1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
package regexp2
import (
"bytes"
"fmt"
)
// Match is a single regex result match that contains groups and repeated captures
// -Groups
// -Capture
type Match struct {
Group //embeded group 0
regex *Regexp
otherGroups []Group
// input to the match
textpos int
textstart int
capcount int
caps []int
sparseCaps map[int]int
// output from the match
matches [][]int
matchcount []int
// whether we've done any balancing with this match. If we
// have done balancing, we'll need to do extra work in Tidy().
balancing bool
}
// Group is an explicit or implit (group 0) matched group within the pattern
type Group struct {
Capture // the last capture of this group is embeded for ease of use
Name string // group name
Captures []Capture // captures of this group
}
// Capture is a single capture of text within the larger original string
type Capture struct {
// the original string
text []rune
// the position in the original string where the first character of
// captured substring was found.
Index int
// the length of the captured substring.
Length int
}
// String returns the captured text as a String
func (c *Capture) String() string {
return string(c.text[c.Index : c.Index+c.Length])
}
// Runes returns the captured text as a rune slice
func (c *Capture) Runes() []rune {
return c.text[c.Index : c.Index+c.Length]
}
func newMatch(regex *Regexp, capcount int, text []rune, startpos int) *Match {
m := Match{
regex: regex,
matchcount: make([]int, capcount),
matches: make([][]int, capcount),
textstart: startpos,
balancing: false,
}
m.Name = "0"
m.text = text
m.matches[0] = make([]int, 2)
return &m
}
func newMatchSparse(regex *Regexp, caps map[int]int, capcount int, text []rune, startpos int) *Match {
m := newMatch(regex, capcount, text, startpos)
m.sparseCaps = caps
return m
}
func (m *Match) reset(text []rune, textstart int) {
m.text = text
m.textstart = textstart
for i := 0; i < len(m.matchcount); i++ {
m.matchcount[i] = 0
}
m.balancing = false
}
func (m *Match) tidy(textpos int) {
interval := m.matches[0]
m.Index = interval[0]
m.Length = interval[1]
m.textpos = textpos
m.capcount = m.matchcount[0]
//copy our root capture to the list
m.Group.Captures = []Capture{m.Group.Capture}
if m.balancing {
// The idea here is that we want to compact all of our unbalanced captures. To do that we
// use j basically as a count of how many unbalanced captures we have at any given time
// (really j is an index, but j/2 is the count). First we skip past all of the real captures
// until we find a balance captures. Then we check each subsequent entry. If it's a balance
// capture (it's negative), we decrement j. If it's a real capture, we increment j and copy
// it down to the last free position.
for cap := 0; cap < len(m.matchcount); cap++ {
limit := m.matchcount[cap] * 2
matcharray := m.matches[cap]
var i, j int
for i = 0; i < limit; i++ {
if matcharray[i] < 0 {
break
}
}
for j = i; i < limit; i++ {
if matcharray[i] < 0 {
// skip negative values
j--
} else {
// but if we find something positive (an actual capture), copy it back to the last
// unbalanced position.
if i != j {
matcharray[j] = matcharray[i]
}
j++
}
}
m.matchcount[cap] = j / 2
}
m.balancing = false
}
}
// isMatched tells if a group was matched by capnum
func (m *Match) isMatched(cap int) bool {
return cap < len(m.matchcount) && m.matchcount[cap] > 0 && m.matches[cap][m.matchcount[cap]*2-1] != (-3+1)
}
// matchIndex returns the index of the last specified matched group by capnum
func (m *Match) matchIndex(cap int) int {
i := m.matches[cap][m.matchcount[cap]*2-2]
if i >= 0 {
return i
}
return m.matches[cap][-3-i]
}
// matchLength returns the length of the last specified matched group by capnum
func (m *Match) matchLength(cap int) int {
i := m.matches[cap][m.matchcount[cap]*2-1]
if i >= 0 {
return i
}
return m.matches[cap][-3-i]
}
// Nonpublic builder: add a capture to the group specified by "c"
func (m *Match) addMatch(c, start, l int) {
if m.matches[c] == nil {
m.matches[c] = make([]int, 2)
}
capcount := m.matchcount[c]
if capcount*2+2 > len(m.matches[c]) {
oldmatches := m.matches[c]
newmatches := make([]int, capcount*8)
copy(newmatches, oldmatches[:capcount*2])
m.matches[c] = newmatches
}
m.matches[c][capcount*2] = start
m.matches[c][capcount*2+1] = l
m.matchcount[c] = capcount + 1
//log.Printf("addMatch: c=%v, i=%v, l=%v ... matches: %v", c, start, l, m.matches)
}
// Nonpublic builder: Add a capture to balance the specified group. This is used by the
// balanced match construct. (?<foo-foo2>...)
