset: o}
cv = x >> 8
}
diff --git a/vendor/github.com/klauspost/compress/flate/level5.go b/vendor/github.com/klauspost/compress/flate/level5.go
index 14a2356126..d513f1ffd3 100644
--- a/vendor/github.com/klauspost/compress/flate/level5.go
+++ b/vendor/github.com/klauspost/compress/flate/level5.go
@@ -13,6 +13,9 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
@@ -97,7 +100,7 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
- entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
@@ -107,14 +110,14 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
- if uint32(cv) == lCandidate.Cur.val {
+ if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
t2 := lCandidate.Prev.offset - e.cur
- if s-t2 < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
@@ -126,30 +129,30 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
break
}
t = lCandidate.Prev.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
lCandidate = e.bTable[nextHashL]
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// If the next long is a candidate, use that...
t2 := lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
- if lCandidate.Cur.val == uint32(next) {
+ if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
@@ -160,7 +163,7 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
- if nextS-t2 < maxMatchOffset && lCandidate.Prev.val == uint32(next) {
+ if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
@@ -194,7 +197,7 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
if nextEmit < s {
emitLiteral(dst, src[nextEmit:s])
}
- if false {
+ if debugDeflate {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
@@ -223,31 +226,31 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
i := s - l + 1
if i < s-1 {
cv := load6432(src, i)
- t := tableEntry{offset: i + e.cur, val: uint32(cv)}
+ t := tableEntry{offset: i + e.cur}
e.table[hash4x64(cv, tableBits)] = t
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// Do an long at i+1
cv >>= 8
- t = tableEntry{offset: t.offset + 1, val: uint32(cv)}
+ t = tableEntry{offset: t.offset + 1}
eLong = &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// We only have enough bits for a short entry at i+2
cv >>= 8
- t = tableEntry{offset: t.offset + 1, val: uint32(cv)}
+ t = tableEntry{offset: t.offset + 1}
e.table[hash4x64(cv, tableBits)] = t
// Skip one - otherwise we risk hitting 's'
i += 4
for ; i < s-1; i += hashEvery {
cv := load6432(src, i)
- t := tableEntry{offset: i + e.cur, val: uint32(cv)}
- t2 := tableEntry{offset: t.offset + 1, val: uint32(cv >> 8)}
+ t := tableEntry{offset: i + e.cur}
+ t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
- e.table[hash4u(t2.val, tableBits)] = t2
+ e.table[hash4u(uint32(cv>>8), tableBits)] = t2
}
}
}
@@ -258,9 +261,9 @@ func (e *fastEncL5) Encode(dst *tokens, src []byte) {
o := e.cur + s - 1
prevHashS := hash4x64(x, tableBits)
prevHashL := hash7(x, tableBits)
- e.table[prevHashS] = tableEntry{offset: o, val: uint32(x)}
+ e.table[prevHashS] = tableEntry{offset: o}
eLong := &e.bTable[prevHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: o, val: uint32(x)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: o}, eLong.Cur
cv = x >> 8
}
diff --git a/vendor/github.com/klauspost/compress/flate/level6.go b/vendor/github.com/klauspost/compress/flate/level6.go
index cad0c7df7f..a52c80ea45 100644
--- a/vendor/github.com/klauspost/compress/flate/level6.go
+++ b/vendor/github.com/klauspost/compress/flate/level6.go
@@ -13,6 +13,9 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
+ if debugDeflate && e.cur < 0 {
+ panic(fmt.Sprint("e.cur < 0: ", e.cur))
+ }
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
@@ -98,7 +101,7 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
- entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
+ entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
@@ -109,17 +112,17 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
- if uint32(cv) == lCandidate.Cur.val {
+ if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Long candidate matches at least 4 bytes.
