summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/klauspost/compress/huff0/huff0.go
blob: 5dd66854b093bfd0ff781117a616c8ec1751b3d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Package huff0 provides fast huffman encoding as used in zstd.
//
// See README.md at https://github.com/klauspost/compress/tree/master/huff0 for details.
package huff0

import (
	"errors"
	"fmt"
	"math"
	"math/bits"

	"github.com/klauspost/compress/fse"
)

const (
	maxSymbolValue = 255

	// zstandard limits tablelog to 11, see:
	// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#huffman-tree-description
	tableLogMax     = 11
	tableLogDefault = 11
	minTablelog     = 5
	huffNodesLen    = 512

	// BlockSizeMax is maximum input size for a single block uncompressed.
	BlockSizeMax = 1<<18 - 1
)

var (
	// ErrIncompressible is returned when input is judged to be too hard to compress.
	ErrIncompressible = errors.New("input is not compressible")

	// ErrUseRLE is returned from the compressor when the input is a single byte value repeated.
	ErrUseRLE = errors.New("input is single value repeated")

	// ErrTooBig is return if input is too large for a single block.
	ErrTooBig = errors.New("input too big")

	// ErrMaxDecodedSizeExceeded is return if input is too large for a single block.
	ErrMaxDecodedSizeExceeded = errors.New("maximum output size exceeded")
)

type ReusePolicy uint8

const (
	// ReusePolicyAllow will allow reuse if it produces smaller output.
	ReusePolicyAllow ReusePolicy = iota

	// ReusePolicyPrefer will re-use aggressively if possible.
	// This will not check if a new table will produce smaller output,
	// except if the current table is impossible to use or
	// compressed output is bigger than input.
	ReusePolicyPrefer

	// ReusePolicyNone will disable re-use of tables.
	// This is slightly faster than ReusePolicyAllow but may produce larger output.
	ReusePolicyNone

	// ReusePolicyMust must allow reuse and produce smaller output.
	ReusePolicyMust
)

type Scratch struct {
	count [maxSymbolValue + 1]uint32

	// Per block parameters.
	// These can be used to override compression parameters of the block.
	// Do not touch, unless you know what you are doing.

	// Out is output buffer.
	// If the scratch is re-used before the caller is done processing the output,
	// set this field to nil.
	// Otherwise the output buffer will be re-used for next Compression/Decompression step
	// and allocation will be avoided.
	Out []byte

	// OutTable will contain the table data only, if a new table has been generated.
	// Slice of the returned data.
	OutTable []byte

	// OutData will contain the compressed data.
	// Slice of the returned data.
	OutData []byte

	// MaxDecodedSize will set the maximum allowed output size.
	// This value will automatically be set to BlockSizeMax if not set.
	// Decoders will return ErrMaxDecodedSizeExceeded is this limit is exceeded.
	MaxDecodedSize int

	br byteReader

	// MaxSymbolValue will override the maximum symbol value of the next block.
	MaxSymbolValue uint8

	// TableLog will attempt to override the tablelog for the next block.
	// Must be <= 11 and >= 5.
	TableLog uint8

	// Reuse will specify the reuse policy
	Reuse ReusePolicy

	// WantLogLess allows to specify a log 2 reduction that should at least be achieved,
	// otherwise the block will be returned as incompressible.
	// The reduction should then at least be (input size >> WantLogLess)
	// If WantLogLess == 0 any improvement will do.
	WantLogLess uint8

	symbolLen      uint16 // Length of active part of the symbol table.
	maxCount       int    // count of the most probable symbol
	clearCount     bool   // clear count
	actualTableLog uint8  // Selected tablelog.
	prevTableLog   uint8  // Tablelog for previous table
	prevTable      cTable // Table used for previous compression.
	cTable         cTable // compression table
	dt             dTable // decompression table
	nodes          []nodeElt
	tmpOut         [4][]byte
	fse            *fse.Scratch
	huffWeight     [maxSymbolValue + 1]byte
}

