summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/keybase/go-crypto/openpgp/keys.go
blob: e1a458879cef6f9c5ae807de518d807ed072f806 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package openpgp

import (
	"crypto/hmac"
	"encoding/binary"
	"io"
	"time"

	"github.com/keybase/go-crypto/openpgp/armor"
	"github.com/keybase/go-crypto/openpgp/errors"
	"github.com/keybase/go-crypto/openpgp/packet"
	"github.com/keybase/go-crypto/rsa"
)

// PublicKeyType is the armor type for a PGP public key.
var PublicKeyType = "PGP PUBLIC KEY BLOCK"

// PrivateKeyType is the armor type for a PGP private key.
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"

// An Entity represents the components of an OpenPGP key: a primary public key
// (which must be a signing key), one or more identities claimed by that key,
// and zero or more subkeys, which may be encryption keys.
type Entity struct {
	PrimaryKey  *packet.PublicKey
	PrivateKey  *packet.PrivateKey
	Identities  map[string]*Identity // indexed by Identity.Name
	Revocations []*packet.Signature
	// Revocations that are signed by designated revokers. Reading keys
	// will not verify these revocations, because it won't have access to
	// issuers' public keys, API consumers should do this instead (or
	// not, and just assume that the key is probably revoked).
	UnverifiedRevocations []*packet.Signature
	Subkeys               []Subkey
	BadSubkeys            []BadSubkey
}

// An Identity represents an identity claimed by an Entity and zero or more
// assertions by other entities about that claim.
type Identity struct {
	Name          string // by convention, has the form "Full Name (comment) <email@example.com>"
	UserId        *packet.UserId
	SelfSignature *packet.Signature
	Signatures    []*packet.Signature
	Revocation    *packet.Signature
}

// A Subkey is an additional public key in an Entity. Subkeys can be used for
// encryption.
type Subkey struct {
	PublicKey  *packet.PublicKey
	PrivateKey *packet.PrivateKey
	Sig        *packet.Signature
	Revocation *packet.Signature
}

// BadSubkey is one that failed reconstruction, but we'll keep it around for
// informational purposes.
type BadSubkey struct {
	Subkey
	Err error
}

// A Key identifies a specific public key in an Entity. This is either the
// Entity's primary key or a subkey.
type Key struct {
	Entity        *Entity
	PublicKey     *packet.PublicKey
	PrivateKey    *packet.PrivateKey
	SelfSignature *packet.Signature
	KeyFlags      packet.KeyFlagBits
}

// A KeyRing provides access to public and private keys.
type KeyRing interface {

	// KeysById returns the set of keys that have the given key id.
	// fp can be optionally supplied, which is the full key fingerprint.
	// If it's provided, then it must match. This comes up in the case
	// of GPG subpacket 33.
	KeysById(id uint64, fp []byte) []Key

	// KeysByIdAndUsage returns the set of keys with the given id
	// that also meet the key usage given by requiredUsage.
	// The requiredUsage is expressed as the bitwise-OR of
	// packet.KeyFlag* values.
	// fp can be optionally supplied, which is the full key fingerprint.
	// If it's provided, then it must match. This comes up in the case
	// of GPG subpacket 33.
	KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) []Key

	// DecryptionKeys returns all private keys that are valid for
	// decryption.
	DecryptionKeys() []Key
}

// primaryIdentity returns the Identity marked as primary or the first identity
// if none are so marked.
func (e *Entity) primaryIdentity() *Identity {
	var firstIdentity *Identity
	for _, ident := range e.Identities {
		if firstIdentity == nil {
			firstIdentity = ident
		}
		if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
			return ident
		}
	}
	return firstIdentity
}

// encryptionKey returns the best candidate Key for encrypting a message to the
// given Entity.
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
	candidateSubkey := -1

	// Iterate the keys to find the newest key
	var maxTime time.Time
	for i, subkey := range e.Subkeys {