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check the previous long candidate as well.
t2 := lCandidate.Prev.offset - e.cur
- if s-t2 < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
@@ -132,17 +135,17 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
}
// Current value did not match, but check if previous long value does.
t = lCandidate.Prev.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == lCandidate.Prev.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
- if s-t < maxMatchOffset && uint32(cv) == sCandidate.val {
+ if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
@@ -150,9 +153,9 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
lCandidate = e.bTable[nextHashL]
// Store the next match
- e.table[nextHashS] = tableEntry{offset: nextS + e.cur, val: uint32(next)}
+ e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
- eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur, val: uint32(next)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check repeat at s + repOff
const repOff = 1
@@ -171,7 +174,7 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
// If the next long is a candidate, use that...
t2 = lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
- if lCandidate.Cur.val == uint32(next) {
+ if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
@@ -182,7 +185,7 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
- if nextS-t2 < maxMatchOffset && lCandidate.Prev.val == uint32(next) {
+ if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
@@ -241,9 +244,9 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
// Index after match end.
for i := nextS + 1; i < int32(len(src))-8; i += 2 {
cv := load6432(src, i)
- e.table[hash4x64(cv, tableBits)] = tableEntry{offset: i + e.cur, val: uint32(cv)}
+ e.table[hash4x64(cv, tableBits)] = tableEntry{offset: i + e.cur}
eLong := &e.bTable[hash7(cv, tableBits)]
- eLong.Cur, eLong.Prev = tableEntry{offset: i + e.cur, val: uint32(cv)}, eLong.Cur
+ eLong.Cur, eLong.Prev = tableEntry{offset: i + e.cur}, eLong.Cur
}
goto emitRemainder
}
@@ -252,8 +255,8 @@ func (e *fastEncL6) Encode(dst *tokens, src []byte) {
if true {
for i := nextS + 1; i < s-1; i += 2 {
cv := load6432(src, i)
- t := tableEntry{offset: i + e.cur, val: uint32(cv)}
- t2 := tableEntry{offset: t.offset + 1, val: uint32(cv >> 8)}
+ t := tableEntry{offset: i + e.cur}
+ t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong2 := &e.bTable[hash7(cv>>8, tableBits)]
e.table[hash4x64(cv, tableBits)] = t
diff --git a/vendor/github.com/klauspost/compress/flate/stateless.go b/vendor/github.com/klauspost/compress/flate/stateless.go
index 524ee0ae37..53e8991246 100644
--- a/vendor/github.com/klauspost/compress/flate/stateless.go
+++ b/vendor/github.com/klauspost/compress/flate/stateless.go
@@ -3,10 +3,13 @@ package flate
import (
"io"
"math"
+ "sync"
)
const (
maxStatelessBlock = math.MaxInt16
+ // dictionary will be taken from maxStatelessBlock, so limit it.
+ maxStatelessDict = 8 << 10
slTableBits = 13
slTableSize = 1 << slTableBits
@@ -24,11 +27,11 @@ func (s *statelessWriter) Close() error {
}
s.closed = true
// Emit EOF block
- return StatelessDeflate(s.dst, nil, true)
+ return StatelessDeflate(s.dst, nil, true, nil)
}
func (s *statelessWriter) Write(p []byte) (n int, err error) {
- err = StatelessDeflate(s.dst, p, false)
+ err = StatelessDeflate(s.dst, p, false, nil)
if err != nil {
return 0, err
}
@@ -49,11 +52,27 @@ func NewStatelessWriter(dst io.Writer) io.WriteCloser {
return &statelessWriter{dst: dst}
}
+// bitWriterPool contains bit writers that can be reused.
+var bitWriterPool = sync.Pool{
+ New: func() interface{} {
+ return newHuffmanBitWriter(nil)
+ },
+}
+
// StatelessDeflate allows to compress directly to a Writer without retaining state.
// When returning everything will be flushed.
-func StatelessDeflate(out io.Writer, in []byte, eof bool) error {
+// Up to 8KB of an optional dictionary can be given which is presumed to presumed to precede the block.
+// Longer dictionaries will be truncated and will still produce valid output.
+// Sending nil dictionary is perfectly fine.
