aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/google/certificate-transparency-go/x509/pem_decrypt.go
blob: 0388d63e1495396ca41c1985ce350b74e08bb622 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package x509

// RFC 1423 describes the encryption of PEM blocks. The algorithm used to
// generate a key from the password was derived by looking at the OpenSSL
// implementation.

import (
	"crypto/aes"
	"crypto/cipher"
	"crypto/des"
	"crypto/md5"
	"encoding/hex"
	"encoding/pem"
	"errors"
	"io"
	"strings"
)

type PEMCipher int

// Possible values for the EncryptPEMBlock encryption algorithm.
const (
	_ PEMCipher = iota
	PEMCipherDES
	PEMCipher3DES
	PEMCipherAES128
	PEMCipherAES192
	PEMCipherAES256
)

// rfc1423Algo holds a method for enciphering a PEM block.
type rfc1423Algo struct {
	cipher     PEMCipher
	name       string
	cipherFunc func(key []byte) (cipher.Block, error)
	keySize    int
	blockSize  int
}

// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
// block. The ivSize numbers were taken from the OpenSSL source.
var rfc1423Algos = []rfc1423Algo{{
	cipher:     PEMCipherDES,
	name:       "DES-CBC",
	cipherFunc: des.NewCipher,
	keySize:    8,
	blockSize:  des.BlockSize,
}, {
	cipher:     PEMCipher3DES,
	name:       "DES-EDE3-CBC",
	cipherFunc: des.NewTripleDESCipher,
	keySize:    24,
	blockSize:  des.BlockSize,
}, {
	cipher:     PEMCipherAES128,
	name:       "AES-128-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    16,
	blockSize:  aes.BlockSize,
}, {
	cipher:     PEMCipherAES192,
	name:       "AES-192-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    24,
	blockSize:  aes.BlockSize,
}, {
	cipher:     PEMCipherAES256,
	name:       "AES-256-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    32,
	blockSize:  aes.BlockSize,
},
}

// deriveKey uses a key derivation function to stretch the password into a key
// with the number of bits our cipher requires. This algorithm was derived from
// the OpenSSL source.
func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
	hash := md5.New()
	out := make([]byte, c.keySize)
	var digest []byte

	for i := 0; i < len(out); i += len(digest) {
		hash.Reset()
		hash.Write(digest)
		hash.Write(password)
		hash.Write(salt)
		digest = hash.Sum(digest[:0])
		copy(out[i:], digest)
	}
	return out
}

// IsEncryptedPEMBlock returns if the PEM block is password encrypted.
func IsEncryptedPEMBlock(b *pem.Block) bool {
	_, ok := b.Headers["DEK-Info"]
	return ok
}

// IncorrectPasswordError is returned when an incorrect password is detected.
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")

// DecryptPEMBlock takes a password encrypted PEM block and the password used to
// encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
// the DEK-Info header to determine the algorithm used for decryption. If no
// DEK-Info header is present, an error is returned. If an incorrect password
// is detected an IncorrectPasswordError is returned. Because of deficiencies
// in the encrypted-PEM format, it's not always possible to detect an incorrect
// password. In these cases no error will be returned but the decrypted DER
// bytes will be random noise.
func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
	dek, ok := b.Headers["DEK-Info"]
	if !ok {
		return nil, errors.New("x509: no DEK-Info header in block")
	}

	idx := strings.Index(dek, ",")
	if idx == -1 {
		return nil, errors.New("x509: malformed DEK-Info header")
	}

	mode, hexIV := dek[:idx], dek[idx+1:]
	ciph := cipherByName(mode)
	if ciph == nil {
		return nil, errors.New("x509: unknown encryption mode")
	}
	iv, err := hex.DecodeString(hexIV)
	if err != nil {
		return nil, err
	}
	if len(iv) != ciph.blockSize {
		return nil, errors.New("x509: incorrect IV size")
	}

	// Based on the OpenSSL implementation. The salt is the first 8 bytes
	// of the initialization vector.
	key := ciph.deriveKey(password, iv[:8])
	block, err := ciph.cipherFunc(key)
	if err != nil {
		return nil, err
	}

	if len(b.Bytes)%block.BlockSize() != 0 {
		return nil, errors.New("x509: encrypted PEM data is not a multiple of the block size")
	}

	data := make([]byte, len(b.Bytes))
	dec := cipher.NewCBCDecrypter(block, iv)
	dec.CryptBlocks(data, b.Bytes)

	// Blocks are padded using a scheme where the last n bytes of padding are all
	// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
	// For example:
	//	[x y z 2 2]
	//	[x y 7 7 7 7 7 7 7]
	// If we detect a bad padding, we assume it is an invalid password.
	dlen := len(data)
	if dlen == 0 || dlen%ciph.blockSize != 0 {
		return nil, errors.New("x509: invalid padding")
	}
	last := int(data[dlen-1])
	if dlen < last {
		return nil, IncorrectPasswordError
	}
	if last == 0 || last > ciph.blockSize {
		return nil, IncorrectPasswordError
	}
	for _, val := range data[dlen-last:] {
		if int(val) != last {
			return nil, IncorrectPasswordError
		}
	}
	return data[:dlen-last], nil
}

// EncryptPEMBlock returns a PEM block of the specified type holding the
// given DER-encoded data encrypted with the specified algorithm and
// password.
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
	ciph := cipherByKey(alg)
	if ciph == nil {
		return nil, errors.New("x509: unknown encryption mode")
	}
	iv := make([]byte, ciph.blockSize)
	if _, err := io.ReadFull(rand, iv); err != nil {
		return nil, errors.New("x509: cannot generate IV: " + err.Error())
	}
	// The salt is the first 8 bytes of the initialization vector,
	// matching the key derivation in DecryptPEMBlock.
	key := ciph.deriveKey(password, iv[:8])
	block, err := ciph.cipherFunc(key)
	if err != nil {
		return nil, err
	}
	enc := cipher.NewCBCEncrypter(block, iv)
	pad := ciph.blockSize - len(data)%ciph.blockSize
	encrypted := make([]byte, len(data), len(data)+pad)
	// We could save this copy by encrypting all the whole blocks in
	// the data separately, but it doesn't seem worth the additional
	// code.
	copy(encrypted, data)
	// See RFC 1423, section 1.1
	for i := 0; i < pad; i++ {
		encrypted = append(encrypted, byte(pad))
	}
	enc.CryptBlocks(encrypted, encrypted)

	return &pem.Block{
		Type: blockType,
		Headers: map[string]string{
			"Proc-Type": "4,ENCRYPTED",
			"DEK-Info":  ciph.name + "," + hex.EncodeToString(iv),
		},
		Bytes: encrypted,
	}, nil
}

func cipherByName(name string) *rfc1423Algo {
	for i := range rfc1423Algos {
		alg := &rfc1423Algos[i]
		if alg.name == name {
			return alg
		}
	}
	return nil
}

func cipherByKey(key PEMCipher) *rfc1423Algo {
	for i := range rfc1423Algos {
		alg := &rfc1423Algos[i]
		if alg.cipher == key {
			return alg
		}
	}
	return nil
}