func (s *Scratch) prepare(in []byte) (*Scratch, error) {
	if len(in) > BlockSizeMax {
		return nil, ErrTooBig
	}
	if s == nil {
		s = &Scratch{}
	}
	if s.MaxSymbolValue == 0 {
		s.MaxSymbolValue = maxSymbolValue
	}
	if s.TableLog == 0 {
		s.TableLog = tableLogDefault
	}
	if s.TableLog > tableLogMax || s.TableLog < minTablelog {
		return nil, fmt.Errorf(" invalid tableLog %d (%d -> %d)", s.TableLog, minTablelog, tableLogMax)
	}
	if s.MaxDecodedSize <= 0 || s.MaxDecodedSize > BlockSizeMax {
		s.MaxDecodedSize = BlockSizeMax
	}
	if s.clearCount && s.maxCount == 0 {
		for i := range s.count {
			s.count[i] = 0
		}
		s.clearCount = false
	}
	if cap(s.Out) == 0 {
		s.Out = make([]byte, 0, len(in))
	}
	s.Out = s.Out[:0]

	s.OutTable = nil
	s.OutData = nil
	if cap(s.nodes) < huffNodesLen+1 {
		s.nodes = make([]nodeElt, 0, huffNodesLen+1)
	}
	s.nodes = s.nodes[:0]
	if s.fse == nil {
		s.fse = &fse.Scratch{}
	}
	s.br.init(in)

	return s, nil
}

type cTable []cTableEntry

func (c cTable) write(s *Scratch) error {
	var (
		// precomputed conversion table
		bitsToWeight [tableLogMax + 1]byte
		huffLog      = s.actualTableLog
		// last weight is not saved.
		maxSymbolValue = uint8(s.symbolLen - 1)
		huffWeight     = s.huffWeight[:256]
	)
	const (
		maxFSETableLog = 6
	)
	// convert to weight
	bitsToWeight[0] = 0
	for n := uint8(1); n < huffLog+1; n++ {
		bitsToWeight[n] = huffLog + 1 - n
	}

	// Acquire histogram for FSE.
	hist := s.fse.Histogram()
	hist = hist[:256]
	for i := range hist[:16] {
		hist[i] = 0
	}
	for n := uint8(0); n < maxSymbolValue; n++ {
		v := bitsToWeight[c[n].nBits] & 15
		huffWeight[n] = v
		hist[v]++
	}

	// FSE compress if feasible.
	if maxSymbolValue >= 2 {
		huffMaxCnt := uint32(0)
		huffMax := uint8(0)
		for i, v := range hist[:16] {
			if v == 0 {
				continue
			}
			huffMax = byte(i)
			if v > huffMaxCnt {
				huffMaxCnt = v
			}
		}
		s.fse.HistogramFinished(huffMax, int(huffMaxCnt))
		s.fse.TableLog = maxFSETableLog
		b, err := fse.Compress(huffWeight[:maxSymbolValue], s.fse)
		if err == nil && len(b) < int(s.symbolLen>>1) {
			s.Out = append(s.Out, uint8(len(b)))
			s.Out = append(s.Out, b...)
			return nil
		}
		// Unable to compress (RLE/uncompressible)
	}
	// write raw values as 4-bits (max : 15)
	if maxSymbolValue > (256 - 128) {
		// should not happen : likely means source cannot be compressed
		return ErrIncompressible
	}
	op := s.Out
	// special case, pack weights 4 bits/weight.
	op = append(op, 128|(maxSymbolValue-1))
	// be sure it doesn't cause msan issue in final combination
	huffWeight[maxSymbolValue] = 0
	for n := uint16(0); n < uint16(maxSymbolValue); n += 2 {
		op = append(op, (huffWeight[n]<<4)|huffWeight[n+1])
	}
	s.Out = op
	return nil
}

// estimateSize returns the estimated size in bytes of the input represented in the
// histogram supplied.
func (c cTable) estimateSize(hist []uint32) int {
	nbBits := uint32(7)
	for i, v := range c[:len(hist)] {
		nbBits += uint32(v.nBits) * hist[i]
	}
	return int(nbBits >> 3)
}

// minSize returns the minimum possible size considering the shannon limit.
func (s *Scratch) minSize(total int) int {
	nbBits := float64(7)
	fTotal := float64(total)
	for _, v := range s.count[:s.symbolLen] {
		n := float64(v)
		if n > 0 {
			nbBits += math.Log2(fTotal/n) * n
		}
	}
	return int(nbBits) >> 3
}

func highBit32(val uint32) (n uint32) {
	return uint32(bits.Len32(val) - 1)
}