summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/duo-labs/webauthn/protocol/webauthncose/webauthncose.go
blob: 7133cf235d927ad32c663ce79f412d012a855eac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
package webauthncose

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rsa"
	"crypto/x509"
	"encoding/asn1"
	"encoding/pem"
	"fmt"
	"hash"
	"math/big"

	"github.com/fxamacker/cbor/v2"
	"golang.org/x/crypto/ed25519"
)

// PublicKeyData The public key portion of a Relying Party-specific credential key pair, generated
// by an authenticator and returned to a Relying Party at registration time. We unpack this object
// using fxamacker's cbor library ("github.com/fxamacker/cbor/v2") which is why there are cbor tags
// included. The tag field values correspond to the IANA COSE keys that give their respective
// values.
// See §6.4.1.1 https://www.w3.org/TR/webauthn/#sctn-encoded-credPubKey-examples for examples of this
// COSE data.
type PublicKeyData struct {
	// Decode the results to int by default.
	_struct bool `cbor:",keyasint" json:"public_key"`
	// The type of key created. Should be OKP, EC2, or RSA.
	KeyType int64 `cbor:"1,keyasint" json:"kty"`
	// A COSEAlgorithmIdentifier for the algorithm used to derive the key signature.
	Algorithm int64 `cbor:"3,keyasint" json:"alg"`
}
type EC2PublicKeyData struct {
	PublicKeyData
	// If the key type is EC2, the curve on which we derive the signature from.
	Curve int64 `cbor:"-1,keyasint,omitempty" json:"crv"`
	// A byte string 32 bytes in length that holds the x coordinate of the key.
	XCoord []byte `cbor:"-2,keyasint,omitempty" json:"x"`
	// A byte string 32 bytes in length that holds the y coordinate of the key.
	YCoord []byte `cbor:"-3,keyasint,omitempty" json:"y"`
}

type RSAPublicKeyData struct {
	PublicKeyData
	// Represents the modulus parameter for the RSA algorithm
	Modulus []byte `cbor:"-1,keyasint,omitempty" json:"n"`
	// Represents the exponent parameter for the RSA algorithm
	Exponent []byte `cbor:"-2,keyasint,omitempty" json:"e"`
}

type OKPPublicKeyData struct {
	PublicKeyData
	Curve int64
	// A byte string that holds the x coordinate of the key.
	XCoord []byte `cbor:"-2,keyasint,omitempty" json:"x"`
}

// Verify Octet Key Pair (OKP) Public Key Signature
func (k *OKPPublicKeyData) Verify(data []byte, sig []byte) (bool, error) {
	var key ed25519.PublicKey = make([]byte, ed25519.PublicKeySize)
	copy(key, k.XCoord)
	return ed25519.Verify(key, data, sig), nil
}

// Verify Elliptic Curce Public Key Signature
func (k *EC2PublicKeyData) Verify(data []byte, sig []byte) (bool, error) {
	var curve elliptic.Curve
	switch COSEAlgorithmIdentifier(k.Algorithm) {
	case AlgES512: // IANA COSE code for ECDSA w/ SHA-512
		curve = elliptic.P521()
	case AlgES384: // IANA COSE code for ECDSA w/ SHA-384
		curve = elliptic.P384()
	case AlgES256: // IANA COSE code for ECDSA w/ SHA-256
		curve = elliptic.P256()
	default:
		return false, ErrUnsupportedAlgorithm
	}

	pubkey := &ecdsa.PublicKey{
		Curve: curve,
		X:     big.NewInt(0).SetBytes(k.XCoord),
		Y:     big.NewInt(0).SetBytes(k.YCoord),
	}

	type ECDSASignature struct {
		R, S *big.Int
	}

	e := &ECDSASignature{}
	f := HasherFromCOSEAlg(COSEAlgorithmIdentifier(k.PublicKeyData.Algorithm))
	h := f()
	h.Write(data)
	_, err := asn1.Unmarshal(sig, e)
	if err != nil {
		return false, ErrSigNotProvidedOrInvalid
	}
	return ecdsa.Verify(pubkey, h.Sum(nil), e.R, e.S), nil
}

