aboutsummaryrefslogtreecommitdiffstats
path: root/modules/queue/manager.go
blob: 6975e02907734be61aafcdc5079f15dbaa7a8e77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
// Copyright 2019 The Gitea Authors. All rights reserved.
// SPDX-License-Identifier: MIT

package queue

import (
	"context"
	"fmt"
	"reflect"
	"sort"
	"strings"
	"sync"
	"time"

	"code.gitea.io/gitea/modules/json"
	"code.gitea.io/gitea/modules/log"
)

var manager *Manager

// Manager is a queue manager
type Manager struct {
	mutex sync.Mutex

	counter int64
	Queues  map[int64]*ManagedQueue
}

// ManagedQueue represents a working queue with a Pool of workers.
//
// Although a ManagedQueue should really represent a Queue this does not
// necessarily have to be the case. This could be used to describe any queue.WorkerPool.
type ManagedQueue struct {
	mutex         sync.Mutex
	QID           int64
	Type          Type
	Name          string
	Configuration interface{}
	ExemplarType  string
	Managed       interface{}
	counter       int64
	PoolWorkers   map[int64]*PoolWorkers
}

// Flushable represents a pool or queue that is flushable
type Flushable interface {
	// Flush will add a flush worker to the pool - the worker should be autoregistered with the manager
	Flush(time.Duration) error
	// FlushWithContext is very similar to Flush
	// NB: The worker will not be registered with the manager.
	FlushWithContext(ctx context.Context) error
	// IsEmpty will return if the managed pool is empty and has no work
	IsEmpty() bool
}

// Pausable represents a pool or queue that is Pausable
type Pausable interface {
	// IsPaused will return if the pool or queue is paused
	IsPaused() bool
	// Pause will pause the pool or queue
	Pause()
	// Resume will resume the pool or queue
	Resume()
	// IsPausedIsResumed will return a bool indicating if the pool or queue is paused and a channel that will be closed when it is resumed
	IsPausedIsResumed() (paused, resumed <-chan struct{})
}

// ManagedPool is a simple interface to get certain details from a worker pool
type ManagedPool interface {
	// AddWorkers adds a number of worker as group to the pool with the provided timeout. A CancelFunc is provided to cancel the group
	AddWorkers(number int, timeout time.Duration) context.CancelFunc
	// NumberOfWorkers returns the total number of workers in the pool
	NumberOfWorkers() int
	// MaxNumberOfWorkers returns the maximum number of workers the pool can dynamically grow to
	MaxNumberOfWorkers() int
	// SetMaxNumberOfWorkers sets the maximum number of workers the pool can dynamically grow to
	SetMaxNumberOfWorkers(int)
	// BoostTimeout returns the current timeout for worker groups created during a boost
	BoostTimeout() time.Duration
	// BlockTimeout returns the timeout the internal channel can block for before a boost would occur
	BlockTimeout() time.Duration
	// BoostWorkers sets the number of workers to be created during a boost
	BoostWorkers() int
	// SetPoolSettings sets the user updatable settings for the pool
	SetPoolSettings(maxNumberOfWorkers, boostWorkers int, timeout time.Duration)
	// NumberInQueue returns the total number of items in the pool
	NumberInQueue() int64
	// Done returns a channel that will be closed when the Pool's baseCtx is closed
	Done() <-chan struct{}
}

// ManagedQueueList implements the sort.Interface
type ManagedQueueList []*ManagedQueue

// PoolWorkers represents a group of workers working on a queue
type PoolWorkers struct {
	PID        int64
	Workers    int
	Start      time.Time
	Timeout    time.Time
	HasTimeout bool
	Cancel     context.CancelFunc
	IsFlusher  bool
}

// PoolWorkersList implements the sort.Interface for PoolWorkers
type PoolWorkersList []*PoolWorkers

func init() {
	_ = GetManager()
}

// GetManager returns a Manager and initializes one as singleton if there's none yet
func GetManager() *Manager {
	if manager == nil {
		manager = &Manager{
			Queues: make(map[int64]*ManagedQueue),
		}
	}
	return manager
}

// Add adds a queue to this manager
func (m *Manager) Add(managed interface{},
	t Type,
	configuration,
	exemplar interface{},
) int64 {
	cfg, _ := json.Marshal(configuration)
	mq := &ManagedQueue{
		Type:          t,
		Configuration: string(cfg),
		ExemplarType:  reflect.TypeOf(exemplar).String(),
		PoolWorkers:   make(map[int64]*PoolWorkers),
		Managed:       managed,
	}
	m.mutex.Lock()
	m.counter++
	mq.QID = m.counter
	mq.Name = fmt.Sprintf("queue-%d", mq.QID)
	if named, ok := managed.(Named); ok {
		name := named.Name()
		if len(name) > 0 {
			mq.Name = name
		}
	}
	m.Queues[mq.QID] = mq
	m.mutex.Unlock()
	log.Trace("Queue Manager registered: %s (QID: %d)", mq.Name, mq.QID)
	return mq.QID
}