+func StatelessDeflate(out io.Writer, in []byte, eof bool, dict []byte) error {
var dst tokens
- bw := newHuffmanBitWriter(out)
+ bw := bitWriterPool.Get().(*huffmanBitWriter)
+ bw.reset(out)
+ defer func() {
+ // don't keep a reference to our output
+ bw.reset(nil)
+ bitWriterPool.Put(bw)
+ }()
if eof && len(in) == 0 {
// Just write an EOF block.
// Could be faster...
@@ -62,35 +81,53 @@ func StatelessDeflate(out io.Writer, in []byte, eof bool) error {
return bw.err
}
+ // Truncate dict
+ if len(dict) > maxStatelessDict {
+ dict = dict[len(dict)-maxStatelessDict:]
+ }
+
for len(in) > 0 {
todo := in
- if len(todo) > maxStatelessBlock {
- todo = todo[:maxStatelessBlock]
+ if len(todo) > maxStatelessBlock-len(dict) {
+ todo = todo[:maxStatelessBlock-len(dict)]
}
in = in[len(todo):]
+ uncompressed := todo
+ if len(dict) > 0 {
+ // combine dict and source
+ bufLen := len(todo) + len(dict)
+ combined := make([]byte, bufLen)
+ copy(combined, dict)
+ copy(combined[len(dict):], todo)
+ todo = combined
+ }
// Compress
- statelessEnc(&dst, todo)
+ statelessEnc(&dst, todo, int16(len(dict)))
isEof := eof && len(in) == 0
if dst.n == 0 {
- bw.writeStoredHeader(len(todo), isEof)
+ bw.writeStoredHeader(len(uncompressed), isEof)
if bw.err != nil {
return bw.err
}
- bw.writeBytes(todo)
- } else if int(dst.n) > len(todo)-len(todo)>>4 {
+ bw.writeBytes(uncompressed)
+ } else if int(dst.n) > len(uncompressed)-len(uncompressed)>>4 {
// If we removed less than 1/16th, huffman compress the block.
- bw.writeBlockHuff(isEof, todo, false)
+ bw.writeBlockHuff(isEof, uncompressed, len(in) == 0)
} else {
- bw.writeBlockDynamic(&dst, isEof, todo, false)
+ bw.writeBlockDynamic(&dst, isEof, uncompressed, len(in) == 0)
+ }
+ if len(in) > 0 {
+ // Retain a dict if we have more
+ dict = todo[len(todo)-maxStatelessDict:]
+ dst.Reset()
}
if bw.err != nil {
return bw.err
}
- dst.Reset()
}
if !eof {
- // Align.
+ // Align, only a stored block can do that.
bw.writeStoredHeader(0, false)
}
bw.flush()
@@ -116,7 +153,7 @@ func load6416(b []byte, i int16) uint64 {
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
-func statelessEnc(dst *tokens, src []byte) {
+func statelessEnc(dst *tokens, src []byte, startAt int16) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
@@ -130,15 +167,23 @@ func statelessEnc(dst *tokens, src []byte) {
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
+ if len(src)-int(startAt) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
- dst.n = uint16(len(src))
+ dst.n = 0
return
}
+ // Index until startAt
+ if startAt > 0 {
+ cv := load3232(src, 0)
+ for i := int16(0); i < startAt; i++ {
+ table[hashSL(cv)] = tableEntry{offset: i}
+ cv = (cv >> 8) | (uint32(src[i+4]) << 24)
+ }
+ }
- s := int16(1)
- nextEmit := int16(0)
+ s := startAt + 1
+ nextEmit := startAt
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
diff --git a/vendor/github.com/klauspost/compress/flate/token.go b/vendor/github.com/klauspost/compress/flate/token.go
index b3df0d8941..f9abf606d6 100644
--- a/vendor/github.com/klauspost/compress/flate/token.go
+++ b/vendor/github.com/klauspost/compress/flate/token.go
@@ -184,9 +184,7 @@ func (t *tokens) indexTokens(in []token) {
t.Reset()
for _, tok := range in {
if tok < matchType {
- t.tokens[t.n] = tok
- t.litHist[tok]++
- t.n++
+ t.AddLiteral(tok.literal())
continue
}
t.AddMatch(uint32(tok.length()), tok.offset())
@@ -211,50 +209,60 @@ func (t *tokens) AddLiteral(lit byte) {
t.nLits++
}
+// from https://stackoverflow.com/a/28730362
+func mFastLog2(val float32) float32 {
+ ux := int32(math.Float32bits(val))
+ log2 := (float32)(((ux >> 23) & 255) - 128)
+ ux &= -0x7f800001
+ ux += 127 << 23
+ uval := math.Float32frombits(uint32(ux))
+ log2 += ((-0.34484843)*uval+2.02466578)*uval - 0.67487759
+ return log2
+}
+
// EstimatedBits will return an minimum size estimated by an *optimal*
// compression of the block.
