summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/golang/snappy/encode.go
blob: 38ebe952e014a9593e52a12fd5e9dc9660ae0cf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package snappy

import (
	"encoding/binary"
	"errors"
	"io"
)

// maxOffset limits how far copy back-references can go, the same as the C++
// code.
const maxOffset = 1 << 15

// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst, lit []byte) int {
	i, n := 0, uint(len(lit)-1)
	switch {
	case n < 60:
		dst[0] = uint8(n)<<2 | tagLiteral
		i = 1
	case n < 1<<8:
		dst[0] = 60<<2 | tagLiteral
		dst[1] = uint8(n)
		i = 2
	case n < 1<<16:
		dst[0] = 61<<2 | tagLiteral
		dst[1] = uint8(n)
		dst[2] = uint8(n >> 8)
		i = 3
	case n < 1<<24:
		dst[0] = 62<<2 | tagLiteral
		dst[1] = uint8(n)
		dst[2] = uint8(n >> 8)
		dst[3] = uint8(n >> 16)
		i = 4
	case int64(n) < 1<<32:
		dst[0] = 63<<2 | tagLiteral
		dst[1] = uint8(n)
		dst[2] = uint8(n >> 8)
		dst[3] = uint8(n >> 16)
		dst[4] = uint8(n >> 24)
		i = 5
	default:
		panic("snappy: source buffer is too long")
	}
	if copy(dst[i:], lit) != len(lit) {
		panic("snappy: destination buffer is too short")
	}
	return i + len(lit)
}

// emitCopy writes a copy chunk and returns the number of bytes written.
func emitCopy(dst []byte, offset, length int32) int {
	i := 0
	for length > 0 {
		x := length - 4
		if 0 <= x && x < 1<<3 && offset < 1<<11 {
			dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
			dst[i+1] = uint8(offset)
			i += 2
			break
		}

		x = length
		if x > 1<<6 {
			x = 1 << 6
		}
		dst[i+0] = uint8(x-1)<<2 | tagCopy2
		dst[i+1] = uint8(offset)
		dst[i+2] = uint8(offset >> 8)
		i += 3
		length -= x
	}
	return i
}

// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// It is valid to pass a nil dst.
func Encode(dst, src []byte) []byte {
	if n := MaxEncodedLen(len(src)); n < 0 {
		panic(ErrTooLarge)
	} else if len(dst) < n {
		dst = make([]byte, n)
	}

	// The block starts with the varint-encoded length of the decompressed bytes.
	d := binary.PutUvarint(dst, uint64(len(src)))

	for len(src) > 0 {
		p := src
		src = nil
		if len(p) > maxBlockSize {
			p, src = p[:maxBlockSize], p[maxBlockSize:]
		}
		d += encodeBlock(dst[d:], p)
	}
	return dst[:d]
}

// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//	len(dst) >= MaxEncodedLen(len(src)) &&
// 	0 < len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
	// Return early if src is short.
	if len(src) <= 4 {
		return emitLiteral(dst, src)
	}

	// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
	const maxTableSize = 1 << 14
	shift, tableSize := uint(32-8), 1<<8
	for tableSize < maxTableSize && tableSize < len(src) {
		shift--
		tableSize *= 2
	}
	var table [maxTableSize]int32

	// Iterate over the source bytes.
	var (
		s   int32 // The iterator position.
		t   int32 // The last position with the same hash as s.
		lit int32 // The start position of any pending literal bytes.

		// Copied from the C++ snappy implementation:
		//
		// Heuristic match skipping: If 32 bytes are scanned with no matches
		// found, start looking only at every other byte. If 32 more bytes are
		// scanned, look at every third byte, etc.. When a match is found,
		// immediately go back to looking at every byte. This is a small loss
		// (~5% performance, ~0.1% density) for compressible data due to more
		// bookkeeping, but for non-compressible data (such as JPEG) it's a
		// huge win since the compressor quickly "realizes" the data is
		// incompressible and doesn't bother looking for matches everywhere.
		//
		// The "skip" variable keeps track of how many bytes there are since
		// the last match; dividing it by 32 (ie. right-shifting by five) gives
		// the number of bytes to move ahead for each iteration.
		skip uint32 = 32
	)
	for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
		// Update the hash table.
		b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
		h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
		p := &table[(h*0x1e35a7bd)>>shift]
		// We need to to store values in [-1, inf) in table. To save
		// some initialization time, (re)use the table's zero value
		// and shift the values against this zero: add 1 on writes,
		// subtract 1 on reads.
		t, *p = *p-1, s+1
		// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
		if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
			s += int32(skip >> 5)
			skip++
			continue
		}
		skip = 32
		// Otherwise, we have a match. First, emit any pending literal bytes.
		if lit != s {
			d += emitLiteral(dst[d:], src[lit:s])
		}
		// Extend the match to be as long as possible.
		s0 := s
		s, t = s+4, t+4
		for int(s) < len(src) && src[s] == src[t] {
			s++
			t++
		}
		// Emit the copied bytes.
		d += emitCopy(dst[d:], s-t, s-s0)
		lit = s
	}

	// Emit any final pending literal bytes and return.
	if int(lit) != len(src) {
		d += emitLiteral(dst[d:], src[lit:])
	}
	return d
}

// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.
//
// It will return a negative value if srcLen is too large to encode.
func MaxEncodedLen(srcLen int) int {
	n := uint64(srcLen)
	if n > 0xffffffff {
		return -1
	}
	// Compressed data can be defined as:
	//    compressed := item* literal*
	//    item       := literal* copy
	//
	// The trailing literal sequence has a space blowup of at most 62/60
	// since a literal of length 60 needs one tag byte + one extra byte
	// for length information.
	//
	// Item blowup is trickier to measure. Suppose the "copy" op copies
	// 4 bytes of data. Because of a special check in the encoding code,
	// we produce a 4-byte copy only if the offset is < 65536. Therefore
	// the copy op takes 3 bytes to encode, and this type of item leads
	// to at most the 62/60 blowup for representing literals.
	//
	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
	// enough, it will take 5 bytes to encode the copy op. Therefore the
	// worst case here is a one-byte literal followed by a five-byte copy.
	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
	//
	// This last factor dominates the blowup, so the final estimate is:
	n = 32 + n + n/6
	if n > 0xffffffff {
		return -1
	}
	return int(n)
}

var errClosed = errors.New("snappy: Writer is closed")

// NewWriter returns a new Writer that compresses to w.
//
// The Writer returned does not buffer writes. There is no need to Flush or
// Close such a Writer.
//
// Deprecated: the Writer returned is not suitable for many small writes, only
// for few large writes. Use NewBufferedWriter instead, which is efficient
// regardless of the frequency and shape of the writes, and remember to Close
// that Writer when done.
func NewWriter(w io.Writer) *Writer {
	return &Writer{
		w:    w,
		obuf: make([]byte, obufLen),
	}
}

// NewBufferedWriter returns a new Writer that compresses to w, using the
// framing format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
//
// The Writer returned buffers writes. Users must call Close to guarantee all
// data has been forwarded to the underlying io.Writer. They may also call
// Flush zero or more times before calling Close.
func NewBufferedWriter(w io.Writer) *Writer {
	return &Writer{
		w:    w,
		ibuf: make([]byte, 0, maxBlockSize),
		obuf: make([]byte, obufLen),
	}
}

// Writer is an io.Writer than can write Snappy-compressed bytes.
type Writer struct {
	w   io.Writer
	err error

	// ibuf is a buffer for the incoming (uncompressed) bytes.
	//
	// Its use is optional. For backwards compatibility, Writers created by the
	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
	// therefore do not need to be Flush'ed or Close'd.
	ibuf []byte

	// obuf is a buffer for the outgoing (compressed) bytes.
	obuf []byte

	// wroteStreamHeader is whether we have written the stream header.
	wroteStreamHeader bool
}

// Reset discards the writer's state and switches the Snappy writer to write to
// w. This permits reusing a Writer rather than allocating a new one.
func (w *Writer) Reset(writer io.Writer) {
	w.w = writer
	w.err = nil
	if w.ibuf != nil {
		w.ibuf = w.ibuf[:0]
	}
	w.wroteStreamHeader = false
}

// Write satisfies the io.Writer interface.
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
	if w.ibuf == nil {
		// Do not buffer incoming bytes. This does not perform or compress well
		// if the caller of Writer.Write writes many small slices. This
		// behavior is therefore deprecated, but still supported for backwards
		// compatibility with code that doesn't explicitly Flush or Close.
		return w.write(p)
	}

	// The remainder of this method is based on bufio.Writer.Write from the
	// standard library.

	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
		var n int
		if len(w.ibuf) == 0 {
			// Large write, empty buffer.
			// Write directly from p to avoid copy.
			n, _ = w.write(p)
		} else {
			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
			w.ibuf = w.ibuf[:len(w.ibuf)+n]
			w.Flush()
		}
		nRet += n
		p = p[n:]
	}
	if w.err != nil {
		return nRet, w.err
	}
	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
	w.ibuf = w.ibuf[:len(w.ibuf)+n]
	nRet += n
	return nRet, nil
}

func (w *Writer) write(p []byte) (nRet int, errRet error) {
	if w.err != nil {
		return 0, w.err
	}
	for len(p) > 0 {
		obufStart := len(magicChunk)
		if !w.wroteStreamHeader {
			w.wroteStreamHeader = true
			copy(w.obuf, magicChunk)
			obufStart = 0
		}

		var uncompressed []byte
		if len(p) > maxBlockSize {
			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
		} else {
			uncompressed, p = p, nil
		}
		checksum := crc(uncompressed)

		// Compress the buffer, discarding the result if the improvement
		// isn't at least 12.5%.
		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
		chunkType := uint8(chunkTypeCompressedData)
		chunkLen := 4 + len(compressed)
		obufEnd := obufHeaderLen + len(compressed)
		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
			chunkType = chunkTypeUncompressedData
			chunkLen = 4 + len(uncompressed)
			obufEnd = obufHeaderLen
		}

		// Fill in the per-chunk header that comes before the body.
		w.obuf[len(magicChunk)+0] = chunkType
		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)

		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
			w.err = err
			return nRet, err
		}
		if chunkType == chunkTypeUncompressedData {
			if _, err := w.w.Write(uncompressed); err != nil {
				w.err = err
				return nRet, err
			}
		}
		nRet += len(uncompressed)
	}
	return nRet, nil
}

// Flush flushes the Writer to its underlying io.Writer.
func (w *Writer) Flush() error {
	if w.err != nil {
		return w.err
	}
	if len(w.ibuf) == 0 {
		return nil
	}
	w.write(w.ibuf)
	w.ibuf = w.ibuf[:0]
	return w.err
}

// Close calls Flush and then closes the Writer.
func (w *Writer) Close() error {
	w.Flush()
	ret := w.err
	if w.err == nil {
		w.err = errClosed
	}
	return ret
}