		// NOTE(maxtaco)
		// If there is a Flags subpacket, then we have to follow it, and only
		// use keys that are marked for Encryption of Communication.  If there
		// isn't a Flags subpacket, and this is an Encrypt-Only key (right now only ElGamal
		// suffices), then we implicitly use it. The check for primary below is a little
		// more open-ended, but for now, let's be strict and potentially open up
		// if we see bugs in the wild.
		//
		// One more note: old DSA/ElGamal keys tend not to have the Flags subpacket,
		// so this sort of thing is pretty important for encrypting to older keys.
		//
		if ((subkey.Sig.FlagsValid && subkey.Sig.FlagEncryptCommunications) ||
			(!subkey.Sig.FlagsValid && subkey.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal)) &&
			subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
			!subkey.Sig.KeyExpired(now) &&
			subkey.Revocation == nil &&
			(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
			candidateSubkey = i
			maxTime = subkey.Sig.CreationTime
		}
	}

	if candidateSubkey != -1 {
		subkey := e.Subkeys[candidateSubkey]
		return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
	}

	// If we don't have any candidate subkeys for encryption and
	// the primary key doesn't have any usage metadata then we
	// assume that the primary key is ok. Or, if the primary key is
	// marked as ok to encrypt to, then we can obviously use it.
	//
	// NOTE(maxtaco) - see note above, how this policy is a little too open-ended
	// for my liking, but leave it for now.
	i := e.primaryIdentity()
	if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications) &&
		e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
		!i.SelfSignature.KeyExpired(now) {
		return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
	}

	// This Entity appears to be signing only.
	return Key{}, false
}

// signingKey return the best candidate Key for signing a message with this
// Entity.
func (e *Entity) signingKey(now time.Time) (Key, bool) {
	candidateSubkey := -1

	for i, subkey := range e.Subkeys {
		if (!subkey.Sig.FlagsValid || subkey.Sig.FlagSign) &&
			subkey.PrivateKey.PrivateKey != nil &&
			subkey.PublicKey.PubKeyAlgo.CanSign() &&
			subkey.Revocation == nil &&
			!subkey.Sig.KeyExpired(now) {
			candidateSubkey = i
			break
		}
	}

	if candidateSubkey != -1 {
		subkey := e.Subkeys[candidateSubkey]
		return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig, subkey.Sig.GetKeyFlags()}, true
	}

	// If we have no candidate subkey then we assume that it's ok to sign
	// with the primary key.
	i := e.primaryIdentity()
	if (!i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign) &&
		e.PrimaryKey.PubKeyAlgo.CanSign() &&
		!i.SelfSignature.KeyExpired(now) &&
		e.PrivateKey.PrivateKey != nil {
		return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature, i.SelfSignature.GetKeyFlags()}, true
	}

	return Key{}, false
}

// An EntityList contains one or more Entities.
type EntityList []*Entity

func keyMatchesIdAndFingerprint(key *packet.PublicKey, id uint64, fp []byte) bool {
	if key.KeyId != id {
		return false
	}
	if fp == nil {
		return true
	}
	return hmac.Equal(fp, key.Fingerprint[:])
}

// KeysById returns the set of keys that have the given key id.
// fp can be optionally supplied, which is the full key fingerprint.
// If it's provided, then it must match. This comes up in the case
// of GPG subpacket 33.
func (el EntityList) KeysById(id uint64, fp []byte) (keys []Key) {
	for _, e := range el {
		if keyMatchesIdAndFingerprint(e.PrimaryKey, id, fp) {
			var selfSig *packet.Signature
			for _, ident := range e.Identities {
				if selfSig == nil {
					selfSig = ident.SelfSignature
				} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
					selfSig = ident.SelfSignature
					break
				}
			}

			var keyFlags packet.KeyFlagBits
			for _, ident := range e.Identities {
				keyFlags.Merge(ident.SelfSignature.GetKeyFlags())
			}

			keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig, keyFlags})
		}

		for _, subKey := range e.Subkeys {
			if keyMatchesIdAndFingerprint(subKey.PublicKey, id, fp) {

