aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/RoaringBitmap/roaring/README.md
blob: 94fdf057e584785c997405ad36a6315a1ca14edb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
roaring [![Build Status](https://travis-ci.org/RoaringBitmap/roaring.png)](https://travis-ci.org/RoaringBitmap/roaring) [![Coverage Status](https://coveralls.io/repos/github/RoaringBitmap/roaring/badge.svg?branch=master)](https://coveralls.io/github/RoaringBitmap/roaring?branch=master) [![GoDoc](https://godoc.org/github.com/RoaringBitmap/roaring?status.svg)](https://godoc.org/github.com/RoaringBitmap/roaring) [![Go Report Card](https://goreportcard.com/badge/RoaringBitmap/roaring)](https://goreportcard.com/report/github.com/RoaringBitmap/roaring)
[![Build Status](https://cloud.drone.io/api/badges/RoaringBitmap/roaring/status.svg)](https://cloud.drone.io/RoaringBitmap/roaring)
=============

This is a go version of the Roaring bitmap data structure. 



Roaring bitmaps are used by several major systems such as [Apache Lucene][lucene] and derivative systems such as [Solr][solr] and
[Elasticsearch][elasticsearch], [Apache Druid (Incubating)][druid], [LinkedIn Pinot][pinot], [Netflix Atlas][atlas],  [Apache Spark][spark], [OpenSearchServer][opensearchserver], [Cloud Torrent][cloudtorrent], [Whoosh][whoosh],  [Pilosa][pilosa],  [Microsoft Visual Studio Team Services (VSTS)][vsts], and eBay's [Apache Kylin][kylin].

[lucene]: https://lucene.apache.org/
[solr]: https://lucene.apache.org/solr/
[elasticsearch]: https://www.elastic.co/products/elasticsearch
[druid]: https://druid.apache.org/
[spark]: https://spark.apache.org/
[opensearchserver]: http://www.opensearchserver.com
[cloudtorrent]: https://github.com/jpillora/cloud-torrent
[whoosh]: https://bitbucket.org/mchaput/whoosh/wiki/Home
[pilosa]: https://www.pilosa.com/
[kylin]: http://kylin.apache.org/
[pinot]: http://github.com/linkedin/pinot/wiki
[vsts]: https://www.visualstudio.com/team-services/
[atlas]: https://github.com/Netflix/atlas

Roaring bitmaps are found to work well in many important applications:

> Use Roaring for bitmap compression whenever possible. Do not use other bitmap compression methods ([Wang et al., SIGMOD 2017](http://db.ucsd.edu/wp-content/uploads/2017/03/sidm338-wangA.pdf))


The ``roaring`` Go library is used by
* [Cloud Torrent](https://github.com/jpillora/cloud-torrent)
* [runv](https://github.com/hyperhq/runv)
* [InfluxDB](https://www.influxdata.com)
* [Pilosa](https://www.pilosa.com/)
* [Bleve](http://www.blevesearch.com)
* [lindb](https://github.com/lindb/lindb)
* [Elasticell](https://github.com/deepfabric/elasticell)
* [SourceGraph](https://github.com/sourcegraph/sourcegraph)
* [M3](https://github.com/m3db/m3)
* [trident](https://github.com/NetApp/trident)


This library is used in production in several systems, it is part of the [Awesome Go collection](https://awesome-go.com).


There are also  [Java](https://github.com/RoaringBitmap/RoaringBitmap) and [C/C++](https://github.com/RoaringBitmap/CRoaring) versions.  The Java, C, C++ and Go version are binary compatible: e.g,  you can save bitmaps
from a Java program and load them back in Go, and vice versa. We have a [format specification](https://github.com/RoaringBitmap/RoaringFormatSpec).


This code is licensed under Apache License, Version 2.0 (ASL2.0).

Copyright 2016-... by the authors.


### References

- Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O'Hara, François Saint-Jacques, Gregory Ssi-Yan-Kai, Roaring Bitmaps: Implementation of an Optimized Software Library, Software: Practice and Experience 48 (4), 2018 [arXiv:1709.07821](https://arxiv.org/abs/1709.07821)
-  Samy Chambi, Daniel Lemire, Owen Kaser, Robert Godin,
Better bitmap performance with Roaring bitmaps,
Software: Practice and Experience 46 (5), 2016.
http://arxiv.org/abs/1402.6407 This paper used data from http://lemire.me/data/realroaring2014.html
- Daniel Lemire, Gregory Ssi-Yan-Kai, Owen Kaser, Consistently faster and smaller compressed bitmaps with Roaring, Software: Practice and Experience 46 (11), 2016. http://arxiv.org/abs/1603.06549


### Dependencies

Dependencies are fetched automatically by giving the `-t` flag to `go get`.

they include
  - github.com/willf/bitset
  - github.com/mschoch/smat
  - github.com/glycerine/go-unsnap-stream
  - github.com/philhofer/fwd
  - github.com/jtolds/gls

Note that the smat library requires Go 1.6 or better.

