aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/RoaringBitmap/roaring/rle.go
blob: 8f3d4edd68ee2ec5b19c2c66a5e27c1e6f12b9ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
package roaring

//
// Copyright (c) 2016 by the roaring authors.
// Licensed under the Apache License, Version 2.0.
//
// We derive a few lines of code from the sort.Search
// function in the golang standard library. That function
// is Copyright 2009 The Go Authors, and licensed
// under the following BSD-style license.
/*
Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

   * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
   * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
   * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

import (
	"fmt"
	"sort"
	"unsafe"
)

//go:generate msgp -unexported

// runContainer32 does run-length encoding of sets of
// uint32 integers.
type runContainer32 struct {
	iv   []interval32
	card int64

	// avoid allocation during search
	myOpts searchOptions `msg:"-"`
}

// interval32 is the internal to runContainer32
// structure that maintains the individual [Start, last]
// closed intervals.
type interval32 struct {
	start uint32
	last  uint32
}

// runlen returns the count of integers in the interval.
func (iv interval32) runlen() int64 {
	return 1 + int64(iv.last) - int64(iv.start)
}

// String produces a human viewable string of the contents.
func (iv interval32) String() string {
	return fmt.Sprintf("[%d, %d]", iv.start, iv.last)
}

func ivalString32(iv []interval32) string {
	var s string
	var j int
	var p interval32
	for j, p = range iv {
		s += fmt.Sprintf("%v:[%d, %d], ", j, p.start, p.last)
	}
	return s
}

// String produces a human viewable string of the contents.
func (rc *runContainer32) String() string {
	if len(rc.iv) == 0 {
		return "runContainer32{}"
	}
	is := ivalString32(rc.iv)
	return `runContainer32{` + is + `}`
}

// uint32Slice is a sort.Sort convenience method
type uint32Slice []uint32

// Len returns the length of p.
func (p uint32Slice) Len() int { return len(p) }

// Less returns p[i] < p[j]
func (p uint32Slice) Less(i, j int) bool { return p[i] < p[j] }

// Swap swaps elements i and j.
func (p uint32Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

//msgp:ignore addHelper

// addHelper helps build a runContainer32.
type addHelper32 struct {
	runstart      uint32
	runlen        uint32
	actuallyAdded uint32
	m             []interval32
	rc            *runContainer32
}

func (ah *addHelper32) storeIval(runstart, runlen uint32) {
	mi := interval32{start: runstart, last: runstart + runlen}
	ah.m = append(ah.m, mi)
}

func (ah *addHelper32) add(cur, prev uint32, i int) {
	if cur == prev+1 {
		ah.runlen++
		ah.actuallyAdded++
	} else {
		if cur < prev {
			panic(fmt.Sprintf("newRunContainer32FromVals sees "+
				"unsorted vals; vals[%v]=cur=%v < prev=%v. Sort your vals"+
				" before calling us with alreadySorted == true.", i, cur, prev))
		}
		if cur == prev {
			// ignore duplicates
		} else {
			ah.actuallyAdded++
			ah.storeIval(ah.runstart, ah.runlen)
			ah.runstart = cur
			ah.runlen = 0
		}
	}
}

// newRunContainerRange makes a new container made of just the specified closed interval [rangestart,rangelast]
func newRunContainer32Range(rangestart uint32, rangelast uint32) *runContainer32 {
	rc := &runContainer32{}
	rc.iv = append(rc.iv, interval32{start: rangestart, last: rangelast})
	return rc
}

// newRunContainer32FromVals makes a new container from vals.
//
// For efficiency, vals should be sorted in ascending order.
// Ideally vals should not contain duplicates, but we detect and
// ignore them. If vals is already sorted in ascending order, then
// pass alreadySorted = true. Otherwise, for !alreadySorted,
// we will sort vals before creating a runContainer32 of them.
// We sort the original vals, so this will change what the
// caller sees in vals as a side effect.
func newRunContainer32FromVals(alreadySorted bool, vals ...uint32) *runContainer32 {
	// keep this in sync with newRunContainer32FromArray below

	rc := &runContainer32{}
	ah := addHelper32{rc: rc}

	if !alreadySorted {
		sort.Sort(uint32Slice(vals))
	}
	n := len(vals)
	var cur, prev uint32
	switch {
	case n == 0:
		// nothing more
	case n == 1:
		ah.m = append(ah.m, interval32{start: vals[0], last: vals[0]})
		ah.actuallyAdded++
	default:
		ah.runstart = vals[0]
		ah.actuallyAdded++
		for i := 1; i < n; i++ {
			prev = vals[i-1]
			cur = vals[i]
			ah.add(cur, prev, i)
		}
		ah.storeIval(ah.runstart, ah.runlen)
	}
	rc.iv = ah.m
	rc.card = int64(ah.actuallyAdded)
	return rc
}

// newRunContainer32FromBitmapContainer makes a new run container from bc,
// somewhat efficiently. For reference, see the Java
// https://github.com/RoaringBitmap/RoaringBitmap/blob/master/src/main/java/org/roaringbitmap/RunContainer.java#L145-L192
func newRunContainer32FromBitmapContainer(bc *bitmapContainer) *runContainer32 {

	rc := &runContainer32{}
	nbrRuns := bc.numberOfRuns()
	if nbrRuns == 0 {
		return rc
	}
	rc.iv = make([]interval32, nbrRuns)

	longCtr := 0            // index of current long in bitmap
	curWord := bc.bitmap[0] // its value
	runCount := 0
	for {
		// potentially multiword advance to first 1 bit
		for curWord == 0 && longCtr < len(bc.bitmap)-1 {
			longCtr++
			curWord = bc.bitmap[longCtr]
		}

		if curWord == 0 {
			// wrap up, no more runs
			return rc
		}
		localRunStart := countTrailingZeros(curWord)
		runStart := localRunStart + 64*longCtr
		// stuff 1s into number's LSBs
		curWordWith1s := curWord | (curWord - 1)

