aboutsummaryrefslogtreecommitdiffstats
path: root/models/gpg_key.go
blob: 2ffcf47ca7d460651a285628f6f0c4dfa6845335 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
// Copyright 2017 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.

package models

import (
	"bytes"
	"container/list"
	"crypto"
	"encoding/base64"
	"fmt"
	"hash"
	"io"
	"strings"
	"time"

	"code.gitea.io/gitea/modules/git"
	"code.gitea.io/gitea/modules/log"
	"code.gitea.io/gitea/modules/setting"
	"code.gitea.io/gitea/modules/timeutil"

	"github.com/keybase/go-crypto/openpgp"
	"github.com/keybase/go-crypto/openpgp/armor"
	"github.com/keybase/go-crypto/openpgp/packet"
	"xorm.io/xorm"
)

// GPGKey represents a GPG key.
type GPGKey struct {
	ID                int64              `xorm:"pk autoincr"`
	OwnerID           int64              `xorm:"INDEX NOT NULL"`
	KeyID             string             `xorm:"INDEX CHAR(16) NOT NULL"`
	PrimaryKeyID      string             `xorm:"CHAR(16)"`
	Content           string             `xorm:"TEXT NOT NULL"`
	CreatedUnix       timeutil.TimeStamp `xorm:"created"`
	ExpiredUnix       timeutil.TimeStamp
	AddedUnix         timeutil.TimeStamp
	SubsKey           []*GPGKey `xorm:"-"`
	Emails            []*EmailAddress
	CanSign           bool
	CanEncryptComms   bool
	CanEncryptStorage bool
	CanCertify        bool
}

// GPGKeyImport the original import of key
type GPGKeyImport struct {
	KeyID   string `xorm:"pk CHAR(16) NOT NULL"`
	Content string `xorm:"TEXT NOT NULL"`
}

// BeforeInsert will be invoked by XORM before inserting a record
func (key *GPGKey) BeforeInsert() {
	key.AddedUnix = timeutil.TimeStampNow()
}

// AfterLoad is invoked from XORM after setting the values of all fields of this object.
func (key *GPGKey) AfterLoad(session *xorm.Session) {
	err := session.Where("primary_key_id=?", key.KeyID).Find(&key.SubsKey)
	if err != nil {
		log.Error("Find Sub GPGkeys[%s]: %v", key.KeyID, err)
	}
}

// ListGPGKeys returns a list of public keys belongs to given user.
func ListGPGKeys(uid int64, listOptions ListOptions) ([]*GPGKey, error) {
	return listGPGKeys(x, uid, listOptions)
}

func listGPGKeys(e Engine, uid int64, listOptions ListOptions) ([]*GPGKey, error) {
	sess := e.Table(&GPGKey{}).Where("owner_id=? AND primary_key_id=''", uid)
	if listOptions.Page != 0 {
		sess = listOptions.setSessionPagination(sess)
	}

	keys := make([]*GPGKey, 0, 2)
	return keys, sess.Find(&keys)
}

// GetGPGKeyByID returns public key by given ID.
func GetGPGKeyByID(keyID int64) (*GPGKey, error) {
	key := new(GPGKey)
	has, err := x.ID(keyID).Get(key)
	if err != nil {
		return nil, err
	} else if !has {
		return nil, ErrGPGKeyNotExist{keyID}
	}
	return key, nil
}

// GetGPGKeysByKeyID returns public key by given ID.
func GetGPGKeysByKeyID(keyID string) ([]*GPGKey, error) {
	keys := make([]*GPGKey, 0, 1)
	return keys, x.Where("key_id=?", keyID).Find(&keys)
}

// GetGPGImportByKeyID returns the import public armored key by given KeyID.
func GetGPGImportByKeyID(keyID string) (*GPGKeyImport, error) {
	key := new(GPGKeyImport)
	has, err := x.ID(keyID).Get(key)
	if err != nil {
		return nil, err
	} else if !has {
		return nil, ErrGPGKeyImportNotExist{keyID}
	}
	return key, nil
}

// checkArmoredGPGKeyString checks if the given key string is a valid GPG armored key.
// The function returns the actual public key on success
func checkArmoredGPGKeyString(content string) (openpgp.EntityList, error) {
	list, err := openpgp.ReadArmoredKeyRing(strings.NewReader(content))
	if err != nil {
		return nil, ErrGPGKeyParsing{err}
	}
	return list, nil
}