#### Installation

  - go get -t github.com/RoaringBitmap/roaring


### Example

Here is a simplified but complete example:

```go
package main

import (
    "fmt"
    "github.com/RoaringBitmap/roaring"
    "bytes"
)


func main() {
    // example inspired by https://github.com/fzandona/goroar
    fmt.Println("==roaring==")
    rb1 := roaring.BitmapOf(1, 2, 3, 4, 5, 100, 1000)
    fmt.Println(rb1.String())

    rb2 := roaring.BitmapOf(3, 4, 1000)
    fmt.Println(rb2.String())

    rb3 := roaring.New()
    fmt.Println(rb3.String())

    fmt.Println("Cardinality: ", rb1.GetCardinality())

    fmt.Println("Contains 3? ", rb1.Contains(3))

    rb1.And(rb2)

    rb3.Add(1)
    rb3.Add(5)

    rb3.Or(rb1)

    // computes union of the three bitmaps in parallel using 4 workers  
    roaring.ParOr(4, rb1, rb2, rb3)
    // computes intersection of the three bitmaps in parallel using 4 workers  
    roaring.ParAnd(4, rb1, rb2, rb3)


    // prints 1, 3, 4, 5, 1000
    i := rb3.Iterator()
    for i.HasNext() {
        fmt.Println(i.Next())
    }
    fmt.Println()

    // next we include an example of serialization
    buf := new(bytes.Buffer)
    rb1.WriteTo(buf) // we omit error handling
    newrb:= roaring.New()
    newrb.ReadFrom(buf)
    if rb1.Equals(newrb) {
    	fmt.Println("I wrote the content to a byte stream and read it back.")
    }
    // you can iterate over bitmaps using ReverseIterator(), Iterator, ManyIterator()
}
```

If you wish to use serialization and handle errors, you might want to
consider the following sample of code:

```go
	rb := BitmapOf(1, 2, 3, 4, 5, 100, 1000)
	buf := new(bytes.Buffer)
	size,err:=rb.WriteTo(buf)
	if err != nil {
		t.Errorf("Failed writing")
	}
	newrb:= New()
	size,err=newrb.ReadFrom(buf)
	if err != nil {
		t.Errorf("Failed reading")
	}
	if ! rb.Equals(newrb) {
		t.Errorf("Cannot retrieve serialized version")
	}
```

Given N integers in [0,x), then the serialized size in bytes of
a Roaring bitmap should never exceed this bound:

`` 8 + 9 * ((long)x+65535)/65536 + 2 * N ``

That is, given a fixed overhead for the universe size (x), Roaring
bitmaps never use more than 2 bytes per integer. You can call
``BoundSerializedSizeInBytes`` for a more precise estimate.


### Documentation

Current documentation is available at http://godoc.org/github.com/RoaringBitmap/roaring

### Goroutine safety

In general, it should not generally be considered safe to access
the same bitmaps using different goroutines--they are left
unsynchronized for performance. Should you want to access
a Bitmap from more than one goroutine, you should
provide synchronization. Typically this is done by using channels to pass
the *Bitmap around (in Go style; so there is only ever one owner),
or by using `sync.Mutex` to serialize operations on Bitmaps.

### Coverage

We test our software. For a report on our test coverage, see

https://coveralls.io/github/RoaringBitmap/roaring?branch=master

### Benchmark

Type

         go test -bench Benchmark -run -
         
To run benchmarks on [Real Roaring Datasets](https://github.com/RoaringBitmap/real-roaring-datasets)
run the following:

```sh
go get github.com/RoaringBitmap/real-roaring-datasets
BENCH_REAL_DATA=1 go test -bench BenchmarkRealData -run -
```

### Iterative use

You can use roaring with gore:

- go get -u github.com/motemen/gore
- Make sure that ``$GOPATH/bin`` is in your ``$PATH``.
- go get github.com/RoaringBitmap/roaring

```go
$ gore
gore version 0.2.6  :help for help
gore> :import github.com/RoaringBitmap/roaring
gore> x:=roaring.New()
gore> x.Add(1)
gore> x.String()
"{1}"
```


### Fuzzy testing

You can help us test further the library with fuzzy testing:

         go get github.com/dvyukov/go-fuzz/go-fuzz
         go get github.com/dvyukov/go-fuzz/go-fuzz-build
         go test -tags=gofuzz -run=TestGenerateSmatCorpus
         go-fuzz-build github.com/RoaringBitmap/roaring
         go-fuzz -bin=./roaring-fuzz.zip -workdir=workdir/ -timeout=200

Let it run, and if the # of crashers is > 0, check out the reports in
the workdir where you should be able to find the panic goroutine stack
traces.

### Alternative in Go

There is a Go version wrapping the C/C++ implementation https://github.com/RoaringBitmap/gocroaring

For an alternative implementation in Go, see https://github.com/fzandona/goroar
The two versions were written independently.


### Mailing list/discussion group

https://groups.google.com/forum/#!forum/roaring-bitmaps