		// find the next 0, potentially in a later word
		runEnd := 0
		for curWordWith1s == maxWord && longCtr < len(bc.bitmap)-1 {
			longCtr++
			curWordWith1s = bc.bitmap[longCtr]
		}

		if curWordWith1s == maxWord {
			// a final unterminated run of 1s
			runEnd = wordSizeInBits + longCtr*64
			rc.iv[runCount].start = uint32(runStart)
			rc.iv[runCount].last = uint32(runEnd) - 1
			return rc
		}
		localRunEnd := countTrailingZeros(^curWordWith1s)
		runEnd = localRunEnd + longCtr*64
		rc.iv[runCount].start = uint32(runStart)
		rc.iv[runCount].last = uint32(runEnd) - 1
		runCount++
		// now, zero out everything right of runEnd.
		curWord = curWordWith1s & (curWordWith1s + 1)
		// We've lathered and rinsed, so repeat...
	}

}

//
// newRunContainer32FromArray populates a new
// runContainer32 from the contents of arr.
//
func newRunContainer32FromArray(arr *arrayContainer) *runContainer32 {
	// keep this in sync with newRunContainer32FromVals above

	rc := &runContainer32{}
	ah := addHelper32{rc: rc}

	n := arr.getCardinality()
	var cur, prev uint32
	switch {
	case n == 0:
		// nothing more
	case n == 1:
		ah.m = append(ah.m, interval32{start: uint32(arr.content[0]), last: uint32(arr.content[0])})
		ah.actuallyAdded++
	default:
		ah.runstart = uint32(arr.content[0])
		ah.actuallyAdded++
		for i := 1; i < n; i++ {
			prev = uint32(arr.content[i-1])
			cur = uint32(arr.content[i])
			ah.add(cur, prev, i)
		}
		ah.storeIval(ah.runstart, ah.runlen)
	}
	rc.iv = ah.m
	rc.card = int64(ah.actuallyAdded)
	return rc
}

// set adds the integers in vals to the set. Vals
// must be sorted in increasing order; if not, you should set
// alreadySorted to false, and we will sort them in place for you.
// (Be aware of this side effect -- it will affect the callers
// view of vals).
//
// If you have a small number of additions to an already
// big runContainer32, calling Add() may be faster.
func (rc *runContainer32) set(alreadySorted bool, vals ...uint32) {

	rc2 := newRunContainer32FromVals(alreadySorted, vals...)
	un := rc.union(rc2)
	rc.iv = un.iv
	rc.card = 0
}

// canMerge returns true if the intervals
// a and b either overlap or they are
// contiguous and so can be merged into
// a single interval.
func canMerge32(a, b interval32) bool {
	if int64(a.last)+1 < int64(b.start) {
		return false
	}
	return int64(b.last)+1 >= int64(a.start)
}

// haveOverlap differs from canMerge in that
// it tells you if the intersection of a
// and b would contain an element (otherwise
// it would be the empty set, and we return
// false).
func haveOverlap32(a, b interval32) bool {
	if int64(a.last)+1 <= int64(b.start) {
		return false
	}
	return int64(b.last)+1 > int64(a.start)
}

// mergeInterval32s joins a and b into a
// new interval, and panics if it cannot.
func mergeInterval32s(a, b interval32) (res interval32) {
	if !canMerge32(a, b) {
		panic(fmt.Sprintf("cannot merge %#v and %#v", a, b))
	}
	if b.start < a.start {
		res.start = b.start
	} else {
		res.start = a.start
	}
	if b.last > a.last {
		res.last = b.last
	} else {
		res.last = a.last
	}
	return
}

// intersectInterval32s returns the intersection
// of a and b. The isEmpty flag will be true if
// a and b were disjoint.
func intersectInterval32s(a, b interval32) (res interval32, isEmpty bool) {
	if !haveOverlap32(a, b) {
		isEmpty = true
		return
	}
	if b.start > a.start {
		res.start = b.start
	} else {
		res.start = a.start
	}
	if b.last < a.last {
		res.last = b.last
	} else {
		res.last = a.last
	}
	return
}

// union merges two runContainer32s, producing
// a new runContainer32 with the union of rc and b.
func (rc *runContainer32) union(b *runContainer32) *runContainer32 {

	// rc is also known as 'a' here, but golint insisted we
	// call it rc for consistency with the rest of the methods.

	var m []interval32

	alim := int64(len(rc.iv))
	blim := int64(len(b.iv))

	var na int64 // next from a
	var nb int64 // next from b

	// merged holds the current merge output, which might
	// get additional merges before being appended to m.
	var merged interval32
	var mergedUsed bool // is merged being used at the moment?

	var cura interval32 // currently considering this interval32 from a
	var curb interval32 // currently considering this interval32 from b

	pass := 0
	for na < alim && nb < blim {
		pass++
		cura = rc.iv[na]
		curb = b.iv[nb]

		if mergedUsed {
			mergedUpdated := false
			if canMerge32(cura, merged) {
				merged = mergeInterval32s(cura, merged)
				na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				mergedUpdated = true
			}
			if canMerge32(curb, merged) {
				merged = mergeInterval32s(curb, merged)
				nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
				mergedUpdated = true
			}
			if !mergedUpdated {
				// we know that merged is disjoint from cura and curb
				m = append(m, merged)
				mergedUsed = false
			}
			continue

		} else {
			// !mergedUsed
			if !canMerge32(cura, curb) {
				if cura.start < curb.start {
					m = append(m, cura)
					na++
				} else {
					m = append(m, curb)
					nb++
				}
			} else {
				merged = mergeInterval32s(cura, curb)
				mergedUsed = true
				na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
			}
		}
	}
	var aDone, bDone bool
	if na >= alim {
		aDone = true
	}
	if nb >= blim {
		bDone = true
	}
	// finish by merging anything remaining into merged we can:
	if mergedUsed {
		if !aDone {
		aAdds:
			for na < alim {
				cura = rc.iv[na]
				if canMerge32(cura, merged) {
					merged = mergeInterval32s(cura, merged)
					na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				} else {
					break aAdds
				}
			}