				// If there's both a a revocation and a sig, then take the
				// revocation. Otherwise, we can proceed with the sig.
				sig := subKey.Revocation
				if sig == nil {
					sig = subKey.Sig
				}

				keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, sig, sig.GetKeyFlags()})
			}
		}
	}
	return
}

// KeysByIdAndUsage returns the set of keys with the given id that also meet
// the key usage given by requiredUsage.  The requiredUsage is expressed as
// the bitwise-OR of packet.KeyFlag* values.
// fp can be optionally supplied, which is the full key fingerprint.
// If it's provided, then it must match. This comes up in the case
// of GPG subpacket 33.
func (el EntityList) KeysByIdUsage(id uint64, fp []byte, requiredUsage byte) (keys []Key) {
	for _, key := range el.KeysById(id, fp) {
		if len(key.Entity.Revocations) > 0 {
			continue
		}

		if key.SelfSignature.RevocationReason != nil {
			continue
		}

		if requiredUsage != 0 {
			var usage byte

			switch {
			case key.KeyFlags.Valid:
				usage = key.KeyFlags.BitField

			case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoElGamal:
				// We also need to handle the case where, although the sig's
				// flags aren't valid, the key can is implicitly usable for
				// encryption by virtue of being ElGamal. See also the comment
				// in encryptionKey() above.
				usage |= packet.KeyFlagEncryptCommunications
				usage |= packet.KeyFlagEncryptStorage

			case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoDSA ||
				key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoECDSA ||
				key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoEdDSA:
				usage |= packet.KeyFlagSign

			// For a primary RSA key without any key flags, be as permissiable
			// as possible.
			case key.PublicKey.PubKeyAlgo == packet.PubKeyAlgoRSA &&
				keyMatchesIdAndFingerprint(key.Entity.PrimaryKey, id, fp):
				usage = (packet.KeyFlagCertify | packet.KeyFlagSign |
					packet.KeyFlagEncryptCommunications | packet.KeyFlagEncryptStorage)
			}

			if usage&requiredUsage != requiredUsage {
				continue
			}
		}

		keys = append(keys, key)
	}
	return
}

// DecryptionKeys returns all private keys that are valid for decryption.
func (el EntityList) DecryptionKeys() (keys []Key) {
	for _, e := range el {
		for _, subKey := range e.Subkeys {
			if subKey.PrivateKey != nil && subKey.PrivateKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
				keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig, subKey.Sig.GetKeyFlags()})
			}
		}
	}
	return
}

// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
	block, err := armor.Decode(r)
	if err == io.EOF {
		return nil, errors.InvalidArgumentError("no armored data found")
	}
	if err != nil {
		return nil, err
	}
	if block.Type != PublicKeyType && block.Type != PrivateKeyType {
		return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
	}

	return ReadKeyRing(block.Body)
}

// ReadKeyRing reads one or more public/private keys. Unsupported keys are
// ignored as long as at least a single valid key is found.
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
	packets := packet.NewReader(r)
	var lastUnsupportedError error

	for {
		var e *Entity
		e, err = ReadEntity(packets)
		if err != nil {
			// TODO: warn about skipped unsupported/unreadable keys
			if _, ok := err.(errors.UnsupportedError); ok {
				lastUnsupportedError = err
				err = readToNextPublicKey(packets)
			} else if _, ok := err.(errors.StructuralError); ok {
				// Skip unreadable, badly-formatted keys
				lastUnsupportedError = err
				err = readToNextPublicKey(packets)
			}
			if err == io.EOF {
				err = nil
				break
			}
			if err != nil {
				el = nil
				break
			}
		} else {
			el = append(el, e)
		}
	}

	if len(el) == 0 && err == nil {
		err = lastUnsupportedError
	}
	return
}

// readToNextPublicKey reads packets until the start of the entity and leaves
// the first packet of the new entity in the Reader.
func readToNextPublicKey(packets *packet.Reader) (err error) {
	var p packet.Packet
	for {
		p, err = packets.Next()
		if err == io.EOF {
			return
		} else if err != nil {
			if _, ok := err.(errors.UnsupportedError); ok {
				err = nil
				continue
			}
			return
		}