// The size of the block
func (t *tokens) EstimatedBits() int {
- shannon := float64(0)
+ shannon := float32(0)
bits := int(0)
nMatches := 0
if t.nLits > 0 {
- invTotal := 1.0 / float64(t.nLits)
+ invTotal := 1.0 / float32(t.nLits)
for _, v := range t.litHist[:] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
}
}
// Just add 15 for EOB
shannon += 15
- for _, v := range t.extraHist[1 : literalCount-256] {
+ for i, v := range t.extraHist[1 : literalCount-256] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- bits += int(lengthExtraBits[v&31]) * int(v)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
+ bits += int(lengthExtraBits[i&31]) * int(v)
nMatches += int(v)
}
}
}
if nMatches > 0 {
- invTotal := 1.0 / float64(nMatches)
- for _, v := range t.offHist[:offsetCodeCount] {
+ invTotal := 1.0 / float32(nMatches)
+ for i, v := range t.offHist[:offsetCodeCount] {
if v > 0 {
- n := float64(v)
- shannon += math.Ceil(-math.Log2(n*invTotal) * n)
- bits += int(offsetExtraBits[v&31]) * int(n)
+ n := float32(v)
+ shannon += -mFastLog2(n*invTotal) * n
+ bits += int(offsetExtraBits[i&31]) * int(v)
}
}
}
-
return int(shannon) + bits
}
// AddMatch adds a match to the tokens.
// This function is very sensitive to inlining and right on the border.
func (t *tokens) AddMatch(xlength uint32, xoffset uint32) {
- if debugDecode {
+ if debugDeflate {
if xlength >= maxMatchLength+baseMatchLength {
panic(fmt.Errorf("invalid length: %v", xlength))
}
@@ -273,7 +281,7 @@ func (t *tokens) AddMatch(xlength uint32, xoffset uint32) {
// AddMatchLong adds a match to the tokens, potentially longer than max match length.
// Length should NOT have the base subtracted, only offset should.
func (t *tokens) AddMatchLong(xlength int32, xoffset uint32) {
- if debugDecode {
+ if debugDeflate {
if xoffset >= maxMatchOffset+baseMatchOffset {
panic(fmt.Errorf("invalid offset: %v", xoffset))
}
diff --git a/vendor/github.com/klauspost/compress/gzip/gzip.go b/vendor/github.com/klauspost/compress/gzip/gzip.go
index ed0cc148f8..6794cf48f4 100644
--- a/vendor/github.com/klauspost/compress/gzip/gzip.go
+++ b/vendor/github.com/klauspost/compress/gzip/gzip.go
@@ -207,7 +207,7 @@ func (z *Writer) Write(p []byte) (int, error) {
z.size += uint32(len(p))
z.digest = crc32.Update(z.digest, crc32.IEEETable, p)
if z.level == StatelessCompression {
- return len(p), flate.StatelessDeflate(z.w, p, false)
+ return len(p), flate.StatelessDeflate(z.w, p, false, nil)
}
n, z.err = z.compressor.Write(p)
return n, z.err
@@ -255,7 +255,7 @@ func (z *Writer) Close() error {
}
}
if z.level == StatelessCompression {
- z.err = flate.StatelessDeflate(z.w, nil, true)
+ z.err = flate.StatelessDeflate(z.w, nil, true, nil)
} else {
z.err = z.compressor.Close()
}