		}

		if !bDone {
		bAdds:
			for nb < blim {
				curb = b.iv[nb]
				if canMerge32(curb, merged) {
					merged = mergeInterval32s(curb, merged)
					nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
				} else {
					break bAdds
				}
			}

		}

		m = append(m, merged)
	}
	if na < alim {
		m = append(m, rc.iv[na:]...)
	}
	if nb < blim {
		m = append(m, b.iv[nb:]...)
	}

	res := &runContainer32{iv: m}
	return res
}

// unionCardinality returns the cardinality of the merger of two runContainer32s,  the union of rc and b.
func (rc *runContainer32) unionCardinality(b *runContainer32) uint64 {

	// rc is also known as 'a' here, but golint insisted we
	// call it rc for consistency with the rest of the methods.
	answer := uint64(0)

	alim := int64(len(rc.iv))
	blim := int64(len(b.iv))

	var na int64 // next from a
	var nb int64 // next from b

	// merged holds the current merge output, which might
	// get additional merges before being appended to m.
	var merged interval32
	var mergedUsed bool // is merged being used at the moment?

	var cura interval32 // currently considering this interval32 from a
	var curb interval32 // currently considering this interval32 from b

	pass := 0
	for na < alim && nb < blim {
		pass++
		cura = rc.iv[na]
		curb = b.iv[nb]

		if mergedUsed {
			mergedUpdated := false
			if canMerge32(cura, merged) {
				merged = mergeInterval32s(cura, merged)
				na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				mergedUpdated = true
			}
			if canMerge32(curb, merged) {
				merged = mergeInterval32s(curb, merged)
				nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
				mergedUpdated = true
			}
			if !mergedUpdated {
				// we know that merged is disjoint from cura and curb
				//m = append(m, merged)
				answer += uint64(merged.last) - uint64(merged.start) + 1
				mergedUsed = false
			}
			continue

		} else {
			// !mergedUsed
			if !canMerge32(cura, curb) {
				if cura.start < curb.start {
					answer += uint64(cura.last) - uint64(cura.start) + 1
					//m = append(m, cura)
					na++
				} else {
					answer += uint64(curb.last) - uint64(curb.start) + 1
					//m = append(m, curb)
					nb++
				}
			} else {
				merged = mergeInterval32s(cura, curb)
				mergedUsed = true
				na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
			}
		}
	}
	var aDone, bDone bool
	if na >= alim {
		aDone = true
	}
	if nb >= blim {
		bDone = true
	}
	// finish by merging anything remaining into merged we can:
	if mergedUsed {
		if !aDone {
		aAdds:
			for na < alim {
				cura = rc.iv[na]
				if canMerge32(cura, merged) {
					merged = mergeInterval32s(cura, merged)
					na = rc.indexOfIntervalAtOrAfter(int64(merged.last)+1, na+1)
				} else {
					break aAdds
				}
			}

		}

		if !bDone {
		bAdds:
			for nb < blim {
				curb = b.iv[nb]
				if canMerge32(curb, merged) {
					merged = mergeInterval32s(curb, merged)
					nb = b.indexOfIntervalAtOrAfter(int64(merged.last)+1, nb+1)
				} else {
					break bAdds
				}
			}

		}

		//m = append(m, merged)
		answer += uint64(merged.last) - uint64(merged.start) + 1
	}
	for _, r := range rc.iv[na:] {
		answer += uint64(r.last) - uint64(r.start) + 1
	}
	for _, r := range b.iv[nb:] {
		answer += uint64(r.last) - uint64(r.start) + 1
	}
	return answer
}

// indexOfIntervalAtOrAfter is a helper for union.
func (rc *runContainer32) indexOfIntervalAtOrAfter(key int64, startIndex int64) int64 {
	rc.myOpts.startIndex = startIndex
	rc.myOpts.endxIndex = 0

	w, already, _ := rc.search(key, &rc.myOpts)
	if already {
		return w
	}
	return w + 1
}

// intersect returns a new runContainer32 holding the
// intersection of rc (also known as 'a')  and b.
func (rc *runContainer32) intersect(b *runContainer32) *runContainer32 {

	a := rc
	numa := int64(len(a.iv))
	numb := int64(len(b.iv))
	res := &runContainer32{}
	if numa == 0 || numb == 0 {
		return res
	}

	if numa == 1 && numb == 1 {
		if !haveOverlap32(a.iv[0], b.iv[0]) {
			return res
		}
	}

	var output []interval32

	var acuri int64
	var bcuri int64

	astart := int64(a.iv[acuri].start)
	bstart := int64(b.iv[bcuri].start)

	var intersection interval32
	var leftoverstart int64
	var isOverlap, isLeftoverA, isLeftoverB bool
	var done bool
	pass := 0
toploop:
	for acuri < numa && bcuri < numb {
		pass++

		isOverlap, isLeftoverA, isLeftoverB, leftoverstart, intersection = intersectWithLeftover32(astart, int64(a.iv[acuri].last), bstart, int64(b.iv[bcuri].last))

		if !isOverlap {
			switch {
			case astart < bstart:
				acuri, done = a.findNextIntervalThatIntersectsStartingFrom(acuri+1, bstart)
				if done {
					break toploop
				}
				astart = int64(a.iv[acuri].start)

			case astart > bstart:
				bcuri, done = b.findNextIntervalThatIntersectsStartingFrom(bcuri+1, astart)
				if done {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)

				//default:
				//	panic("impossible that astart == bstart, since !isOverlap")
			}