// addGPGKey add key, import and subkeys to database
func addGPGKey(e Engine, key *GPGKey, content string) (err error) {
	// Add GPGKeyImport
	if _, err = e.Insert(GPGKeyImport{
		KeyID:   key.KeyID,
		Content: content,
	}); err != nil {
		return err
	}
	// Save GPG primary key.
	if _, err = e.Insert(key); err != nil {
		return err
	}
	// Save GPG subs key.
	for _, subkey := range key.SubsKey {
		if err := addGPGSubKey(e, subkey); err != nil {
			return err
		}
	}
	return nil
}

// addGPGSubKey add subkeys to database
func addGPGSubKey(e Engine, key *GPGKey) (err error) {
	// Save GPG primary key.
	if _, err = e.Insert(key); err != nil {
		return err
	}
	// Save GPG subs key.
	for _, subkey := range key.SubsKey {
		if err := addGPGSubKey(e, subkey); err != nil {
			return err
		}
	}
	return nil
}

// AddGPGKey adds new public key to database.
func AddGPGKey(ownerID int64, content string) ([]*GPGKey, error) {
	ekeys, err := checkArmoredGPGKeyString(content)
	if err != nil {
		return nil, err
	}
	sess := x.NewSession()
	defer sess.Close()
	if err = sess.Begin(); err != nil {
		return nil, err
	}
	keys := make([]*GPGKey, 0, len(ekeys))
	for _, ekey := range ekeys {
		// Key ID cannot be duplicated.
		has, err := sess.Where("key_id=?", ekey.PrimaryKey.KeyIdString()).
			Get(new(GPGKey))
		if err != nil {
			return nil, err
		} else if has {
			return nil, ErrGPGKeyIDAlreadyUsed{ekey.PrimaryKey.KeyIdString()}
		}

		// Get DB session

		key, err := parseGPGKey(ownerID, ekey)
		if err != nil {
			return nil, err
		}

		if err = addGPGKey(sess, key, content); err != nil {
			return nil, err
		}
		keys = append(keys, key)
	}
	return keys, sess.Commit()
}

// base64EncPubKey encode public key content to base 64
func base64EncPubKey(pubkey *packet.PublicKey) (string, error) {
	var w bytes.Buffer
	err := pubkey.Serialize(&w)
	if err != nil {
		return "", err
	}
	return base64.StdEncoding.EncodeToString(w.Bytes()), nil
}

// base64DecPubKey decode public key content from base 64
func base64DecPubKey(content string) (*packet.PublicKey, error) {
	b, err := readerFromBase64(content)
	if err != nil {
		return nil, err
	}
	// Read key
	p, err := packet.Read(b)
	if err != nil {
		return nil, err
	}
	// Check type
	pkey, ok := p.(*packet.PublicKey)
	if !ok {
		return nil, fmt.Errorf("key is not a public key")
	}
	return pkey, nil
}

// GPGKeyToEntity retrieve the imported key and the traducted entity
func GPGKeyToEntity(k *GPGKey) (*openpgp.Entity, error) {
	impKey, err := GetGPGImportByKeyID(k.KeyID)
	if err != nil {
		return nil, err
	}
	keys, err := checkArmoredGPGKeyString(impKey.Content)
	if err != nil {
		return nil, err
	}
	return keys[0], err
}

// parseSubGPGKey parse a sub Key
func parseSubGPGKey(ownerID int64, primaryID string, pubkey *packet.PublicKey, expiry time.Time) (*GPGKey, error) {
	content, err := base64EncPubKey(pubkey)
	if err != nil {
		return nil, err
	}
	return &GPGKey{
		OwnerID:           ownerID,
		KeyID:             pubkey.KeyIdString(),
		PrimaryKeyID:      primaryID,
		Content:           content,
		CreatedUnix:       timeutil.TimeStamp(pubkey.CreationTime.Unix()),
		ExpiredUnix:       timeutil.TimeStamp(expiry.Unix()),
		CanSign:           pubkey.CanSign(),
		CanEncryptComms:   pubkey.PubKeyAlgo.CanEncrypt(),
		CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(),
		CanCertify:        pubkey.PubKeyAlgo.CanSign(),
	}, nil
}