		if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
			packets.Unread(p)
			return
		}
	}

	panic("unreachable")
}

// ReadEntity reads an entity (public key, identities, subkeys etc) from the
// given Reader.
func ReadEntity(packets *packet.Reader) (*Entity, error) {
	e := new(Entity)
	e.Identities = make(map[string]*Identity)

	p, err := packets.Next()
	if err != nil {
		return nil, err
	}

	var ok bool
	if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
		if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
			packets.Unread(p)
			return nil, errors.StructuralError("first packet was not a public/private key")
		} else {
			e.PrimaryKey = &e.PrivateKey.PublicKey
		}
	}

	if !e.PrimaryKey.PubKeyAlgo.CanSign() {
		return nil, errors.StructuralError("primary key cannot be used for signatures")
	}

	var current *Identity
	var revocations []*packet.Signature

	designatedRevokers := make(map[uint64]bool)
EachPacket:
	for {
		p, err := packets.Next()
		if err == io.EOF {
			break
		} else if err != nil {
			return nil, err
		}
		switch pkt := p.(type) {
		case *packet.UserId:

			// Make a new Identity object, that we might wind up throwing away.
			// We'll only add it if we get a valid self-signature over this
			// userID.
			current = new(Identity)
			current.Name = pkt.Id
			current.UserId = pkt
		case *packet.Signature:
			if pkt.SigType == packet.SigTypeKeyRevocation {
				// These revocations won't revoke UIDs (see
				// SigTypeIdentityRevocation). Handle these first,
				// because key might have revocation coming from
				// another key (designated revoke).
				revocations = append(revocations, pkt)
				continue
			}

			// These are signatures by other people on this key. Let's just ignore them
			// from the beginning, since they shouldn't affect our key decoding one way
			// or the other.
			if pkt.IssuerKeyId != nil && *pkt.IssuerKeyId != e.PrimaryKey.KeyId {
				continue
			}

			// If this is a signature made by the keyholder, and the signature has stubbed out
			// critical packets, then *now* we need to bail out.
			if e := pkt.StubbedOutCriticalError; e != nil {
				return nil, e
			}

			// Next handle the case of a self-signature. According to RFC8440,
			// Section 5.2.3.3, if there are several self-signatures,
			// we should take the newer one.  If they were both created
			// at the same time, but one of them has keyflags specified and the
			// other doesn't, keep the one with the keyflags. We have actually
			// seen this in the wild (see the 'Yield' test in read_test.go).
			// If there is a tie, and both have the same value for FlagsValid,
			// then "last writer wins."
			//
			// HOWEVER! We have seen yet more keys in the wild (see the 'Spiros'
			// test in read_test.go), in which the later self-signature is a bunch
			// of junk, and doesn't even specify key flags. Does it really make
			// sense to overwrite reasonable key flags with the empty set? I'm not
			// sure what that would be trying to achieve, and plus GPG seems to be
			// ok with this situation, and ignores the later (empty) keyflag set.
			// So further tighten our overwrite rules, and only allow the later
			// signature to overwrite the earlier signature if so doing won't
			// trash the key flags.
			if current != nil &&
				(current.SelfSignature == nil ||
					(!pkt.CreationTime.Before(current.SelfSignature.CreationTime) &&
						(pkt.FlagsValid || !current.SelfSignature.FlagsValid))) &&
				(pkt.SigType == packet.SigTypePositiveCert || pkt.SigType == packet.SigTypeGenericCert) &&
				pkt.IssuerKeyId != nil &&
				*pkt.IssuerKeyId == e.PrimaryKey.KeyId {