		} else {
			// isOverlap
			output = append(output, intersection)
			switch {
			case isLeftoverA:
				// note that we change astart without advancing acuri,
				// since we need to capture any 2ndary intersections with a.iv[acuri]
				astart = leftoverstart
				bcuri++
				if bcuri >= numb {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)
			case isLeftoverB:
				// note that we change bstart without advancing bcuri,
				// since we need to capture any 2ndary intersections with b.iv[bcuri]
				bstart = leftoverstart
				acuri++
				if acuri >= numa {
					break toploop
				}
				astart = int64(a.iv[acuri].start)
			default:
				// neither had leftover, both completely consumed
				// optionally, assert for sanity:
				//if a.iv[acuri].endx != b.iv[bcuri].endx {
				//	panic("huh? should only be possible that endx agree now!")
				//}

				// advance to next a interval
				acuri++
				if acuri >= numa {
					break toploop
				}
				astart = int64(a.iv[acuri].start)

				// advance to next b interval
				bcuri++
				if bcuri >= numb {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)
			}
		}
	} // end for toploop

	if len(output) == 0 {
		return res
	}

	res.iv = output
	return res
}

// intersectCardinality returns the cardinality of  the
// intersection of rc (also known as 'a')  and b.
func (rc *runContainer32) intersectCardinality(b *runContainer32) int64 {
	answer := int64(0)

	a := rc
	numa := int64(len(a.iv))
	numb := int64(len(b.iv))
	if numa == 0 || numb == 0 {
		return 0
	}

	if numa == 1 && numb == 1 {
		if !haveOverlap32(a.iv[0], b.iv[0]) {
			return 0
		}
	}

	var acuri int64
	var bcuri int64

	astart := int64(a.iv[acuri].start)
	bstart := int64(b.iv[bcuri].start)

	var intersection interval32
	var leftoverstart int64
	var isOverlap, isLeftoverA, isLeftoverB bool
	var done bool
	pass := 0
toploop:
	for acuri < numa && bcuri < numb {
		pass++

		isOverlap, isLeftoverA, isLeftoverB, leftoverstart, intersection = intersectWithLeftover32(astart, int64(a.iv[acuri].last), bstart, int64(b.iv[bcuri].last))

		if !isOverlap {
			switch {
			case astart < bstart:
				acuri, done = a.findNextIntervalThatIntersectsStartingFrom(acuri+1, bstart)
				if done {
					break toploop
				}
				astart = int64(a.iv[acuri].start)

			case astart > bstart:
				bcuri, done = b.findNextIntervalThatIntersectsStartingFrom(bcuri+1, astart)
				if done {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)

				//default:
				//	panic("impossible that astart == bstart, since !isOverlap")
			}

		} else {
			// isOverlap
			answer += int64(intersection.last) - int64(intersection.start) + 1
			switch {
			case isLeftoverA:
				// note that we change astart without advancing acuri,
				// since we need to capture any 2ndary intersections with a.iv[acuri]
				astart = leftoverstart
				bcuri++
				if bcuri >= numb {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)
			case isLeftoverB:
				// note that we change bstart without advancing bcuri,
				// since we need to capture any 2ndary intersections with b.iv[bcuri]
				bstart = leftoverstart
				acuri++
				if acuri >= numa {
					break toploop
				}
				astart = int64(a.iv[acuri].start)
			default:
				// neither had leftover, both completely consumed
				// optionally, assert for sanity:
				//if a.iv[acuri].endx != b.iv[bcuri].endx {
				//	panic("huh? should only be possible that endx agree now!")
				//}

				// advance to next a interval
				acuri++
				if acuri >= numa {
					break toploop
				}
				astart = int64(a.iv[acuri].start)

				// advance to next b interval
				bcuri++
				if bcuri >= numb {
					break toploop
				}
				bstart = int64(b.iv[bcuri].start)
			}
		}
	} // end for toploop

	return answer
}

// get returns true if key is in the container.
func (rc *runContainer32) contains(key uint32) bool {
	_, in, _ := rc.search(int64(key), nil)
	return in
}

// numIntervals returns the count of intervals in the container.
func (rc *runContainer32) numIntervals() int {
	return len(rc.iv)
}

// search returns alreadyPresent to indicate if the
// key is already in one of our interval32s.
//
// If key is alreadyPresent, then whichInterval32 tells
// you where.
//
// If key is not already present, then whichInterval32 is
// set as follows:
//
//  a) whichInterval32 == len(rc.iv)-1 if key is beyond our
//     last interval32 in rc.iv;
//
//  b) whichInterval32 == -1 if key is before our first
//     interval32 in rc.iv;
//
//  c) whichInterval32 is set to the minimum index of rc.iv
//     which comes strictly before the key;
//     so  rc.iv[whichInterval32].last < key,
//     and  if whichInterval32+1 exists, then key < rc.iv[whichInterval32+1].start
//     (Note that whichInterval32+1 won't exist when
//     whichInterval32 is the last interval.)
//
// runContainer32.search always returns whichInterval32 < len(rc.iv).
//
// If not nil, opts can be used to further restrict
// the search space.
//
func (rc *runContainer32) search(key int64, opts *searchOptions) (whichInterval32 int64, alreadyPresent bool, numCompares int) {
	n := int64(len(rc.iv))
	if n == 0 {
		return -1, false, 0
	}

	startIndex := int64(0)
	endxIndex := n
	if opts != nil {
		startIndex = opts.startIndex

		// let endxIndex == 0 mean no effect
		if opts.endxIndex > 0 {
			endxIndex = opts.endxIndex
		}
	}

	// sort.Search returns the smallest index i
	// in [0, n) at which f(i) is true, assuming that on the range [0, n),
	// f(i) == true implies f(i+1) == true.
	// If there is no such index, Search returns n.