// getExpiryTime extract the expire time of primary key based on sig
func getExpiryTime(e *openpgp.Entity) time.Time {
	expiry := time.Time{}
	// Extract self-sign for expire date based on : https://github.com/golang/crypto/blob/master/openpgp/keys.go#L165
	var selfSig *packet.Signature
	for _, ident := range e.Identities {
		if selfSig == nil {
			selfSig = ident.SelfSignature
		} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
			selfSig = ident.SelfSignature
			break
		}
	}
	if selfSig.KeyLifetimeSecs != nil {
		expiry = e.PrimaryKey.CreationTime.Add(time.Duration(*selfSig.KeyLifetimeSecs) * time.Second)
	}
	return expiry
}

// parseGPGKey parse a PrimaryKey entity (primary key + subs keys + self-signature)
func parseGPGKey(ownerID int64, e *openpgp.Entity) (*GPGKey, error) {
	pubkey := e.PrimaryKey
	expiry := getExpiryTime(e)

	// Parse Subkeys
	subkeys := make([]*GPGKey, len(e.Subkeys))
	for i, k := range e.Subkeys {
		subs, err := parseSubGPGKey(ownerID, pubkey.KeyIdString(), k.PublicKey, expiry)
		if err != nil {
			return nil, ErrGPGKeyParsing{ParseError: err}
		}
		subkeys[i] = subs
	}

	// Check emails
	userEmails, err := GetEmailAddresses(ownerID)
	if err != nil {
		return nil, err
	}

	emails := make([]*EmailAddress, 0, len(e.Identities))
	for _, ident := range e.Identities {
		if ident.Revocation != nil {
			continue
		}
		email := strings.ToLower(strings.TrimSpace(ident.UserId.Email))
		for _, e := range userEmails {
			if e.Email == email {
				emails = append(emails, e)
				break
			}
		}
	}

	// In the case no email as been found
	if len(emails) == 0 {
		failedEmails := make([]string, 0, len(e.Identities))
		for _, ident := range e.Identities {
			failedEmails = append(failedEmails, ident.UserId.Email)
		}
		return nil, ErrGPGNoEmailFound{failedEmails}
	}

	content, err := base64EncPubKey(pubkey)
	if err != nil {
		return nil, err
	}
	return &GPGKey{
		OwnerID:           ownerID,
		KeyID:             pubkey.KeyIdString(),
		PrimaryKeyID:      "",
		Content:           content,
		CreatedUnix:       timeutil.TimeStamp(pubkey.CreationTime.Unix()),
		ExpiredUnix:       timeutil.TimeStamp(expiry.Unix()),
		Emails:            emails,
		SubsKey:           subkeys,
		CanSign:           pubkey.CanSign(),
		CanEncryptComms:   pubkey.PubKeyAlgo.CanEncrypt(),
		CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(),
		CanCertify:        pubkey.PubKeyAlgo.CanSign(),
	}, nil
}

// deleteGPGKey does the actual key deletion
func deleteGPGKey(e *xorm.Session, keyID string) (int64, error) {
	if keyID == "" {
		return 0, fmt.Errorf("empty KeyId forbidden") // Should never happen but just to be sure
	}
	// Delete imported key
	n, err := e.Where("key_id=?", keyID).Delete(new(GPGKeyImport))
	if err != nil {
		return n, err
	}
	return e.Where("key_id=?", keyID).Or("primary_key_id=?", keyID).Delete(new(GPGKey))
}

// DeleteGPGKey deletes GPG key information in database.
func DeleteGPGKey(doer *User, id int64) (err error) {
	key, err := GetGPGKeyByID(id)
	if err != nil {
		if IsErrGPGKeyNotExist(err) {
			return nil
		}
		return fmt.Errorf("GetPublicKeyByID: %v", err)
	}

	// Check if user has access to delete this key.
	if !doer.IsAdmin && doer.ID != key.OwnerID {
		return ErrGPGKeyAccessDenied{doer.ID, key.ID}
	}

	sess := x.NewSession()
	defer sess.Close()
	if err = sess.Begin(); err != nil {
		return err
	}

	if _, err = deleteGPGKey(sess, key.KeyID); err != nil {
		return err
	}

	return sess.Commit()
}

// CommitVerification represents a commit validation of signature
type CommitVerification struct {
	Verified       bool
	Warning        bool
	Reason         string
	SigningUser    *User
	CommittingUser *User
	SigningEmail   string
	SigningKey     *GPGKey
	TrustStatus    string
}