// Remove a queue from the Manager
func (m *Manager) Remove(qid int64) {
	m.mutex.Lock()
	delete(m.Queues, qid)
	m.mutex.Unlock()
	log.Trace("Queue Manager removed: QID: %d", qid)
}

// GetManagedQueue by qid
func (m *Manager) GetManagedQueue(qid int64) *ManagedQueue {
	m.mutex.Lock()
	defer m.mutex.Unlock()
	return m.Queues[qid]
}

// FlushAll flushes all the flushable queues attached to this manager
func (m *Manager) FlushAll(baseCtx context.Context, timeout time.Duration) error {
	var ctx context.Context
	var cancel context.CancelFunc
	start := time.Now()
	end := start
	hasTimeout := false
	if timeout > 0 {
		ctx, cancel = context.WithTimeout(baseCtx, timeout)
		end = start.Add(timeout)
		hasTimeout = true
	} else {
		ctx, cancel = context.WithCancel(baseCtx)
	}
	defer cancel()

	for {
		select {
		case <-ctx.Done():
			mqs := m.ManagedQueues()
			nonEmptyQueues := []string{}
			for _, mq := range mqs {
				if !mq.IsEmpty() {
					nonEmptyQueues = append(nonEmptyQueues, mq.Name)
				}
			}
			if len(nonEmptyQueues) > 0 {
				return fmt.Errorf("flush timeout with non-empty queues: %s", strings.Join(nonEmptyQueues, ", "))
			}
			return nil
		default:
		}
		mqs := m.ManagedQueues()
		log.Debug("Found %d Managed Queues", len(mqs))
		wg := sync.WaitGroup{}
		wg.Add(len(mqs))
		allEmpty := true
		for _, mq := range mqs {
			if mq.IsEmpty() {
				wg.Done()
				continue
			}
			if pausable, ok := mq.Managed.(Pausable); ok {
				// no point flushing paused queues
				if pausable.IsPaused() {
					wg.Done()
					continue
				}
			}
			if pool, ok := mq.Managed.(ManagedPool); ok {
				// No point into flushing pools when their base's ctx is already done.
				select {
				case <-pool.Done():
					wg.Done()
					continue
				default:
				}
			}

			allEmpty = false
			if flushable, ok := mq.Managed.(Flushable); ok {
				log.Debug("Flushing (flushable) queue: %s", mq.Name)
				go func(q *ManagedQueue) {
					localCtx, localCtxCancel := context.WithCancel(ctx)
					pid := q.RegisterWorkers(1, start, hasTimeout, end, localCtxCancel, true)
					err := flushable.FlushWithContext(localCtx)
					if err != nil && err != ctx.Err() {
						cancel()
					}
					q.CancelWorkers(pid)
					localCtxCancel()
					wg.Done()
				}(mq)
			} else {
				log.Debug("Queue: %s is non-empty but is not flushable", mq.Name)
				wg.Done()
			}
		}
		if allEmpty {
			log.Debug("All queues are empty")
			break
		}
		// Ensure there are always at least 100ms between loops but not more if we've actually been doing some flushing
		// but don't delay cancellation here.
		select {
		case <-ctx.Done():
		case <-time.After(100 * time.Millisecond):
		}
		wg.Wait()
	}
	return nil
}

// ManagedQueues returns the managed queues
func (m *Manager) ManagedQueues() []*ManagedQueue {
	m.mutex.Lock()
	mqs := make([]*ManagedQueue, 0, len(m.Queues))
	for _, mq := range m.Queues {
		mqs = append(mqs, mq)
	}
	m.mutex.Unlock()
	sort.Sort(ManagedQueueList(mqs))
	return mqs
}

// Workers returns the poolworkers
func (q *ManagedQueue) Workers() []*PoolWorkers {
	q.mutex.Lock()
	workers := make([]*PoolWorkers, 0, len(q.PoolWorkers))
	for _, worker := range q.PoolWorkers {
		workers = append(workers, worker)
	}
	q.mutex.Unlock()
	sort.Sort(PoolWorkersList(workers))
	return workers
}

// RegisterWorkers registers workers to this queue
func (q *ManagedQueue) RegisterWorkers(number int, start time.Time, hasTimeout bool, timeout time.Time, cancel context.CancelFunc, isFlusher bool) int64 {
	q.mutex.Lock()
	defer q.mutex.Unlock()
	q.counter++
	q.PoolWorkers[q.counter] = &PoolWorkers{
		PID:        q.counter,
		Workers:    number,
		Start:      start,
		Timeout:    timeout,
		HasTimeout: hasTimeout,
		Cancel:     cancel,
		IsFlusher:  isFlusher,
	}
	return q.counter
}