				if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {

					current.SelfSignature = pkt

					// NOTE(maxtaco) 2016.01.11
					// Only register an identity once we've gotten a valid self-signature.
					// It's possible therefore for us to throw away `current` in the case
					// no valid self-signatures were found. That's OK as long as there are
					// other identies that make sense.
					//
					// NOTE! We might later see a revocation for this very same UID, and it
					// won't be undone. We've preserved this feature from the original
					// Google OpenPGP we forked from.
					e.Identities[current.Name] = current
				} else {
					// We really should warn that there was a failure here. Not raise an error
					// since this really shouldn't be a fail-stop error.
				}
			} else if current != nil && pkt.SigType == packet.SigTypeIdentityRevocation {
				if err = e.PrimaryKey.VerifyUserIdSignature(current.Name, e.PrimaryKey, pkt); err == nil {
					// Note: we are not removing the identity from
					// e.Identities. Caller can always filter by Revocation
					// field to ignore revoked identities.
					current.Revocation = pkt
				}
			} else if pkt.SigType == packet.SigTypeDirectSignature {
				if err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, pkt); err == nil {
					if desig := pkt.DesignatedRevoker; desig != nil {
						// If it's a designated revoker signature, take last 8 octects
						// of fingerprint as Key ID and save it to designatedRevokers
						// map. We consult this map later to see if a foreign
						// revocation should be added to UnverifiedRevocations.
						keyID := binary.BigEndian.Uint64(desig.Fingerprint[len(desig.Fingerprint)-8:])
						designatedRevokers[keyID] = true
					}
				}
			} else if current == nil {
				// NOTE(maxtaco)
				//
				// See https://github.com/keybase/client/issues/2666
				//
				// There might have been a user attribute picture before this signature,
				// in which case this is still a valid PGP key. In the future we might
				// not ignore user attributes (like picture). But either way, it doesn't
				// make sense to bail out here. Keep looking for other valid signatures.
				//
				// Used to be:
				//    return nil, errors.StructuralError("signature packet found before user id packet")
			} else {
				current.Signatures = append(current.Signatures, pkt)
			}
		case *packet.PrivateKey:
			if pkt.IsSubkey == false {
				packets.Unread(p)
				break EachPacket
			}
			err = addSubkey(e, packets, &pkt.PublicKey, pkt)
			if err != nil {
				return nil, err
			}
		case *packet.PublicKey:
			if pkt.IsSubkey == false {
				packets.Unread(p)
				break EachPacket
			}
			err = addSubkey(e, packets, pkt, nil)
			if err != nil {
				return nil, err
			}
		default:
			// we ignore unknown packets
		}
	}

	if len(e.Identities) == 0 {
		return nil, errors.StructuralError("entity without any identities")
	}

	for _, revocation := range revocations {
		if revocation.IssuerKeyId == nil || *revocation.IssuerKeyId == e.PrimaryKey.KeyId {
			// Key revokes itself, something that we can verify.
			err = e.PrimaryKey.VerifyRevocationSignature(e.PrimaryKey, revocation)
			if err == nil {
				e.Revocations = append(e.Revocations, revocation)
			} else {
				return nil, errors.StructuralError("revocation signature signed by alternate key")
			}
		} else if revocation.IssuerKeyId != nil {
			if _, ok := designatedRevokers[*revocation.IssuerKeyId]; ok {
				// Revocation is done by certified designated revoker,
				// but we can't verify the revocation.
				e.UnverifiedRevocations = append(e.UnverifiedRevocations, revocation)
			}
		}
	}

	return e, nil
}

func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
	var subKey Subkey
	subKey.PublicKey = pub
	subKey.PrivateKey = priv
	var lastErr error
	for {
		p, err := packets.Next()
		if err == io.EOF {
			break
		}
		if err != nil {
			return errors.StructuralError("subkey signature invalid: " + err.Error())
		}
		sig, ok := p.(*packet.Signature)
		if !ok {
			// Hit a non-signature packet, so assume we're up to the next key
			packets.Unread(p)
			break
		}
		if st := sig.SigType; st != packet.SigTypeSubkeyBinding && st != packet.SigTypeSubkeyRevocation {

			// Note(maxtaco):
			// We used to error out here, but instead, let's fast-forward past
			// packets that are in the wrong place (like misplaced 0x13 signatures)
			// until we get to one that works.  For a test case,
			// see TestWithBadSubkeySignaturePackets.