// Verify RSA Public Key Signature
func (k *RSAPublicKeyData) Verify(data []byte, sig []byte) (bool, error) {
	pubkey := &rsa.PublicKey{
		N: big.NewInt(0).SetBytes(k.Modulus),
		E: int(uint(k.Exponent[2]) | uint(k.Exponent[1])<<8 | uint(k.Exponent[0])<<16),
	}

	f := HasherFromCOSEAlg(COSEAlgorithmIdentifier(k.PublicKeyData.Algorithm))
	h := f()
	h.Write(data)

	var hash crypto.Hash
	switch COSEAlgorithmIdentifier(k.PublicKeyData.Algorithm) {
	case AlgRS1:
		hash = crypto.SHA1
	case AlgPS256, AlgRS256:
		hash = crypto.SHA256
	case AlgPS384, AlgRS384:
		hash = crypto.SHA384
	case AlgPS512, AlgRS512:
		hash = crypto.SHA512
	default:
		return false, ErrUnsupportedAlgorithm
	}
	switch COSEAlgorithmIdentifier(k.PublicKeyData.Algorithm) {
	case AlgPS256, AlgPS384, AlgPS512:
		err := rsa.VerifyPSS(pubkey, hash, h.Sum(nil), sig, nil)
		return err == nil, err

	case AlgRS1, AlgRS256, AlgRS384, AlgRS512:
		err := rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sig)
		return err == nil, err
	default:
		return false, ErrUnsupportedAlgorithm
	}
}

// Return which signature algorithm is being used from the COSE Key
func SigAlgFromCOSEAlg(coseAlg COSEAlgorithmIdentifier) SignatureAlgorithm {
	for _, details := range SignatureAlgorithmDetails {
		if details.coseAlg == coseAlg {
			return details.algo
		}
	}
	return UnknownSignatureAlgorithm
}

// Return the Hashing interface to be used for a given COSE Algorithm
func HasherFromCOSEAlg(coseAlg COSEAlgorithmIdentifier) func() hash.Hash {
	for _, details := range SignatureAlgorithmDetails {
		if details.coseAlg == coseAlg {
			return details.hasher
		}
	}
	// default to SHA256?  Why not.
	return crypto.SHA256.New
}

// Figure out what kind of COSE material was provided and create the data for the new key
func ParsePublicKey(keyBytes []byte) (interface{}, error) {
	pk := PublicKeyData{}
	cbor.Unmarshal(keyBytes, &pk)
	switch COSEKeyType(pk.KeyType) {
	case OctetKey:
		var o OKPPublicKeyData
		cbor.Unmarshal(keyBytes, &o)
		o.PublicKeyData = pk
		return o, nil
	case EllipticKey:
		var e EC2PublicKeyData
		cbor.Unmarshal(keyBytes, &e)
		e.PublicKeyData = pk
		return e, nil
	case RSAKey:
		var r RSAPublicKeyData
		cbor.Unmarshal(keyBytes, &r)
		r.PublicKeyData = pk
		return r, nil
	default:
		return nil, ErrUnsupportedKey
	}
}

// ParseFIDOPublicKey is only used when the appID extension is configured by the assertion response.
func ParseFIDOPublicKey(keyBytes []byte) (EC2PublicKeyData, error) {
	x, y := elliptic.Unmarshal(elliptic.P256(), keyBytes)

	return EC2PublicKeyData{
		PublicKeyData: PublicKeyData{
			Algorithm: int64(AlgES256),
		},
		XCoord: x.Bytes(),
		YCoord: y.Bytes(),
	}, nil
}

