summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/klauspost/cpuid/v2/cpuid.go
blob: cc6a770ea98af630d0534a7db83474c6fe6cc915 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.

// Package cpuid provides information about the CPU running the current program.
//
// CPU features are detected on startup, and kept for fast access through the life of the application.
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
//
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
//
// Package home: https://github.com/klauspost/cpuid
package cpuid

import (
	"flag"
	"fmt"
	"math"
	"os"
	"runtime"
	"strings"
)

// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
// and Processor Programming Reference (PPR)

// Vendor is a representation of a CPU vendor.
type Vendor int

const (
	VendorUnknown Vendor = iota
	Intel
	AMD
	VIA
	Transmeta
	NSC
	KVM  // Kernel-based Virtual Machine
	MSVM // Microsoft Hyper-V or Windows Virtual PC
	VMware
	XenHVM
	Bhyve
	Hygon
	SiS
	RDC

	Ampere
	ARM
	Broadcom
	Cavium
	DEC
	Fujitsu
	Infineon
	Motorola
	NVIDIA
	AMCC
	Qualcomm
	Marvell

	lastVendor
)

//go:generate stringer -type=FeatureID,Vendor

// FeatureID is the ID of a specific cpu feature.
type FeatureID int

const (
	// Keep index -1 as unknown
	UNKNOWN = -1

	// Add features
	ADX                FeatureID = iota // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
	AESNI                               // Advanced Encryption Standard New Instructions
	AMD3DNOW                            // AMD 3DNOW
	AMD3DNOWEXT                         // AMD 3DNowExt
	AMXBF16                             // Tile computational operations on BFLOAT16 numbers
	AMXINT8                             // Tile computational operations on 8-bit integers
	AMXTILE                             // Tile architecture
	AVX                                 // AVX functions
	AVX2                                // AVX2 functions
	AVX512BF16                          // AVX-512 BFLOAT16 Instructions
	AVX512BITALG                        // AVX-512 Bit Algorithms
	AVX512BW                            // AVX-512 Byte and Word Instructions
	AVX512CD                            // AVX-512 Conflict Detection Instructions
	AVX512DQ                            // AVX-512 Doubleword and Quadword Instructions
	AVX512ER                            // AVX-512 Exponential and Reciprocal Instructions
	AVX512F                             // AVX-512 Foundation
	AVX512IFMA                          // AVX-512 Integer Fused Multiply-Add Instructions
	AVX512PF                            // AVX-512 Prefetch Instructions
	AVX512VBMI                          // AVX-512 Vector Bit Manipulation Instructions
	AVX512VBMI2                         // AVX-512 Vector Bit Manipulation Instructions, Version 2
	AVX512VL                            // AVX-512 Vector Length Extensions
	AVX512VNNI                          // AVX-512 Vector Neural Network Instructions
	AVX512VP2INTERSECT                  // AVX-512 Intersect for D/Q
	AVX512VPOPCNTDQ                     // AVX-512 Vector Population Count Doubleword and Quadword
	AVXSLOW                             // Indicates the CPU performs 2 128 bit operations instead of one.
	BMI1                                // Bit Manipulation Instruction Set 1
	BMI2                                // Bit Manipulation Instruction Set 2
	CLDEMOTE                            // Cache Line Demote
	CLMUL                               // Carry-less Multiplication
	CLZERO                              // CLZERO instruction supported
	CMOV                                // i686 CMOV
	CPBOOST                             // Core Performance Boost
	CX16                                // CMPXCHG16B Instruction
	ENQCMD                              // Enqueue Command
	ERMS                                // Enhanced REP MOVSB/STOSB
	F16C                                // Half-precision floating-point conversion
	FMA3                                // Intel FMA 3. Does not imply AVX.
	FMA4                                // Bulldozer FMA4 functions
	GFNI                                // Galois Field New Instructions
	HLE                                 // Hardware Lock Elision
	HTT                                 // Hyperthreading (enabled)
	HWA                                 // Hardware assert supported. Indicates support for MSRC001_10
	HYPERVISOR                          // This bit has been reserved by Intel & AMD for use by hypervisors
	IBPB                                // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
	IBS                                 // Instruction Based Sampling (AMD)
