summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/couchbase/vellum/levenshtein2/parametric_dfa.go
blob: ebd931195926b1f89826909c1fed0d1e2ed62e30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//  Copyright (c) 2018 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 		http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package levenshtein2

import (
	"crypto/md5"
	"encoding/json"
	"fmt"
	"math"
)

type ParametricState struct {
	shapeID uint32
	offset  uint32
}

func newParametricState() ParametricState {
	return ParametricState{}
}

func (ps *ParametricState) isDeadEnd() bool {
	return ps.shapeID == 0
}

type Transition struct {
	destShapeID uint32
	deltaOffset uint32
}

func (t *Transition) apply(state ParametricState) ParametricState {
	ps := ParametricState{
		shapeID: t.destShapeID}
	// don't need any offset if we are in the dead state,
	// this ensures we have only one dead state.
	if t.destShapeID != 0 {
		ps.offset = state.offset + t.deltaOffset
	}

	return ps
}

type ParametricStateIndex struct {
	stateIndex []uint32
	stateQueue []ParametricState
	numOffsets uint32
}

func newParametricStateIndex(queryLen,
	numParamState uint32) ParametricStateIndex {
	numOffsets := queryLen + 1
	if numParamState == 0 {
		numParamState = numOffsets
	}
	maxNumStates := numParamState * numOffsets
	psi := ParametricStateIndex{
		stateIndex: make([]uint32, maxNumStates),
		stateQueue: make([]ParametricState, 0, 150),
		numOffsets: numOffsets,
	}

	for i := uint32(0); i < maxNumStates; i++ {
		psi.stateIndex[i] = math.MaxUint32
	}
	return psi
}

func (psi *ParametricStateIndex) numStates() int {
	return len(psi.stateQueue)
}

func (psi *ParametricStateIndex) maxNumStates() int {
	return len(psi.stateIndex)
}

func (psi *ParametricStateIndex) get(stateID uint32) ParametricState {
	return psi.stateQueue[stateID]
}

func (psi *ParametricStateIndex) getOrAllocate(ps ParametricState) uint32 {
	bucket := ps.shapeID*psi.numOffsets + ps.offset
	if bucket < uint32(len(psi.stateIndex)) &&
		psi.stateIndex[bucket] != math.MaxUint32 {
		return psi.stateIndex[bucket]
	}
	nState := uint32(len(psi.stateQueue))
	psi.stateQueue = append(psi.stateQueue, ps)

	psi.stateIndex[bucket] = nState
	return nState
}

type ParametricDFA struct {
	distance         []uint8
	transitions      []Transition
	maxDistance      uint8
	transitionStride uint32
	diameter         uint32
}

func (pdfa *ParametricDFA) initialState() ParametricState {
	return ParametricState{shapeID: 1}
}

// Returns true iff whatever characters come afterward,
// we will never reach a shorter distance
func (pdfa *ParametricDFA) isPrefixSink(state ParametricState, queryLen uint32) bool {
	if state.isDeadEnd() {
		return true
	}

	remOffset := queryLen - state.offset
	if remOffset < pdfa.diameter {
		stateDistances := pdfa.distance[pdfa.diameter*state.shapeID:]
		prefixDistance := stateDistances[remOffset]
		if prefixDistance > pdfa.maxDistance {
			return false
		}

		for _, d := range stateDistances {
			if d < prefixDistance {
				return false
			}
		}
		return true
	}
	return false
}

func (pdfa *ParametricDFA) numStates() int {
	return len(pdfa.transitions) / int(pdfa.transitionStride)
}

func min(x, y uint32) uint32 {
	if x < y {
		return x
	}
	return y
}

func (pdfa *ParametricDFA) transition(state ParametricState,
	chi uint32) Transition {
	return pdfa.transitions[pdfa.transitionStride*state.shapeID+chi]
}

func (pdfa *ParametricDFA) getDistance(state ParametricState,
	qLen uint32) Distance {
	remainingOffset := qLen - state.offset
	if state.isDeadEnd() || remainingOffset >= pdfa.diameter {
		return Atleast{d: pdfa.maxDistance + 1}
	}
	dist := pdfa.distance[int(pdfa.diameter*state.shapeID)+int(remainingOffset)]
	if dist > pdfa.maxDistance {
		return Atleast{d: dist}
	}
	return Exact{d: dist}
}

func (pdfa *ParametricDFA) computeDistance(left, right string) Distance {
	state := pdfa.initialState()
	leftChars := []rune(left)
	for _, chr := range []rune(right) {
		start := state.offset
		stop := min(start+pdfa.diameter, uint32(len(leftChars)))
		chi := characteristicVector(leftChars[start:stop], chr)
		transition := pdfa.transition(state, uint32(chi))
		state = transition.apply(state)
		if state.isDeadEnd() {
			return Atleast{d: pdfa.maxDistance + 1}
		}
	}
	return pdfa.getDistance(state, uint32(len(left)))
}