	// For correctness, this began as verbatim snippet from
	// sort.Search in the Go standard lib.
	// We inline our comparison function for speed, and
	// annotate with numCompares
	// to observe and test that extra bounds are utilized.
	i, j := startIndex, endxIndex
	for i < j {
		h := i + (j-i)/2 // avoid overflow when computing h as the bisector
		// i <= h < j
		numCompares++
		if !(key < int64(rc.iv[h].start)) {
			i = h + 1
		} else {
			j = h
		}
	}
	below := i
	// end std lib snippet.

	// The above is a simple in-lining and annotation of:
	/*	below := sort.Search(n,
		func(i int) bool {
			return key < rc.iv[i].start
		})
	*/
	whichInterval32 = below - 1

	if below == n {
		// all falses => key is >= start of all interval32s
		// ... so does it belong to the last interval32?
		if key < int64(rc.iv[n-1].last)+1 {
			// yes, it belongs to the last interval32
			alreadyPresent = true
			return
		}
		// no, it is beyond the last interval32.
		// leave alreadyPreset = false
		return
	}

	// INVAR: key is below rc.iv[below]
	if below == 0 {
		// key is before the first first interval32.
		// leave alreadyPresent = false
		return
	}

	// INVAR: key is >= rc.iv[below-1].start and
	//        key is <  rc.iv[below].start

	// is key in below-1 interval32?
	if key >= int64(rc.iv[below-1].start) && key < int64(rc.iv[below-1].last)+1 {
		// yes, it is. key is in below-1 interval32.
		alreadyPresent = true
		return
	}

	// INVAR: key >= rc.iv[below-1].endx && key < rc.iv[below].start
	// leave alreadyPresent = false
	return
}

// cardinality returns the count of the integers stored in the
// runContainer32.
func (rc *runContainer32) cardinality() int64 {
	if len(rc.iv) == 0 {
		rc.card = 0
		return 0
	}
	if rc.card > 0 {
		return rc.card // already cached
	}
	// have to compute it
	var n int64
	for _, p := range rc.iv {
		n += p.runlen()
	}
	rc.card = n // cache it
	return n
}

// AsSlice decompresses the contents into a []uint32 slice.
func (rc *runContainer32) AsSlice() []uint32 {
	s := make([]uint32, rc.cardinality())
	j := 0
	for _, p := range rc.iv {
		for i := p.start; i <= p.last; i++ {
			s[j] = i
			j++
		}
	}
	return s
}

// newRunContainer32 creates an empty run container.
func newRunContainer32() *runContainer32 {
	return &runContainer32{}
}

// newRunContainer32CopyIv creates a run container, initializing
// with a copy of the supplied iv slice.
//
func newRunContainer32CopyIv(iv []interval32) *runContainer32 {
	rc := &runContainer32{
		iv: make([]interval32, len(iv)),
	}
	copy(rc.iv, iv)
	return rc
}

func (rc *runContainer32) Clone() *runContainer32 {
	rc2 := newRunContainer32CopyIv(rc.iv)
	return rc2
}

// newRunContainer32TakeOwnership returns a new runContainer32
// backed by the provided iv slice, which we will
// assume exclusive control over from now on.
//
func newRunContainer32TakeOwnership(iv []interval32) *runContainer32 {
	rc := &runContainer32{
		iv: iv,
	}
	return rc
}

const baseRc32Size = int(unsafe.Sizeof(runContainer32{}))
const perIntervalRc32Size = int(unsafe.Sizeof(interval32{}))

const baseDiskRc32Size = int(unsafe.Sizeof(uint32(0)))

// see also runContainer32SerializedSizeInBytes(numRuns int) int

// getSizeInBytes returns the number of bytes of memory
// required by this runContainer32.
func (rc *runContainer32) getSizeInBytes() int {
	return perIntervalRc32Size*len(rc.iv) + baseRc32Size
}

// runContainer32SerializedSizeInBytes returns the number of bytes of disk
// required to hold numRuns in a runContainer32.
func runContainer32SerializedSizeInBytes(numRuns int) int {
	return perIntervalRc32Size*numRuns + baseDiskRc32Size
}

// Add adds a single value k to the set.
func (rc *runContainer32) Add(k uint32) (wasNew bool) {
	// TODO comment from runContainer32.java:
	// it might be better and simpler to do return
	// toBitmapOrArrayContainer(getCardinality()).add(k)
	// but note that some unit tests use this method to build up test
	// runcontainers without calling runOptimize

	k64 := int64(k)

	index, present, _ := rc.search(k64, nil)
	if present {
		return // already there
	}
	wasNew = true

	// increment card if it is cached already
	if rc.card > 0 {
		rc.card++
	}
	n := int64(len(rc.iv))
	if index == -1 {
		// we may need to extend the first run
		if n > 0 {
			if rc.iv[0].start == k+1 {
				rc.iv[0].start = k
				return
			}
		}
		// nope, k stands alone, starting the new first interval32.
		rc.iv = append([]interval32{{start: k, last: k}}, rc.iv...)
		return
	}

	// are we off the end? handle both index == n and index == n-1:
	if index >= n-1 {
		if int64(rc.iv[n-1].last)+1 == k64 {
			rc.iv[n-1].last++
			return
		}
		rc.iv = append(rc.iv, interval32{start: k, last: k})
		return
	}

	// INVAR: index and index+1 both exist, and k goes between them.
	//
	// Now: add k into the middle,
	// possibly fusing with index or index+1 interval32
	// and possibly resulting in fusing of two interval32s
	// that had a one integer gap.

	left := index
	right := index + 1

	// are we fusing left and right by adding k?
	if int64(rc.iv[left].last)+1 == k64 && int64(rc.iv[right].start) == k64+1 {
		// fuse into left
		rc.iv[left].last = rc.iv[right].last
		// remove redundant right
		rc.iv = append(rc.iv[:left+1], rc.iv[right+1:]...)
		return
	}