	IBSBRNTRGT                          // Instruction Based Sampling Feature (AMD)
	IBSFETCHSAM                         // Instruction Based Sampling Feature (AMD)
	IBSFFV                              // Instruction Based Sampling Feature (AMD)
	IBSOPCNT                            // Instruction Based Sampling Feature (AMD)
	IBSOPCNTEXT                         // Instruction Based Sampling Feature (AMD)
	IBSOPSAM                            // Instruction Based Sampling Feature (AMD)
	IBSRDWROPCNT                        // Instruction Based Sampling Feature (AMD)
	IBSRIPINVALIDCHK                    // Instruction Based Sampling Feature (AMD)
	INT_WBINVD                          // WBINVD/WBNOINVD are interruptible.
	INVLPGB                             // NVLPGB and TLBSYNC instruction supported
	LZCNT                               // LZCNT instruction
	MCAOVERFLOW                         // MCA overflow recovery support.
	MCOMMIT                             // MCOMMIT instruction supported
	MMX                                 // standard MMX
	MMXEXT                              // SSE integer functions or AMD MMX ext
	MOVDIR64B                           // Move 64 Bytes as Direct Store
	MOVDIRI                             // Move Doubleword as Direct Store
	MPX                                 // Intel MPX (Memory Protection Extensions)
	MSRIRC                              // Instruction Retired Counter MSR available
	NX                                  // NX (No-Execute) bit
	POPCNT                              // POPCNT instruction
	RDPRU                               // RDPRU instruction supported
	RDRAND                              // RDRAND instruction is available
	RDSEED                              // RDSEED instruction is available
	RDTSCP                              // RDTSCP Instruction
	RTM                                 // Restricted Transactional Memory
	RTM_ALWAYS_ABORT                    // Indicates that the loaded microcode is forcing RTM abort.
	SERIALIZE                           // Serialize Instruction Execution
	SGX                                 // Software Guard Extensions
	SGXLC                               // Software Guard Extensions Launch Control
	SHA                                 // Intel SHA Extensions
	SSE                                 // SSE functions
	SSE2                                // P4 SSE functions
	SSE3                                // Prescott SSE3 functions
	SSE4                                // Penryn SSE4.1 functions
	SSE42                               // Nehalem SSE4.2 functions
	SSE4A                               // AMD Barcelona microarchitecture SSE4a instructions
	SSSE3                               // Conroe SSSE3 functions
	STIBP                               // Single Thread Indirect Branch Predictors
	SUCCOR                              // Software uncorrectable error containment and recovery capability.
	TBM                                 // AMD Trailing Bit Manipulation
	TSXLDTRK                            // Intel TSX Suspend Load Address Tracking
	VAES                                // Vector AES
	VMX                                 // Virtual Machine Extensions
	VPCLMULQDQ                          // Carry-Less Multiplication Quadword
	WAITPKG                             // TPAUSE, UMONITOR, UMWAIT
	WBNOINVD                            // Write Back and Do Not Invalidate Cache
	XOP                                 // Bulldozer XOP functions

	// ARM features:
	AESARM   // AES instructions
	ARMCPUID // Some CPU ID registers readable at user-level
	ASIMD    // Advanced SIMD
	ASIMDDP  // SIMD Dot Product
	ASIMDHP  // Advanced SIMD half-precision floating point
	ASIMDRDM // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
	ATOMICS  // Large System Extensions (LSE)
	CRC32    // CRC32/CRC32C instructions
	DCPOP    // Data cache clean to Point of Persistence (DC CVAP)
	EVTSTRM  // Generic timer
	FCMA     // Floatin point complex number addition and multiplication
	FP       // Single-precision and double-precision floating point
	FPHP     // Half-precision floating point
	GPA      // Generic Pointer Authentication
	JSCVT    // Javascript-style double->int convert (FJCVTZS)
	LRCPC    // Weaker release consistency (LDAPR, etc)
	PMULL    // Polynomial Multiply instructions (PMULL/PMULL2)
	SHA1     // SHA-1 instructions (SHA1C, etc)
	SHA2     // SHA-2 instructions (SHA256H, etc)
	SHA3     // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
	SHA512   // SHA512 instructions
	SM3      // SM3 instructions
	SM4      // SM4 instructions
	SVE      // Scalable Vector Extension