// SignCommit represents a commit with validation of signature.
type SignCommit struct {
	Verification *CommitVerification
	*UserCommit
}

const (
	// BadSignature is used as the reason when the signature has a KeyID that is in the db
	// but no key that has that ID verifies the signature. This is a suspicious failure.
	BadSignature = "gpg.error.probable_bad_signature"
	// BadDefaultSignature is used as the reason when the signature has a KeyID that matches the
	// default Key but is not verified by the default key. This is a suspicious failure.
	BadDefaultSignature = "gpg.error.probable_bad_default_signature"
	// NoKeyFound is used as the reason when no key can be found to verify the signature.
	NoKeyFound = "gpg.error.no_gpg_keys_found"
)

func readerFromBase64(s string) (io.Reader, error) {
	bs, err := base64.StdEncoding.DecodeString(s)
	if err != nil {
		return nil, err
	}
	return bytes.NewBuffer(bs), nil
}

func populateHash(hashFunc crypto.Hash, msg []byte) (hash.Hash, error) {
	h := hashFunc.New()
	if _, err := h.Write(msg); err != nil {
		return nil, err
	}
	return h, nil
}

// readArmoredSign read an armored signature block with the given type. https://sourcegraph.com/github.com/golang/crypto/-/blob/openpgp/read.go#L24:6-24:17
func readArmoredSign(r io.Reader) (body io.Reader, err error) {
	block, err := armor.Decode(r)
	if err != nil {
		return
	}
	if block.Type != openpgp.SignatureType {
		return nil, fmt.Errorf("expected '" + openpgp.SignatureType + "', got: " + block.Type)
	}
	return block.Body, nil
}

func extractSignature(s string) (*packet.Signature, error) {
	r, err := readArmoredSign(strings.NewReader(s))
	if err != nil {
		return nil, fmt.Errorf("Failed to read signature armor")
	}
	p, err := packet.Read(r)
	if err != nil {
		return nil, fmt.Errorf("Failed to read signature packet")
	}
	sig, ok := p.(*packet.Signature)
	if !ok {
		return nil, fmt.Errorf("Packet is not a signature")
	}
	return sig, nil
}

func verifySign(s *packet.Signature, h hash.Hash, k *GPGKey) error {
	// Check if key can sign
	if !k.CanSign {
		return fmt.Errorf("key can not sign")
	}
	// Decode key
	pkey, err := base64DecPubKey(k.Content)
	if err != nil {
		return err
	}
	return pkey.VerifySignature(h, s)
}

func hashAndVerify(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification {
	// Generating hash of commit
	hash, err := populateHash(sig.Hash, []byte(payload))
	if err != nil { // Skipping failed to generate hash
		log.Error("PopulateHash: %v", err)
		return &CommitVerification{
			CommittingUser: committer,
			Verified:       false,
			Reason:         "gpg.error.generate_hash",
		}
	}

	if err := verifySign(sig, hash, k); err == nil {
		return &CommitVerification{ // Everything is ok
			CommittingUser: committer,
			Verified:       true,
			Reason:         fmt.Sprintf("%s / %s", signer.Name, k.KeyID),
			SigningUser:    signer,
			SigningKey:     k,
			SigningEmail:   email,
		}
	}
	return nil
}

func hashAndVerifyWithSubKeys(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification {
	commitVerification := hashAndVerify(sig, payload, k, committer, signer, email)
	if commitVerification != nil {
		return commitVerification
	}