	// are we an addition to left?
	if int64(rc.iv[left].last)+1 == k64 {
		// yes
		rc.iv[left].last++
		return
	}

	// are we an addition to right?
	if int64(rc.iv[right].start) == k64+1 {
		// yes
		rc.iv[right].start = k
		return
	}

	// k makes a standalone new interval32, inserted in the middle
	tail := append([]interval32{{start: k, last: k}}, rc.iv[right:]...)
	rc.iv = append(rc.iv[:left+1], tail...)
	return
}

//msgp:ignore runIterator

// runIterator32 advice: you must call Next() at least once
// before calling Cur(); and you should call HasNext()
// before calling Next() to insure there are contents.
type runIterator32 struct {
	rc            *runContainer32
	curIndex      int64
	curPosInIndex uint32
	curSeq        int64
}

// newRunIterator32 returns a new empty run container.
func (rc *runContainer32) newRunIterator32() *runIterator32 {
	return &runIterator32{rc: rc, curIndex: -1}
}

// HasNext returns false if calling Next will panic. It
// returns true when there is at least one more value
// available in the iteration sequence.
func (ri *runIterator32) hasNext() bool {
	if len(ri.rc.iv) == 0 {
		return false
	}
	if ri.curIndex == -1 {
		return true
	}
	return ri.curSeq+1 < ri.rc.cardinality()
}

// cur returns the current value pointed to by the iterator.
func (ri *runIterator32) cur() uint32 {
	return ri.rc.iv[ri.curIndex].start + ri.curPosInIndex
}

// Next returns the next value in the iteration sequence.
func (ri *runIterator32) next() uint32 {
	if !ri.hasNext() {
		panic("no Next available")
	}
	if ri.curIndex >= int64(len(ri.rc.iv)) {
		panic("runIterator.Next() going beyond what is available")
	}
	if ri.curIndex == -1 {
		// first time is special
		ri.curIndex = 0
	} else {
		ri.curPosInIndex++
		if int64(ri.rc.iv[ri.curIndex].start)+int64(ri.curPosInIndex) == int64(ri.rc.iv[ri.curIndex].last)+1 {
			ri.curPosInIndex = 0
			ri.curIndex++
		}
		ri.curSeq++
	}
	return ri.cur()
}

// remove removes the element that the iterator
// is on from the run container. You can use
// Cur if you want to double check what is about
// to be deleted.
func (ri *runIterator32) remove() uint32 {
	n := ri.rc.cardinality()
	if n == 0 {
		panic("runIterator.Remove called on empty runContainer32")
	}
	cur := ri.cur()

	ri.rc.deleteAt(&ri.curIndex, &ri.curPosInIndex, &ri.curSeq)
	return cur
}

// remove removes key from the container.
func (rc *runContainer32) removeKey(key uint32) (wasPresent bool) {

	var index int64
	var curSeq int64
	index, wasPresent, _ = rc.search(int64(key), nil)
	if !wasPresent {
		return // already removed, nothing to do.
	}
	pos := key - rc.iv[index].start
	rc.deleteAt(&index, &pos, &curSeq)
	return
}

// internal helper functions

func (rc *runContainer32) deleteAt(curIndex *int64, curPosInIndex *uint32, curSeq *int64) {
	rc.card--
	(*curSeq)--
	ci := *curIndex
	pos := *curPosInIndex

	// are we first, last, or in the middle of our interval32?
	switch {
	case pos == 0:
		if int64(rc.iv[ci].start) == int64(rc.iv[ci].last) {
			// our interval disappears
			rc.iv = append(rc.iv[:ci], rc.iv[ci+1:]...)
			// curIndex stays the same, since the delete did
			// the advance for us.
			*curPosInIndex = 0
		} else {
			rc.iv[ci].start++ // no longer overflowable
		}
	case int64(pos) == rc.iv[ci].runlen()-1:
		// last
		rc.iv[ci].last--
		// our interval32 cannot disappear, else we would have been pos == 0, case first above.
		(*curPosInIndex)--
		// if we leave *curIndex alone, then Next() will work properly even after the delete.
	default:
		//middle
		// split into two, adding an interval32
		new0 := interval32{
			start: rc.iv[ci].start,
			last:  rc.iv[ci].start + *curPosInIndex - 1}

		new1start := int64(rc.iv[ci].start) + int64(*curPosInIndex) + 1
		if new1start > int64(MaxUint32) {
			panic("overflow?!?!")
		}
		new1 := interval32{
			start: uint32(new1start),
			last:  rc.iv[ci].last}
		tail := append([]interval32{new0, new1}, rc.iv[ci+1:]...)
		rc.iv = append(rc.iv[:ci], tail...)
		// update curIndex and curPosInIndex
		(*curIndex)++
		*curPosInIndex = 0
	}

}

func have4Overlap32(astart, alast, bstart, blast int64) bool {
	if alast+1 <= bstart {
		return false
	}
	return blast+1 > astart
}

func intersectWithLeftover32(astart, alast, bstart, blast int64) (isOverlap, isLeftoverA, isLeftoverB bool, leftoverstart int64, intersection interval32) {
	if !have4Overlap32(astart, alast, bstart, blast) {
		return
	}
	isOverlap = true

	// do the intersection:
	if bstart > astart {
		intersection.start = uint32(bstart)
	} else {
		intersection.start = uint32(astart)
	}
	switch {
	case blast < alast:
		isLeftoverA = true
		leftoverstart = blast + 1
		intersection.last = uint32(blast)
	case alast < blast:
		isLeftoverB = true
		leftoverstart = alast + 1
		intersection.last = uint32(alast)
	default:
		// alast == blast
		intersection.last = uint32(alast)
	}

	return
}

func (rc *runContainer32) findNextIntervalThatIntersectsStartingFrom(startIndex int64, key int64) (index int64, done bool) {

	rc.myOpts.startIndex = startIndex
	rc.myOpts.endxIndex = 0

	w, _, _ := rc.search(key, &rc.myOpts)
	// rc.search always returns w < len(rc.iv)
	if w < startIndex {
		// not found and comes before lower bound startIndex,
		// so just use the lower bound.
		if startIndex == int64(len(rc.iv)) {
			// also this bump up means that we are done
			return startIndex, true
		}
		return startIndex, false
	}

	return w, false
}

func sliceToString32(m []interval32) string {
	s := ""
	for i := range m {
		s += fmt.Sprintf("%v: %s, ", i, m[i])
	}
	return s
}