	// Keep it last. It automatically defines the size of []flagSet
	lastID

	firstID FeatureID = UNKNOWN + 1
)

// CPUInfo contains information about the detected system CPU.
type CPUInfo struct {
	BrandName      string  // Brand name reported by the CPU
	VendorID       Vendor  // Comparable CPU vendor ID
	VendorString   string  // Raw vendor string.
	featureSet     flagSet // Features of the CPU
	PhysicalCores  int     // Number of physical processor cores in your CPU. Will be 0 if undetectable.
	ThreadsPerCore int     // Number of threads per physical core. Will be 1 if undetectable.
	LogicalCores   int     // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
	Family         int     // CPU family number
	Model          int     // CPU model number
	CacheLine      int     // Cache line size in bytes. Will be 0 if undetectable.
	Hz             int64   // Clock speed, if known, 0 otherwise. Will attempt to contain base clock speed.
	BoostFreq      int64   // Max clock speed, if known, 0 otherwise
	Cache          struct {
		L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
		L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
		L2  int // L2 Cache (per core or shared). Will be -1 if undetected
		L3  int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
	}
	SGX       SGXSupport
	maxFunc   uint32
	maxExFunc uint32
}

var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
var xgetbv func(index uint32) (eax, edx uint32)
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
var darwinHasAVX512 = func() bool { return false }

// CPU contains information about the CPU as detected on startup,
// or when Detect last was called.
//
// Use this as the primary entry point to you data.
var CPU CPUInfo

func init() {
	initCPU()
	Detect()
}

// Detect will re-detect current CPU info.
// This will replace the content of the exported CPU variable.
//
// Unless you expect the CPU to change while you are running your program
// you should not need to call this function.
// If you call this, you must ensure that no other goroutine is accessing the
// exported CPU variable.
func Detect() {
	// Set defaults
	CPU.ThreadsPerCore = 1
	CPU.Cache.L1I = -1
	CPU.Cache.L1D = -1
	CPU.Cache.L2 = -1
	CPU.Cache.L3 = -1
	safe := true
	if detectArmFlag != nil {
		safe = !*detectArmFlag
	}
	addInfo(&CPU, safe)
	if displayFeats != nil && *displayFeats {
		fmt.Println("cpu features:", strings.Join(CPU.FeatureSet(), ","))
		// Exit with non-zero so tests will print value.
		os.Exit(1)
	}
	if disableFlag != nil {
		s := strings.Split(*disableFlag, ",")
		for _, feat := range s {
			feat := ParseFeature(strings.TrimSpace(feat))
			if feat != UNKNOWN {
				CPU.featureSet.unset(feat)
			}
		}
	}
}

// DetectARM will detect ARM64 features.
// This is NOT done automatically since it can potentially crash
// if the OS does not handle the command.
// If in the future this can be done safely this function may not
// do anything.
func DetectARM() {
	addInfo(&CPU, false)
}

var detectArmFlag *bool
var displayFeats *bool
var disableFlag *string

// Flags will enable flags.
// This must be called *before* flag.Parse AND
// Detect must be called after the flags have been parsed.
// Note that this means that any detection used in init() functions
// will not contain these flags.
func Flags() {
	disableFlag = flag.String("cpu.disable", "", "disable cpu features; comma separated list")
	displayFeats = flag.Bool("cpu.features", false, "lists cpu features and exits")
	detectArmFlag = flag.Bool("cpu.arm", false, "allow ARM features to be detected; can potentially crash")
}

// Supports returns whether the CPU supports all of the requested features.
func (c CPUInfo) Supports(ids ...FeatureID) bool {
	for _, id := range ids {
		if !c.featureSet.inSet(id) {
			return false
		}
	}
	return true
}

// Has allows for checking a single feature.
// Should be inlined by the compiler.
func (c CPUInfo) Has(id FeatureID) bool {
	return c.featureSet.inSet(id)
}

// Disable will disable one or several features.
func (c *CPUInfo) Disable(ids ...FeatureID) bool {
	for _, id := range ids {
		c.featureSet.unset(id)
	}
	return true
}