	// And test also SubsKey
	for _, sk := range k.SubsKey {
		commitVerification := hashAndVerify(sig, payload, sk, committer, signer, email)
		if commitVerification != nil {
			return commitVerification
		}
	}
	return nil
}

func hashAndVerifyForKeyID(sig *packet.Signature, payload string, committer *User, keyID, name, email string) *CommitVerification {
	if keyID == "" {
		return nil
	}
	keys, err := GetGPGKeysByKeyID(keyID)
	if err != nil {
		log.Error("GetGPGKeysByKeyID: %v", err)
		return &CommitVerification{
			CommittingUser: committer,
			Verified:       false,
			Reason:         "gpg.error.failed_retrieval_gpg_keys",
		}
	}
	if len(keys) == 0 {
		return nil
	}
	for _, key := range keys {
		var primaryKeys []*GPGKey
		if key.PrimaryKeyID != "" {
			primaryKeys, err = GetGPGKeysByKeyID(key.PrimaryKeyID)
			if err != nil {
				log.Error("GetGPGKeysByKeyID: %v", err)
				return &CommitVerification{
					CommittingUser: committer,
					Verified:       false,
					Reason:         "gpg.error.failed_retrieval_gpg_keys",
				}
			}
		}
		activated := false
		if len(email) != 0 {
			for _, e := range key.Emails {
				if e.IsActivated && strings.EqualFold(e.Email, email) {
					activated = true
					email = e.Email
					break
				}
			}
			if !activated {
				for _, pkey := range primaryKeys {
					for _, e := range pkey.Emails {
						if e.IsActivated && strings.EqualFold(e.Email, email) {
							activated = true
							email = e.Email
							break
						}
					}
					if activated {
						break
					}
				}
			}
		} else {
			for _, e := range key.Emails {
				if e.IsActivated {
					activated = true
					email = e.Email
					break
				}
			}
			if !activated {
				for _, pkey := range primaryKeys {
					for _, e := range pkey.Emails {
						if e.IsActivated {
							activated = true
							email = e.Email
							break
						}
					}
					if activated {
						break
					}
				}
			}
		}

		if !activated {
			continue
		}
		signer := &User{
			Name:  name,
			Email: email,
		}
		if key.OwnerID != 0 {
			owner, err := GetUserByID(key.OwnerID)
			if err == nil {
				signer = owner
			} else if !IsErrUserNotExist(err) {
				log.Error("Failed to GetUserByID: %d for key ID: %d (%s) %v", key.OwnerID, key.ID, key.KeyID, err)
				return &CommitVerification{
					CommittingUser: committer,
					Verified:       false,
					Reason:         "gpg.error.no_committer_account",
				}
			}
		}
		commitVerification := hashAndVerifyWithSubKeys(sig, payload, key, committer, signer, email)
		if commitVerification != nil {
			return commitVerification
		}
	}
	// This is a bad situation ... We have a key id that is in our database but the signature doesn't match.
	return &CommitVerification{
		CommittingUser: committer,
		Verified:       false,
		Warning:        true,
		Reason:         BadSignature,
	}
}

// ParseCommitWithSignature check if signature is good against keystore.
func ParseCommitWithSignature(c *git.Commit) *CommitVerification {
	var committer *User
	if c.Committer != nil {
		var err error
		// Find Committer account
		committer, err = GetUserByEmail(c.Committer.Email) // This finds the user by primary email or activated email so commit will not be valid if email is not
		if err != nil {                                    // Skipping not user for commiter
			committer = &User{
				Name:  c.Committer.Name,
				Email: c.Committer.Email,
			}
			// We can expect this to often be an ErrUserNotExist. in the case
			// it is not, however, it is important to log it.
			if !IsErrUserNotExist(err) {
				log.Error("GetUserByEmail: %v", err)
				return &CommitVerification{
					CommittingUser: committer,
					Verified:       false,
					Reason:         "gpg.error.no_committer_account",
				}
			}

		}
	}

	// If no signature just report the committer
	if c.Signature == nil {
		return &CommitVerification{
			CommittingUser: committer,
			Verified:       false,                         // Default value
			Reason:         "gpg.error.not_signed_commit", // Default value
		}
	}

	// Parsing signature
	sig, err := extractSignature(c.Signature.Signature)
	if err != nil { // Skipping failed to extract sign
		log.Error("SignatureRead err: %v", err)
		return &CommitVerification{
			CommittingUser: committer,
			Verified:       false,
			Reason:         "gpg.error.extract_sign",
		}
	}

	keyID := ""
	if sig.IssuerKeyId != nil && (*sig.IssuerKeyId) != 0 {
		keyID = fmt.Sprintf("%X", *sig.IssuerKeyId)
	}
	if keyID == "" && sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) > 0 {
		keyID = fmt.Sprintf("%X", sig.IssuerFingerprint[12:20])
	}
	defaultReason := NoKeyFound