// selectInt32 returns the j-th value in the container.
// We panic of j is out of bounds.
func (rc *runContainer32) selectInt32(j uint32) int {
	n := rc.cardinality()
	if int64(j) > n {
		panic(fmt.Sprintf("Cannot select %v since Cardinality is %v", j, n))
	}

	var offset int64
	for k := range rc.iv {
		nextOffset := offset + rc.iv[k].runlen() + 1
		if nextOffset > int64(j) {
			return int(int64(rc.iv[k].start) + (int64(j) - offset))
		}
		offset = nextOffset
	}
	panic(fmt.Sprintf("Cannot select %v since Cardinality is %v", j, n))
}

// helper for invert
func (rc *runContainer32) invertlastInterval(origin uint32, lastIdx int) []interval32 {
	cur := rc.iv[lastIdx]
	if cur.last == MaxUint32 {
		if cur.start == origin {
			return nil // empty container
		}
		return []interval32{{start: origin, last: cur.start - 1}}
	}
	if cur.start == origin {
		return []interval32{{start: cur.last + 1, last: MaxUint32}}
	}
	// invert splits
	return []interval32{
		{start: origin, last: cur.start - 1},
		{start: cur.last + 1, last: MaxUint32},
	}
}

// invert returns a new container (not inplace), that is
// the inversion of rc. For each bit b in rc, the
// returned value has !b
func (rc *runContainer32) invert() *runContainer32 {
	ni := len(rc.iv)
	var m []interval32
	switch ni {
	case 0:
		return &runContainer32{iv: []interval32{{0, MaxUint32}}}
	case 1:
		return &runContainer32{iv: rc.invertlastInterval(0, 0)}
	}
	var invstart int64
	ult := ni - 1
	for i, cur := range rc.iv {
		if i == ult {
			// invertlastInteval will add both intervals (b) and (c) in
			// diagram below.
			m = append(m, rc.invertlastInterval(uint32(invstart), i)...)
			break
		}
		// INVAR: i and cur are not the last interval, there is a next at i+1
		//
		// ........[cur.start, cur.last] ...... [next.start, next.last]....
		//    ^                             ^                           ^
		//   (a)                           (b)                         (c)
		//
		// Now: we add interval (a); but if (a) is empty, for cur.start==0, we skip it.
		if cur.start > 0 {
			m = append(m, interval32{start: uint32(invstart), last: cur.start - 1})
		}
		invstart = int64(cur.last + 1)
	}
	return &runContainer32{iv: m}
}

func (iv interval32) equal(b interval32) bool {
	if iv.start == b.start {
		return iv.last == b.last
	}
	return false
}

func (iv interval32) isSuperSetOf(b interval32) bool {
	return iv.start <= b.start && b.last <= iv.last
}

func (iv interval32) subtractInterval(del interval32) (left []interval32, delcount int64) {
	isect, isEmpty := intersectInterval32s(iv, del)

	if isEmpty {
		return nil, 0
	}
	if del.isSuperSetOf(iv) {
		return nil, iv.runlen()
	}

	switch {
	case isect.start > iv.start && isect.last < iv.last:
		new0 := interval32{start: iv.start, last: isect.start - 1}
		new1 := interval32{start: isect.last + 1, last: iv.last}
		return []interval32{new0, new1}, isect.runlen()
	case isect.start == iv.start:
		return []interval32{{start: isect.last + 1, last: iv.last}}, isect.runlen()
	default:
		return []interval32{{start: iv.start, last: isect.start - 1}}, isect.runlen()
	}
}

func (rc *runContainer32) isubtract(del interval32) {
	origiv := make([]interval32, len(rc.iv))
	copy(origiv, rc.iv)
	n := int64(len(rc.iv))
	if n == 0 {
		return // already done.
	}

	_, isEmpty := intersectInterval32s(
		interval32{
			start: rc.iv[0].start,
			last:  rc.iv[n-1].last,
		}, del)
	if isEmpty {
		return // done
	}
	// INVAR there is some intersection between rc and del
	istart, startAlready, _ := rc.search(int64(del.start), nil)
	ilast, lastAlready, _ := rc.search(int64(del.last), nil)
	rc.card = -1
	if istart == -1 {
		if ilast == n-1 && !lastAlready {
			rc.iv = nil
			return
		}
	}
	// some intervals will remain
	switch {
	case startAlready && lastAlready:
		res0, _ := rc.iv[istart].subtractInterval(del)

		// would overwrite values in iv b/c res0 can have len 2. so
		// write to origiv instead.
		lost := 1 + ilast - istart
		changeSize := int64(len(res0)) - lost
		newSize := int64(len(rc.iv)) + changeSize

		//	rc.iv = append(pre, caboose...)
		//	return

		if ilast != istart {
			res1, _ := rc.iv[ilast].subtractInterval(del)
			res0 = append(res0, res1...)
			changeSize = int64(len(res0)) - lost
			newSize = int64(len(rc.iv)) + changeSize
		}
		switch {
		case changeSize < 0:
			// shrink
			copy(rc.iv[istart+int64(len(res0)):], rc.iv[ilast+1:])
			copy(rc.iv[istart:istart+int64(len(res0))], res0)
			rc.iv = rc.iv[:newSize]
			return
		case changeSize == 0:
			// stay the same
			copy(rc.iv[istart:istart+int64(len(res0))], res0)
			return
		default:
			// changeSize > 0 is only possible when ilast == istart.
			// Hence we now know: changeSize == 1 and len(res0) == 2
			rc.iv = append(rc.iv, interval32{})
			// len(rc.iv) is correct now, no need to rc.iv = rc.iv[:newSize]