			continue
		}
		err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig)
		if err != nil {
			// Non valid signature, so again, no need to abandon all hope, just continue;
			// make a note of the error we hit.
			lastErr = errors.StructuralError("subkey signature invalid: " + err.Error())
			continue
		}
		switch sig.SigType {
		case packet.SigTypeSubkeyBinding:
			// Does the "new" sig set expiration to later date than
			// "previous" sig?
			if subKey.Sig == nil || subKey.Sig.ExpiresBeforeOther(sig) {
				subKey.Sig = sig
			}
		case packet.SigTypeSubkeyRevocation:
			// First writer wins
			if subKey.Revocation == nil {
				subKey.Revocation = sig
			}
		}
	}
	if subKey.Sig != nil {
		e.Subkeys = append(e.Subkeys, subKey)
	} else {
		if lastErr == nil {
			lastErr = errors.StructuralError("Subkey wasn't signed; expected a 'binding' signature")
		}
		e.BadSubkeys = append(e.BadSubkeys, BadSubkey{Subkey: subKey, Err: lastErr})
	}
	return nil
}

const defaultRSAKeyBits = 2048

// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
// If config is nil, sensible defaults will be used.
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
	currentTime := config.Now()

	bits := defaultRSAKeyBits
	if config != nil && config.RSABits != 0 {
		bits = config.RSABits
	}

	uid := packet.NewUserId(name, comment, email)
	if uid == nil {
		return nil, errors.InvalidArgumentError("user id field contained invalid characters")
	}
	signingPriv, err := rsa.GenerateKey(config.Random(), bits)
	if err != nil {
		return nil, err
	}
	encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
	if err != nil {
		return nil, err
	}

	e := &Entity{
		PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
		PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
		Identities: make(map[string]*Identity),
	}
	isPrimaryId := true
	e.Identities[uid.Id] = &Identity{
		Name:   uid.Name,
		UserId: uid,
		SelfSignature: &packet.Signature{
			CreationTime: currentTime,
			SigType:      packet.SigTypePositiveCert,
			PubKeyAlgo:   packet.PubKeyAlgoRSA,
			Hash:         config.Hash(),
			IsPrimaryId:  &isPrimaryId,
			FlagsValid:   true,
			FlagSign:     true,
			FlagCertify:  true,
			IssuerKeyId:  &e.PrimaryKey.KeyId,
		},
	}

	e.Subkeys = make([]Subkey, 1)
	e.Subkeys[0] = Subkey{
		PublicKey:  packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
		PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
		Sig: &packet.Signature{
			CreationTime:              currentTime,
			SigType:                   packet.SigTypeSubkeyBinding,
			PubKeyAlgo:                packet.PubKeyAlgoRSA,
			Hash:                      config.Hash(),
			FlagsValid:                true,
			FlagEncryptStorage:        true,
			FlagEncryptCommunications: true,
			IssuerKeyId:               &e.PrimaryKey.KeyId,
		},
	}
	e.Subkeys[0].PublicKey.IsSubkey = true
	e.Subkeys[0].PrivateKey.IsSubkey = true

	return e, nil
}

// SerializePrivate serializes an Entity, including private key material, to
// the given Writer. For now, it must only be used on an Entity returned from
// NewEntity.
// If config is nil, sensible defaults will be used.
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
	err = e.PrivateKey.Serialize(w)
	if err != nil {
		return
	}
	for _, ident := range e.Identities {
		err = ident.UserId.Serialize(w)
		if err != nil {
			return
		}
		if e.PrivateKey.PrivateKey != nil {
			err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
			if err != nil {
				return
			}
		}
		err = ident.SelfSignature.Serialize(w)
		if err != nil {
			return
		}
	}
	for _, subkey := range e.Subkeys {
		err = subkey.PrivateKey.Serialize(w)
		if err != nil {
			return
		}
		// Workaround shortcoming of SignKey(), which doesn't work to reverse-sign
		// sub-signing keys. So if requested, just reuse the signatures already
		// available to us (if we read this key from a keyring).
		if e.PrivateKey.PrivateKey != nil && !config.ReuseSignatures() {
			err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
			if err != nil {
				return
			}
		}