	// First check if the sig has a keyID and if so just look at that
	if commitVerification := hashAndVerifyForKeyID(
		sig,
		c.Signature.Payload,
		committer,
		keyID,
		setting.AppName,
		""); commitVerification != nil {
		if commitVerification.Reason == BadSignature {
			defaultReason = BadSignature
		} else {
			return commitVerification
		}
	}

	// Now try to associate the signature with the committer, if present
	if committer.ID != 0 {
		keys, err := ListGPGKeys(committer.ID, ListOptions{})
		if err != nil { // Skipping failed to get gpg keys of user
			log.Error("ListGPGKeys: %v", err)
			return &CommitVerification{
				CommittingUser: committer,
				Verified:       false,
				Reason:         "gpg.error.failed_retrieval_gpg_keys",
			}
		}

		for _, k := range keys {
			// Pre-check (& optimization) that emails attached to key can be attached to the commiter email and can validate
			canValidate := false
			email := ""
			for _, e := range k.Emails {
				if e.IsActivated && strings.EqualFold(e.Email, c.Committer.Email) {
					canValidate = true
					email = e.Email
					break
				}
			}
			if !canValidate {
				continue // Skip this key
			}

			commitVerification := hashAndVerifyWithSubKeys(sig, c.Signature.Payload, k, committer, committer, email)
			if commitVerification != nil {
				return commitVerification
			}
		}
	}

	if setting.Repository.Signing.SigningKey != "" && setting.Repository.Signing.SigningKey != "default" && setting.Repository.Signing.SigningKey != "none" {
		// OK we should try the default key
		gpgSettings := git.GPGSettings{
			Sign:  true,
			KeyID: setting.Repository.Signing.SigningKey,
			Name:  setting.Repository.Signing.SigningName,
			Email: setting.Repository.Signing.SigningEmail,
		}
		if err := gpgSettings.LoadPublicKeyContent(); err != nil {
			log.Error("Error getting default signing key: %s %v", gpgSettings.KeyID, err)
		} else if commitVerification := verifyWithGPGSettings(&gpgSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
			if commitVerification.Reason == BadSignature {
				defaultReason = BadSignature
			} else {
				return commitVerification
			}
		}
	}

	defaultGPGSettings, err := c.GetRepositoryDefaultPublicGPGKey(false)
	if err != nil {
		log.Error("Error getting default public gpg key: %v", err)
	} else if defaultGPGSettings == nil {
		log.Warn("Unable to get defaultGPGSettings for unattached commit: %s", c.ID.String())
	} else if defaultGPGSettings.Sign {
		if commitVerification := verifyWithGPGSettings(defaultGPGSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
			if commitVerification.Reason == BadSignature {
				defaultReason = BadSignature
			} else {
				return commitVerification
			}
		}
	}

	return &CommitVerification{ // Default at this stage
		CommittingUser: committer,
		Verified:       false,
		Warning:        defaultReason != NoKeyFound,
		Reason:         defaultReason,
		SigningKey: &GPGKey{
			KeyID: keyID,
		},
	}
}

func verifyWithGPGSettings(gpgSettings *git.GPGSettings, sig *packet.Signature, payload string, committer *User, keyID string) *CommitVerification {
	// First try to find the key in the db
	if commitVerification := hashAndVerifyForKeyID(sig, payload, committer, gpgSettings.KeyID, gpgSettings.Name, gpgSettings.Email); commitVerification != nil {
		return commitVerification
	}