// CancelWorkers cancels pooled workers with pid
func (q *ManagedQueue) CancelWorkers(pid int64) {
	q.mutex.Lock()
	pw, ok := q.PoolWorkers[pid]
	q.mutex.Unlock()
	if !ok {
		return
	}
	pw.Cancel()
}

// RemoveWorkers deletes pooled workers with pid
func (q *ManagedQueue) RemoveWorkers(pid int64) {
	q.mutex.Lock()
	pw, ok := q.PoolWorkers[pid]
	delete(q.PoolWorkers, pid)
	q.mutex.Unlock()
	if ok && pw.Cancel != nil {
		pw.Cancel()
	}
}

// AddWorkers adds workers to the queue if it has registered an add worker function
func (q *ManagedQueue) AddWorkers(number int, timeout time.Duration) context.CancelFunc {
	if pool, ok := q.Managed.(ManagedPool); ok {
		// the cancel will be added to the pool workers description above
		return pool.AddWorkers(number, timeout)
	}
	return nil
}

// Flushable returns true if the queue is flushable
func (q *ManagedQueue) Flushable() bool {
	_, ok := q.Managed.(Flushable)
	return ok
}

// Flush flushes the queue with a timeout
func (q *ManagedQueue) Flush(timeout time.Duration) error {
	if flushable, ok := q.Managed.(Flushable); ok {
		// the cancel will be added to the pool workers description above
		return flushable.Flush(timeout)
	}
	return nil
}

// IsEmpty returns if the queue is empty
func (q *ManagedQueue) IsEmpty() bool {
	if flushable, ok := q.Managed.(Flushable); ok {
		return flushable.IsEmpty()
	}
	return true
}

// Pausable returns whether the queue is Pausable
func (q *ManagedQueue) Pausable() bool {
	_, ok := q.Managed.(Pausable)
	return ok
}

// Pause pauses the queue
func (q *ManagedQueue) Pause() {
	if pausable, ok := q.Managed.(Pausable); ok {
		pausable.Pause()
	}
}

// IsPaused reveals if the queue is paused
func (q *ManagedQueue) IsPaused() bool {
	if pausable, ok := q.Managed.(Pausable); ok {
		return pausable.IsPaused()
	}
	return false
}

// Resume resumes the queue
func (q *ManagedQueue) Resume() {
	if pausable, ok := q.Managed.(Pausable); ok {
		pausable.Resume()
	}
}

// NumberOfWorkers returns the number of workers in the queue
func (q *ManagedQueue) NumberOfWorkers() int {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.NumberOfWorkers()
	}
	return -1
}

// MaxNumberOfWorkers returns the maximum number of workers for the pool
func (q *ManagedQueue) MaxNumberOfWorkers() int {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.MaxNumberOfWorkers()
	}
	return 0
}

// BoostWorkers returns the number of workers for a boost
func (q *ManagedQueue) BoostWorkers() int {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.BoostWorkers()
	}
	return -1
}

// BoostTimeout returns the timeout of the next boost
func (q *ManagedQueue) BoostTimeout() time.Duration {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.BoostTimeout()
	}
	return 0
}

// BlockTimeout returns the timeout til the next boost
func (q *ManagedQueue) BlockTimeout() time.Duration {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.BlockTimeout()
	}
	return 0
}

// SetPoolSettings sets the setable boost values
func (q *ManagedQueue) SetPoolSettings(maxNumberOfWorkers, boostWorkers int, timeout time.Duration) {
	if pool, ok := q.Managed.(ManagedPool); ok {
		pool.SetPoolSettings(maxNumberOfWorkers, boostWorkers, timeout)
	}
}

// NumberInQueue returns the number of items in the queue
func (q *ManagedQueue) NumberInQueue() int64 {
	if pool, ok := q.Managed.(ManagedPool); ok {
		return pool.NumberInQueue()
	}
	return -1
}

func (l ManagedQueueList) Len() int {
	return len(l)
}

func (l ManagedQueueList) Less(i, j int) bool {
	return l[i].Name < l[j].Name
}

func (l ManagedQueueList) Swap(i, j int) {
	l[i], l[j] = l[j], l[i]
}

func (l PoolWorkersList) Len() int {
	return len(l)
}

func (l PoolWorkersList) Less(i, j int) bool {
	return l[i].Start.Before(l[j].Start)
}

func (l PoolWorkersList) Swap(i, j int) {
	l[i], l[j] = l[j], l[i]
}