		if subkey.Revocation != nil {
			err = subkey.Revocation.Serialize(w)
			if err != nil {
				return
			}
		}

		err = subkey.Sig.Serialize(w)
		if err != nil {
			return
		}
	}
	return nil
}

// Serialize writes the public part of the given Entity to w. (No private
// key material will be output).
func (e *Entity) Serialize(w io.Writer) error {
	err := e.PrimaryKey.Serialize(w)
	if err != nil {
		return err
	}
	for _, ident := range e.Identities {
		err = ident.UserId.Serialize(w)
		if err != nil {
			return err
		}
		err = ident.SelfSignature.Serialize(w)
		if err != nil {
			return err
		}
		for _, sig := range ident.Signatures {
			err = sig.Serialize(w)
			if err != nil {
				return err
			}
		}
	}
	for _, subkey := range e.Subkeys {
		err = subkey.PublicKey.Serialize(w)
		if err != nil {
			return err
		}

		if subkey.Revocation != nil {
			err = subkey.Revocation.Serialize(w)
			if err != nil {
				return err
			}
		}
		err = subkey.Sig.Serialize(w)
		if err != nil {
			return err
		}
	}
	return nil
}

// SignIdentity adds a signature to e, from signer, attesting that identity is
// associated with e. The provided identity must already be an element of
// e.Identities and the private key of signer must have been decrypted if
// necessary.
// If config is nil, sensible defaults will be used.
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
	if signer.PrivateKey == nil {
		return errors.InvalidArgumentError("signing Entity must have a private key")
	}
	if signer.PrivateKey.Encrypted {
		return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
	}
	ident, ok := e.Identities[identity]
	if !ok {
		return errors.InvalidArgumentError("given identity string not found in Entity")
	}

	sig := &packet.Signature{
		SigType:      packet.SigTypeGenericCert,
		PubKeyAlgo:   signer.PrivateKey.PubKeyAlgo,
		Hash:         config.Hash(),
		CreationTime: config.Now(),
		IssuerKeyId:  &signer.PrivateKey.KeyId,
	}
	if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
		return err
	}
	ident.Signatures = append(ident.Signatures, sig)
	return nil
}

// CopySubkeyRevocations copies subkey revocations from the src Entity over
// to the receiver entity. We need this because `gpg --export-secret-key` does
// not appear to output subkey revocations.  In this case we need to manually
// merge with the output of `gpg --export`.
func (e *Entity) CopySubkeyRevocations(src *Entity) {
	m := make(map[[20]byte]*packet.Signature)
	for _, subkey := range src.Subkeys {
		if subkey.Revocation != nil {
			m[subkey.PublicKey.Fingerprint] = subkey.Revocation
		}
	}
	for i, subkey := range e.Subkeys {
		if r := m[subkey.PublicKey.Fingerprint]; r != nil {
			e.Subkeys[i].Revocation = r
		}
	}
}

// CheckDesignatedRevokers will try to confirm any of designated
// revocation of entity. For this function to work, revocation
// issuer's key should be found in keyring. First successfully
// verified designated revocation is returned along with the key that
// verified it.
func FindVerifiedDesignatedRevoke(keyring KeyRing, entity *Entity) (*packet.Signature, *Key) {
	for _, sig := range entity.UnverifiedRevocations {
		if sig.IssuerKeyId == nil {
			continue
		}

		issuerKeyId := *sig.IssuerKeyId
		issuerFingerprint := sig.IssuerFingerprint
		keys := keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
		if len(keys) == 0 {
			continue
		}
		for _, key := range keys {
			err := key.PublicKey.VerifyRevocationSignature(entity.PrimaryKey, sig)
			if err == nil {
				return sig, &key
			}
		}
	}

	return nil, nil
}