// Enable will disable one or several features even if they were undetected.
// This is of course not recommended for obvious reasons.
func (c *CPUInfo) Enable(ids ...FeatureID) bool {
	for _, id := range ids {
		c.featureSet.set(id)
	}
	return true
}

// IsVendor returns true if vendor is recognized as Intel
func (c CPUInfo) IsVendor(v Vendor) bool {
	return c.VendorID == v
}

func (c CPUInfo) FeatureSet() []string {
	s := make([]string, 0)
	for _, f := range c.featureSet.Strings() {
		s = append(s, f)
	}
	return s
}

// RTCounter returns the 64-bit time-stamp counter
// Uses the RDTSCP instruction. The value 0 is returned
// if the CPU does not support the instruction.
func (c CPUInfo) RTCounter() uint64 {
	if !c.Supports(RDTSCP) {
		return 0
	}
	a, _, _, d := rdtscpAsm()
	return uint64(a) | (uint64(d) << 32)
}

// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
// This variable is OS dependent, but on Linux contains information
// about the current cpu/core the code is running on.
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
func (c CPUInfo) Ia32TscAux() uint32 {
	if !c.Supports(RDTSCP) {
		return 0
	}
	_, _, ecx, _ := rdtscpAsm()
	return ecx
}

// LogicalCPU will return the Logical CPU the code is currently executing on.
// This is likely to change when the OS re-schedules the running thread
// to another CPU.
// If the current core cannot be detected, -1 will be returned.
func (c CPUInfo) LogicalCPU() int {
	if c.maxFunc < 1 {
		return -1
	}
	_, ebx, _, _ := cpuid(1)
	return int(ebx >> 24)
}

// frequencies tries to compute the clock speed of the CPU. If leaf 15 is
// supported, use it, otherwise parse the brand string. Yes, really.
func (c *CPUInfo) frequencies() {
	c.Hz, c.BoostFreq = 0, 0
	mfi := maxFunctionID()
	if mfi >= 0x15 {
		eax, ebx, ecx, _ := cpuid(0x15)
		if eax != 0 && ebx != 0 && ecx != 0 {
			c.Hz = (int64(ecx) * int64(ebx)) / int64(eax)
		}
	}
	if mfi >= 0x16 {
		a, b, _, _ := cpuid(0x16)
		// Base...
		if a&0xffff > 0 {
			c.Hz = int64(a&0xffff) * 1_000_000
		}
		// Boost...
		if b&0xffff > 0 {
			c.BoostFreq = int64(b&0xffff) * 1_000_000
		}
	}
	if c.Hz > 0 {
		return
	}

	// computeHz determines the official rated speed of a CPU from its brand
	// string. This insanity is *actually the official documented way to do
	// this according to Intel*, prior to leaf 0x15 existing. The official
	// documentation only shows this working for exactly `x.xx` or `xxxx`
	// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
	// sizes.
	model := c.BrandName
	hz := strings.LastIndex(model, "Hz")
	if hz < 3 {
		return
	}
	var multiplier int64
	switch model[hz-1] {
	case 'M':
		multiplier = 1000 * 1000
	case 'G':
		multiplier = 1000 * 1000 * 1000
	case 'T':
		multiplier = 1000 * 1000 * 1000 * 1000
	}
	if multiplier == 0 {
		return
	}
	freq := int64(0)
	divisor := int64(0)
	decimalShift := int64(1)
	var i int
	for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
		if model[i] >= '0' && model[i] <= '9' {
			freq += int64(model[i]-'0') * decimalShift
			decimalShift *= 10
		} else if model[i] == '.' {
			if divisor != 0 {
				return
			}
			divisor = decimalShift
		} else {
			return
		}
	}
	// we didn't find a space
	if i < 0 {
		return
	}
	if divisor != 0 {
		c.Hz = (freq * multiplier) / divisor
		return
	}
	c.Hz = freq * multiplier
}

// VM Will return true if the cpu id indicates we are in
// a virtual machine.
func (c CPUInfo) VM() bool {
	return CPU.featureSet.inSet(HYPERVISOR)
}

// flags contains detected cpu features and characteristics
type flags uint64

// log2(bits_in_uint64)
const flagBitsLog2 = 6
const flagBits = 1 << flagBitsLog2
const flagMask = flagBits - 1