//
// If there were no such thing as backtracking, this would be as simple as calling RemoveMatch(c).
// However, since we have backtracking, we need to keep track of everything.
func (m *Match) balanceMatch(c int) {
m.balancing = true
// we'll look at the last capture first
capcount := m.matchcount[c]
target := capcount*2 - 2
// first see if it is negative, and therefore is a reference to the next available
// capture group for balancing. If it is, we'll reset target to point to that capture.
if m.matches[c][target] < 0 {
target = -3 - m.matches[c][target]
}
// move back to the previous capture
target -= 2
// if the previous capture is a reference, just copy that reference to the end. Otherwise, point to it.
if target >= 0 && m.matches[c][target] < 0 {
m.addMatch(c, m.matches[c][target], m.matches[c][target+1])
} else {
m.addMatch(c, -3-target, -4-target /* == -3 - (target + 1) */)
}
}
// Nonpublic builder: removes a group match by capnum
func (m *Match) removeMatch(c int) {
m.matchcount[c]--
}
// GroupCount returns the number of groups this match has matched
func (m *Match) GroupCount() int {
return len(m.matchcount)
}
// GroupByName returns a group based on the name of the group, or nil if the group name does not exist
func (m *Match) GroupByName(name string) *Group {
num := m.regex.GroupNumberFromName(name)
if num < 0 {
return nil
}
return m.GroupByNumber(num)
}
// GroupByNumber returns a group based on the number of the group, or nil if the group number does not exist
func (m *Match) GroupByNumber(num int) *Group {
// check our sparse map
if m.sparseCaps != nil {
if newNum, ok := m.sparseCaps[num]; ok {
num = newNum
}
}
if num >= len(m.matchcount) || num < 0 {
return nil
}
if num == 0 {
return &m.Group
}
m.populateOtherGroups()
return &m.otherGroups[num-1]
}
// Groups returns all the capture groups, starting with group 0 (the full match)
func (m *Match) Groups() []Group {
m.populateOtherGroups()
g := make([]Group, len(m.otherGroups)+1)
g[0] = m.Group
copy(g[1:], m.otherGroups)
return g
}
func (m *Match) populateOtherGroups() {
// Construct all the Group objects first time called
if m.otherGroups == nil {
m.otherGroups = make([]Group, len(m.matchcount)-1)
for i := 0; i < len(m.otherGroups); i++ {
m.otherGroups[i] = newGroup(m.regex.GroupNameFromNumber(i+1), m.text, m.matches[i+1], m.matchcount[i+1])
}
}
}
func (m *Match) groupValueAppendToBuf(groupnum int, buf *bytes.Buffer) {
c := m.matchcount[groupnum]
if c == 0 {
return
}
matches := m.matches[groupnum]
index := matches[(c-1)*2]
last := index + matches[(c*2)-1]
for ; index < last; index++ {
buf.WriteRune(m.text[index])
}
}
func newGroup(name string, text []rune, caps []int, capcount int) Group {
g := Group{}
g.text = text
if capcount > 0 {
g.Index = caps[(capcount-1)*2]
g.Length = caps[(capcount*2)-1]
}
g.Name = name
g.Captures = make([]Capture, capcount)
for i := 0; i < capcount; i++ {
g.Captures[i] = Capture{
text: text,
Index: caps[i*2],
Length: caps[i*2+1],
}
}
//log.Printf("newGroup! capcount %v, %+v", capcount, g)
return g
}
func (m *Match) dump() string {
buf := &bytes.Buffer{}
buf.WriteRune('\n')
if len(m.sparseCaps) > 0 {
for k, v := range m.sparseCaps {
fmt.Fprintf(buf, "Slot %v -> %v\n", k, v)
}
}
for i, g := range m.Groups() {
fmt.Fprintf(buf, "Group %v (%v), %v caps:\n", i, g.Name, len(g.Captures))
for _, c := range g.Captures {
fmt.Fprintf(buf, " (%v, %v) %v\n", c.Index, c.Length, c.String())
}
}
/*
for i := 0; i < len(m.matchcount); i++ {
fmt.Fprintf(buf, "\nGroup %v (%v):\n", i, m.regex.GroupNameFromNumber(i))
for j := 0; j < m.matchcount[i]; j++ {
text := ""
if m.matches[i][j*2] >= 0 {
start := m.matches[i][j*2]
text = m.text[start : start+m.matches[i][j*2+1]]
}
fmt.Fprintf(buf, " (%v, %v) %v\n", m.matches[i][j*2], m.matches[i][j*2+1], text)
}
}
*/
return buf.String()
}
|