// COSEAlgorithmIdentifier From §5.10.5. A number identifying a cryptographic algorithm. The algorithm
// identifiers SHOULD be values registered in the IANA COSE Algorithms registry
// [https://www.w3.org/TR/webauthn/#biblio-iana-cose-algs-reg], for instance, -7 for "ES256"
//  and -257 for "RS256".
type COSEAlgorithmIdentifier int

const (
	// AlgES256 ECDSA with SHA-256
	AlgES256 COSEAlgorithmIdentifier = -7
	// AlgES384 ECDSA with SHA-384
	AlgES384 COSEAlgorithmIdentifier = -35
	// AlgES512 ECDSA with SHA-512
	AlgES512 COSEAlgorithmIdentifier = -36
	// AlgRS1 RSASSA-PKCS1-v1_5 with SHA-1
	AlgRS1 COSEAlgorithmIdentifier = -65535
	// AlgRS256 RSASSA-PKCS1-v1_5 with SHA-256
	AlgRS256 COSEAlgorithmIdentifier = -257
	// AlgRS384 RSASSA-PKCS1-v1_5 with SHA-384
	AlgRS384 COSEAlgorithmIdentifier = -258
	// AlgRS512 RSASSA-PKCS1-v1_5 with SHA-512
	AlgRS512 COSEAlgorithmIdentifier = -259
	// AlgPS256 RSASSA-PSS with SHA-256
	AlgPS256 COSEAlgorithmIdentifier = -37
	// AlgPS384 RSASSA-PSS with SHA-384
	AlgPS384 COSEAlgorithmIdentifier = -38
	// AlgPS512 RSASSA-PSS with SHA-512
	AlgPS512 COSEAlgorithmIdentifier = -39
	// AlgEdDSA EdDSA
	AlgEdDSA COSEAlgorithmIdentifier = -8
)

// The Key Type derived from the IANA COSE AuthData
type COSEKeyType int

const (
	// OctetKey is an Octet Key
	OctetKey COSEKeyType = 1
	// EllipticKey is an Elliptic Curve Public Key
	EllipticKey COSEKeyType = 2
	// RSAKey is an RSA Public Key
	RSAKey COSEKeyType = 3
)

func VerifySignature(key interface{}, data []byte, sig []byte) (bool, error) {

	switch key.(type) {
	case OKPPublicKeyData:
		o := key.(OKPPublicKeyData)
		return o.Verify(data, sig)
	case EC2PublicKeyData:
		e := key.(EC2PublicKeyData)
		return e.Verify(data, sig)
	case RSAPublicKeyData:
		r := key.(RSAPublicKeyData)
		return r.Verify(data, sig)
	default:
		return false, ErrUnsupportedKey
	}
}

func DisplayPublicKey(cpk []byte) string {
	parsedKey, err := ParsePublicKey(cpk)
	if err != nil {
		return "Cannot display key"
	}
	switch parsedKey.(type) {
	case RSAPublicKeyData:
		pKey := parsedKey.(RSAPublicKeyData)
		rKey := &rsa.PublicKey{
			N: big.NewInt(0).SetBytes(pKey.Modulus),
			E: int(uint(pKey.Exponent[2]) | uint(pKey.Exponent[1])<<8 | uint(pKey.Exponent[0])<<16),
		}
		data, err := x509.MarshalPKIXPublicKey(rKey)
		if err != nil {
			return "Cannot display key"
		}
		pemBytes := pem.EncodeToMemory(&pem.Block{
			Type:  "RSA PUBLIC KEY",
			Bytes: data,
		})
		return fmt.Sprintf("%s", pemBytes)
	case EC2PublicKeyData:
		pKey := parsedKey.(EC2PublicKeyData)
		var curve elliptic.Curve
		switch COSEAlgorithmIdentifier(pKey.Algorithm) {
		case AlgES256:
			curve = elliptic.P256()
		case AlgES384:
			curve = elliptic.P384()
		case AlgES512:
			curve = elliptic.P521()
		default:
			return "Cannot display key"
		}
		eKey := &ecdsa.PublicKey{
			Curve: curve,
			X:     big.NewInt(0).SetBytes(pKey.XCoord),
			Y:     big.NewInt(0).SetBytes(pKey.YCoord),
		}
		data, err := x509.MarshalPKIXPublicKey(eKey)
		if err != nil {
			return "Cannot display key"
		}
		pemBytes := pem.EncodeToMemory(&pem.Block{
			Type:  "PUBLIC KEY",
			Bytes: data,
		})
		return fmt.Sprintf("%s", pemBytes)
	case OKPPublicKeyData:
		pKey := parsedKey.(OKPPublicKeyData)
		if len(pKey.XCoord) != ed25519.PublicKeySize {
			return "Cannot display key"
		}
		var oKey ed25519.PublicKey = make([]byte, ed25519.PublicKeySize)
		copy(oKey, pKey.XCoord)
		data, err := marshalEd25519PublicKey(oKey)
		if err != nil {
			return "Cannot display key"
		}
		pemBytes := pem.EncodeToMemory(&pem.Block{
			Type:  "PUBLIC KEY",
			Bytes: data,
		})
		return fmt.Sprintf("%s", pemBytes)