// flagSet contains detected cpu features and characteristics in an array of flags
type flagSet [(lastID + flagMask) / flagBits]flags

func (s flagSet) inSet(feat FeatureID) bool {
	return s[feat>>flagBitsLog2]&(1<<(feat&flagMask)) != 0
}

func (s *flagSet) set(feat FeatureID) {
	s[feat>>flagBitsLog2] |= 1 << (feat & flagMask)
}

// setIf will set a feature if boolean is true.
func (s *flagSet) setIf(cond bool, features ...FeatureID) {
	if cond {
		for _, offset := range features {
			s[offset>>flagBitsLog2] |= 1 << (offset & flagMask)
		}
	}
}

func (s *flagSet) unset(offset FeatureID) {
	bit := flags(1 << (offset & flagMask))
	s[offset>>flagBitsLog2] = s[offset>>flagBitsLog2] & ^bit
}

// or with another flagset.
func (s *flagSet) or(other flagSet) {
	for i, v := range other[:] {
		s[i] |= v
	}
}

// ParseFeature will parse the string and return the ID of the matching feature.
// Will return UNKNOWN if not found.
func ParseFeature(s string) FeatureID {
	s = strings.ToUpper(s)
	for i := firstID; i < lastID; i++ {
		if i.String() == s {
			return i
		}
	}
	return UNKNOWN
}

// Strings returns an array of the detected features for FlagsSet.
func (s flagSet) Strings() []string {
	if len(s) == 0 {
		return []string{""}
	}
	r := make([]string, 0)
	for i := firstID; i < lastID; i++ {
		if s.inSet(i) {
			r = append(r, i.String())
		}
	}
	return r
}

func maxExtendedFunction() uint32 {
	eax, _, _, _ := cpuid(0x80000000)
	return eax
}

func maxFunctionID() uint32 {
	a, _, _, _ := cpuid(0)
	return a
}

func brandName() string {
	if maxExtendedFunction() >= 0x80000004 {
		v := make([]uint32, 0, 48)
		for i := uint32(0); i < 3; i++ {
			a, b, c, d := cpuid(0x80000002 + i)
			v = append(v, a, b, c, d)
		}
		return strings.Trim(string(valAsString(v...)), " ")
	}
	return "unknown"
}

func threadsPerCore() int {
	mfi := maxFunctionID()
	vend, _ := vendorID()

	if mfi < 0x4 || (vend != Intel && vend != AMD) {
		return 1
	}

	if mfi < 0xb {
		if vend != Intel {
			return 1
		}
		_, b, _, d := cpuid(1)
		if (d & (1 << 28)) != 0 {
			// v will contain logical core count
			v := (b >> 16) & 255
			if v > 1 {
				a4, _, _, _ := cpuid(4)
				// physical cores
				v2 := (a4 >> 26) + 1
				if v2 > 0 {
					return int(v) / int(v2)
				}
			}
		}
		return 1
	}
	_, b, _, _ := cpuidex(0xb, 0)
	if b&0xffff == 0 {
		if vend == AMD {
			// Workaround for AMD returning 0, assume 2 if >= Zen 2
			// It will be more correct than not.
			fam, _ := familyModel()
			_, _, _, d := cpuid(1)
			if (d&(1<<28)) != 0 && fam >= 23 {
				return 2
			}
		}
		return 1
	}
	return int(b & 0xffff)
}

func logicalCores() int {
	mfi := maxFunctionID()
	v, _ := vendorID()
	switch v {
	case Intel:
		// Use this on old Intel processors
		if mfi < 0xb {
			if mfi < 1 {
				return 0
			}
			// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
			// that can be assigned to logical processors in a physical package.
			// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
			_, ebx, _, _ := cpuid(1)
			logical := (ebx >> 16) & 0xff
			return int(logical)
		}
		_, b, _, _ := cpuidex(0xb, 1)
		return int(b & 0xffff)
	case AMD, Hygon:
		_, b, _, _ := cpuid(1)
		return int((b >> 16) & 0xff)
	default:
		return 0
	}
}

func familyModel() (int, int) {
	if maxFunctionID() < 0x1 {
		return 0, 0
	}
	eax, _, _, _ := cpuid(1)
	family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
	model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
	return int(family), int(model)
}

func physicalCores() int {
	v, _ := vendorID()
	switch v {
	case Intel:
		return logicalCores() / threadsPerCore()
	case AMD, Hygon:
		lc := logicalCores()
		tpc := threadsPerCore()
		if lc > 0 && tpc > 0 {
			return lc / tpc
		}