			// copy the tail into place
			copy(rc.iv[ilast+2:], rc.iv[ilast+1:])
			// copy the new item(s) into place
			copy(rc.iv[istart:istart+2], res0)
			return
		}

	case !startAlready && !lastAlready:
		// we get to discard whole intervals

		// from the search() definition:

		// if del.start is not present, then istart is
		// set as follows:
		//
		//  a) istart == n-1 if del.start is beyond our
		//     last interval32 in rc.iv;
		//
		//  b) istart == -1 if del.start is before our first
		//     interval32 in rc.iv;
		//
		//  c) istart is set to the minimum index of rc.iv
		//     which comes strictly before the del.start;
		//     so  del.start > rc.iv[istart].last,
		//     and  if istart+1 exists, then del.start < rc.iv[istart+1].startx

		// if del.last is not present, then ilast is
		// set as follows:
		//
		//  a) ilast == n-1 if del.last is beyond our
		//     last interval32 in rc.iv;
		//
		//  b) ilast == -1 if del.last is before our first
		//     interval32 in rc.iv;
		//
		//  c) ilast is set to the minimum index of rc.iv
		//     which comes strictly before the del.last;
		//     so  del.last > rc.iv[ilast].last,
		//     and  if ilast+1 exists, then del.last < rc.iv[ilast+1].start

		// INVAR: istart >= 0
		pre := rc.iv[:istart+1]
		if ilast == n-1 {
			rc.iv = pre
			return
		}
		// INVAR: ilast < n-1
		lost := ilast - istart
		changeSize := -lost
		newSize := int64(len(rc.iv)) + changeSize
		if changeSize != 0 {
			copy(rc.iv[ilast+1+changeSize:], rc.iv[ilast+1:])
		}
		rc.iv = rc.iv[:newSize]
		return

	case startAlready && !lastAlready:
		// we can only shrink or stay the same size
		// i.e. we either eliminate the whole interval,
		// or just cut off the right side.
		res0, _ := rc.iv[istart].subtractInterval(del)
		if len(res0) > 0 {
			// len(res) must be 1
			rc.iv[istart] = res0[0]
		}
		lost := 1 + (ilast - istart)
		changeSize := int64(len(res0)) - lost
		newSize := int64(len(rc.iv)) + changeSize
		if changeSize != 0 {
			copy(rc.iv[ilast+1+changeSize:], rc.iv[ilast+1:])
		}
		rc.iv = rc.iv[:newSize]
		return

	case !startAlready && lastAlready:
		// we can only shrink or stay the same size
		res1, _ := rc.iv[ilast].subtractInterval(del)
		lost := ilast - istart
		changeSize := int64(len(res1)) - lost
		newSize := int64(len(rc.iv)) + changeSize
		if changeSize != 0 {
			// move the tail first to make room for res1
			copy(rc.iv[ilast+1+changeSize:], rc.iv[ilast+1:])
		}
		copy(rc.iv[istart+1:], res1)
		rc.iv = rc.iv[:newSize]
		return
	}
}

// compute rc minus b, and return the result as a new value (not inplace).
// port of run_container_andnot from CRoaring...
// https://github.com/RoaringBitmap/CRoaring/blob/master/src/containers/run.c#L435-L496
func (rc *runContainer32) AndNotRunContainer32(b *runContainer32) *runContainer32 {

	if len(b.iv) == 0 || len(rc.iv) == 0 {
		return rc
	}

	dst := newRunContainer32()
	apos := 0
	bpos := 0

	a := rc

	astart := a.iv[apos].start
	alast := a.iv[apos].last
	bstart := b.iv[bpos].start
	blast := b.iv[bpos].last

	alen := len(a.iv)
	blen := len(b.iv)

	for apos < alen && bpos < blen {
		switch {
		case alast < bstart:
			// output the first run
			dst.iv = append(dst.iv, interval32{start: astart, last: alast})
			apos++
			if apos < alen {
				astart = a.iv[apos].start
				alast = a.iv[apos].last
			}
		case blast < astart:
			// exit the second run
			bpos++
			if bpos < blen {
				bstart = b.iv[bpos].start
				blast = b.iv[bpos].last
			}
		default:
			//   a: [             ]
			//   b:            [    ]
			// alast >= bstart
			// blast >= astart
			if astart < bstart {
				dst.iv = append(dst.iv, interval32{start: astart, last: bstart - 1})
			}
			if alast > blast {
				astart = blast + 1
			} else {
				apos++
				if apos < alen {
					astart = a.iv[apos].start
					alast = a.iv[apos].last
				}
			}
		}
	}
	if apos < alen {
		dst.iv = append(dst.iv, interval32{start: astart, last: alast})
		apos++
		if apos < alen {
			dst.iv = append(dst.iv, a.iv[apos:]...)
		}
	}

	return dst
}

func (rc *runContainer32) numberOfRuns() (nr int) {
	return len(rc.iv)
}

func (rc *runContainer32) containerType() contype {
	return run32Contype
}

func (rc *runContainer32) equals32(srb *runContainer32) bool {
	//p("both rc32")
	// Check if the containers are the same object.
	if rc == srb {
		//p("same object")
		return true
	}

	if len(srb.iv) != len(rc.iv) {
		//p("iv len differ")
		return false
	}

	for i, v := range rc.iv {
		if v != srb.iv[i] {
			//p("differ at iv i=%v, srb.iv[i]=%v, rc.iv[i]=%v", i, srb.iv[i], rc.iv[i])
			return false
		}
	}
	//p("all intervals same, returning true")
	return true
}