func (pdfa *ParametricDFA) buildDfa(query string, distance uint8,
	prefix bool) (*DFA, error) {
	qLen := uint32(len([]rune(query)))
	alphabet := queryChars(query)

	psi := newParametricStateIndex(qLen, uint32(pdfa.numStates()))
	maxNumStates := psi.maxNumStates()
	deadEndStateID := psi.getOrAllocate(newParametricState())
	if deadEndStateID != 0 {
		return nil, fmt.Errorf("Invalid dead end state")
	}

	initialStateID := psi.getOrAllocate(pdfa.initialState())
	dfaBuilder := withMaxStates(uint32(maxNumStates))
	mask := uint32((1 << pdfa.diameter) - 1)

	var stateID int
	for stateID = 0; stateID < StateLimit; stateID++ {
		if stateID == psi.numStates() {
			break
		}
		state := psi.get(uint32(stateID))
		if prefix && pdfa.isPrefixSink(state, qLen) {
			distance := pdfa.getDistance(state, qLen)
			dfaBuilder.addState(uint32(stateID), uint32(stateID), distance)
		} else {
			transition := pdfa.transition(state, 0)
			defSuccessor := transition.apply(state)
			defSuccessorID := psi.getOrAllocate(defSuccessor)
			distance := pdfa.getDistance(state, qLen)
			stateBuilder, err := dfaBuilder.addState(uint32(stateID), defSuccessorID, distance)

			if err != nil {
				return nil, fmt.Errorf("parametric_dfa: buildDfa, err: %v", err)
			}

			alphabet.resetNext()
			chr, cv, err := alphabet.next()
			for err == nil {
				chi := cv.shiftAndMask(state.offset, mask)

				transition := pdfa.transition(state, chi)

				destState := transition.apply(state)

				destStateID := psi.getOrAllocate(destState)

				stateBuilder.addTransition(chr, destStateID)

				chr, cv, err = alphabet.next()
			}
		}
	}

	if stateID == StateLimit {
		return nil, ErrTooManyStates
	}

	dfaBuilder.setInitialState(initialStateID)
	return dfaBuilder.build(distance), nil
}

func fromNfa(nfa *LevenshteinNFA) (*ParametricDFA, error) {
	lookUp := newHash()
	lookUp.getOrAllocate(*newMultiState())
	initialState := nfa.initialStates()
	lookUp.getOrAllocate(*initialState)

	maxDistance := nfa.maxDistance()
	msDiameter := nfa.msDiameter()

	numChi := 1 << msDiameter
	chiValues := make([]uint64, numChi)
	for i := 0; i < numChi; i++ {
		chiValues[i] = uint64(i)
	}

	transitions := make([]Transition, 0, numChi*int(msDiameter))
	var stateID int
	for stateID = 0; stateID < StateLimit; stateID++ {
		if stateID == len(lookUp.items) {
			break
		}

		for _, chi := range chiValues {
			destMs := newMultiState()

			ms := lookUp.getFromID(stateID)

			nfa.transition(ms, destMs, chi)

			translation := destMs.normalize()

			destID := lookUp.getOrAllocate(*destMs)

			transitions = append(transitions, Transition{
				destShapeID: uint32(destID),
				deltaOffset: translation,
			})
		}
	}

	if stateID == StateLimit {
		return nil, ErrTooManyStates
	}

	ns := len(lookUp.items)
	diameter := int(msDiameter)

	distances := make([]uint8, 0, diameter*ns)
	for stateID := 0; stateID < ns; stateID++ {
		ms := lookUp.getFromID(stateID)
		for offset := 0; offset < diameter; offset++ {
			dist := nfa.multistateDistance(ms, uint32(offset))
			distances = append(distances, dist.distance())
		}
	}

	return &ParametricDFA{
		diameter:         uint32(msDiameter),
		transitions:      transitions,
		maxDistance:      maxDistance,
		transitionStride: uint32(numChi),
		distance:         distances,
	}, nil
}

type hash struct {
	index map[[16]byte]int
	items []MultiState
}

func newHash() *hash {
	return &hash{
		index: make(map[[16]byte]int, 100),
		items: make([]MultiState, 0, 100),
	}
}

func (h *hash) getOrAllocate(m MultiState) int {
	size := len(h.items)
	var exists bool
	var pos int
	md5 := getHash(&m)
	if pos, exists = h.index[md5]; !exists {
		h.index[md5] = size
		pos = size
		h.items = append(h.items, m)
	}
	return pos
}

func (h *hash) getFromID(id int) *MultiState {
	return &h.items[id]
}

func getHash(ms *MultiState) [16]byte {
	msBytes := []byte{}
	for _, state := range ms.states {
		jsonBytes, _ := json.Marshal(&state)
		msBytes = append(msBytes, jsonBytes...)
	}
	return md5.Sum(msBytes)
}