	default:
		return "Cannot display key of this type"
	}
}

// Algorithm enumerations used for
type SignatureAlgorithm int

const (
	UnknownSignatureAlgorithm SignatureAlgorithm = iota
	MD2WithRSA
	MD5WithRSA
	SHA1WithRSA
	SHA256WithRSA
	SHA384WithRSA
	SHA512WithRSA
	DSAWithSHA1
	DSAWithSHA256
	ECDSAWithSHA1
	ECDSAWithSHA256
	ECDSAWithSHA384
	ECDSAWithSHA512
	SHA256WithRSAPSS
	SHA384WithRSAPSS
	SHA512WithRSAPSS
)

var SignatureAlgorithmDetails = []struct {
	algo    SignatureAlgorithm
	coseAlg COSEAlgorithmIdentifier
	name    string
	hasher  func() hash.Hash
}{
	{SHA1WithRSA, AlgRS1, "SHA1-RSA", crypto.SHA1.New},
	{SHA256WithRSA, AlgRS256, "SHA256-RSA", crypto.SHA256.New},
	{SHA384WithRSA, AlgRS384, "SHA384-RSA", crypto.SHA384.New},
	{SHA512WithRSA, AlgRS512, "SHA512-RSA", crypto.SHA512.New},
	{SHA256WithRSAPSS, AlgPS256, "SHA256-RSAPSS", crypto.SHA256.New},
	{SHA384WithRSAPSS, AlgPS384, "SHA384-RSAPSS", crypto.SHA384.New},
	{SHA512WithRSAPSS, AlgPS512, "SHA512-RSAPSS", crypto.SHA512.New},
	{ECDSAWithSHA256, AlgES256, "ECDSA-SHA256", crypto.SHA256.New},
	{ECDSAWithSHA384, AlgES384, "ECDSA-SHA384", crypto.SHA384.New},
	{ECDSAWithSHA512, AlgES512, "ECDSA-SHA512", crypto.SHA512.New},
	{UnknownSignatureAlgorithm, AlgEdDSA, "EdDSA", crypto.SHA512.New},
}

type Error struct {
	// Short name for the type of error that has occurred
	Type string `json:"type"`
	// Additional details about the error
	Details string `json:"error"`
	// Information to help debug the error
	DevInfo string `json:"debug"`
}

var (
	ErrUnsupportedKey = &Error{
		Type:    "invalid_key_type",
		Details: "Unsupported Public Key Type",
	}
	ErrUnsupportedAlgorithm = &Error{
		Type:    "unsupported_key_algorithm",
		Details: "Unsupported public key algorithm",
	}
	ErrSigNotProvidedOrInvalid = &Error{
		Type:    "signature_not_provided_or_invalid",
		Details: "Signature invalid or not provided",
	}
)

func (err *Error) Error() string {
	return err.Details
}

func (passedError *Error) WithDetails(details string) *Error {
	err := *passedError
	err.Details = details
	return &err
}