	// Otherwise we have to parse the key
	ekeys, err := checkArmoredGPGKeyString(gpgSettings.PublicKeyContent)
	if err != nil {
		log.Error("Unable to get default signing key: %v", err)
		return &CommitVerification{
			CommittingUser: committer,
			Verified:       false,
			Reason:         "gpg.error.generate_hash",
		}
	}
	for _, ekey := range ekeys {
		pubkey := ekey.PrimaryKey
		content, err := base64EncPubKey(pubkey)
		if err != nil {
			return &CommitVerification{
				CommittingUser: committer,
				Verified:       false,
				Reason:         "gpg.error.generate_hash",
			}
		}
		k := &GPGKey{
			Content: content,
			CanSign: pubkey.CanSign(),
			KeyID:   pubkey.KeyIdString(),
		}
		for _, subKey := range ekey.Subkeys {
			content, err := base64EncPubKey(subKey.PublicKey)
			if err != nil {
				return &CommitVerification{
					CommittingUser: committer,
					Verified:       false,
					Reason:         "gpg.error.generate_hash",
				}
			}
			k.SubsKey = append(k.SubsKey, &GPGKey{
				Content: content,
				CanSign: subKey.PublicKey.CanSign(),
				KeyID:   subKey.PublicKey.KeyIdString(),
			})
		}
		if commitVerification := hashAndVerifyWithSubKeys(sig, payload, k, committer, &User{
			Name:  gpgSettings.Name,
			Email: gpgSettings.Email,
		}, gpgSettings.Email); commitVerification != nil {
			return commitVerification
		}
		if keyID == k.KeyID {
			// This is a bad situation ... We have a key id that matches our default key but the signature doesn't match.
			return &CommitVerification{
				CommittingUser: committer,
				Verified:       false,
				Warning:        true,
				Reason:         BadSignature,
			}
		}
	}
	return nil
}

// ParseCommitsWithSignature checks if signaute of commits are corresponding to users gpg keys.
func ParseCommitsWithSignature(oldCommits *list.List, repository *Repository) *list.List {
	var (
		newCommits = list.New()
		e          = oldCommits.Front()
	)
	keyMap := map[string]bool{}

	for e != nil {
		c := e.Value.(UserCommit)
		signCommit := SignCommit{
			UserCommit:   &c,
			Verification: ParseCommitWithSignature(c.Commit),
		}

		_ = CalculateTrustStatus(signCommit.Verification, repository, &keyMap)

		newCommits.PushBack(signCommit)
		e = e.Next()
	}
	return newCommits
}

// CalculateTrustStatus will calculate the TrustStatus for a commit verification within a repository
func CalculateTrustStatus(verification *CommitVerification, repository *Repository, keyMap *map[string]bool) (err error) {
	if !verification.Verified {
		return
	}

	// There are several trust models in Gitea
	trustModel := repository.GetTrustModel()

	// In the Committer trust model a signature is trusted if it matches the committer
	// - it doesn't matter if they're a collaborator, the owner, Gitea or Github
	// NB: This model is commit verification only
	if trustModel == CommitterTrustModel {
		// default to "unmatched"
		verification.TrustStatus = "unmatched"

		// We can only verify against users in our database but the default key will match
		// against by email if it is not in the db.
		if (verification.SigningUser.ID != 0 &&
			verification.CommittingUser.ID == verification.SigningUser.ID) ||
			(verification.SigningUser.ID == 0 && verification.CommittingUser.ID == 0 &&
				verification.SigningUser.Email == verification.CommittingUser.Email) {
			verification.TrustStatus = "trusted"
		}
		return
	}

	// Now we drop to the more nuanced trust models...
	verification.TrustStatus = "trusted"

	if verification.SigningUser.ID == 0 {
		// This commit is signed by the default key - but this key is not assigned to a user in the DB.

		// However in the CollaboratorCommitterTrustModel we cannot mark this as trusted
		// unless the default key matches the email of a non-user.
		if trustModel == CollaboratorCommitterTrustModel && (verification.CommittingUser.ID != 0 ||
			verification.SigningUser.Email != verification.CommittingUser.Email) {
			verification.TrustStatus = "untrusted"
		}
		return
	}

	var isMember bool
	if keyMap != nil {
		var has bool
		isMember, has = (*keyMap)[verification.SigningKey.KeyID]
		if !has {
			isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
			(*keyMap)[verification.SigningKey.KeyID] = isMember
		}
	} else {
		isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
	}

	if !isMember {
		verification.TrustStatus = "untrusted"
		if verification.CommittingUser.ID != verification.SigningUser.ID {
			// The committing user and the signing user are not the same
			// This should be marked as questionable unless the signing user is a collaborator/team member etc.
			verification.TrustStatus = "unmatched"
		}
	} else if trustModel == CollaboratorCommitterTrustModel && verification.CommittingUser.ID != verification.SigningUser.ID {
		// The committing user and the signing user are not the same and our trustmodel states that they must match
		verification.TrustStatus = "unmatched"
	}

	return
}