		// The following is inaccurate on AMD EPYC 7742 64-Core Processor
		if maxExtendedFunction() >= 0x80000008 {
			_, _, c, _ := cpuid(0x80000008)
			if c&0xff > 0 {
				return int(c&0xff) + 1
			}
		}
	}
	return 0
}

// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
var vendorMapping = map[string]Vendor{
	"AMDisbetter!": AMD,
	"AuthenticAMD": AMD,
	"CentaurHauls": VIA,
	"GenuineIntel": Intel,
	"TransmetaCPU": Transmeta,
	"GenuineTMx86": Transmeta,
	"Geode by NSC": NSC,
	"VIA VIA VIA ": VIA,
	"KVMKVMKVMKVM": KVM,
	"Microsoft Hv": MSVM,
	"VMwareVMware": VMware,
	"XenVMMXenVMM": XenHVM,
	"bhyve bhyve ": Bhyve,
	"HygonGenuine": Hygon,
	"Vortex86 SoC": SiS,
	"SiS SiS SiS ": SiS,
	"RiseRiseRise": SiS,
	"Genuine  RDC": RDC,
}

func vendorID() (Vendor, string) {
	_, b, c, d := cpuid(0)
	v := string(valAsString(b, d, c))
	vend, ok := vendorMapping[v]
	if !ok {
		return VendorUnknown, v
	}
	return vend, v
}

func cacheLine() int {
	if maxFunctionID() < 0x1 {
		return 0
	}

	_, ebx, _, _ := cpuid(1)
	cache := (ebx & 0xff00) >> 5 // cflush size
	if cache == 0 && maxExtendedFunction() >= 0x80000006 {
		_, _, ecx, _ := cpuid(0x80000006)
		cache = ecx & 0xff // cacheline size
	}
	// TODO: Read from Cache and TLB Information
	return int(cache)
}

func (c *CPUInfo) cacheSize() {
	c.Cache.L1D = -1
	c.Cache.L1I = -1
	c.Cache.L2 = -1
	c.Cache.L3 = -1
	vendor, _ := vendorID()
	switch vendor {
	case Intel:
		if maxFunctionID() < 4 {
			return
		}
		for i := uint32(0); ; i++ {
			eax, ebx, ecx, _ := cpuidex(4, i)
			cacheType := eax & 15
			if cacheType == 0 {
				break
			}
			cacheLevel := (eax >> 5) & 7
			coherency := int(ebx&0xfff) + 1
			partitions := int((ebx>>12)&0x3ff) + 1
			associativity := int((ebx>>22)&0x3ff) + 1
			sets := int(ecx) + 1
			size := associativity * partitions * coherency * sets
			switch cacheLevel {
			case 1:
				if cacheType == 1 {
					// 1 = Data Cache
					c.Cache.L1D = size
				} else if cacheType == 2 {
					// 2 = Instruction Cache
					c.Cache.L1I = size
				} else {
					if c.Cache.L1D < 0 {
						c.Cache.L1I = size
					}
					if c.Cache.L1I < 0 {
						c.Cache.L1I = size
					}
				}
			case 2:
				c.Cache.L2 = size
			case 3:
				c.Cache.L3 = size
			}
		}
	case AMD, Hygon:
		// Untested.
		if maxExtendedFunction() < 0x80000005 {
			return
		}
		_, _, ecx, edx := cpuid(0x80000005)
		c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
		c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)

		if maxExtendedFunction() < 0x80000006 {
			return
		}
		_, _, ecx, _ = cpuid(0x80000006)
		c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)

		// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
		if maxExtendedFunction() < 0x8000001D {
			return
		}
		for i := uint32(0); i < math.MaxUint32; i++ {
			eax, ebx, ecx, _ := cpuidex(0x8000001D, i)

			level := (eax >> 5) & 7
			cacheNumSets := ecx + 1
			cacheLineSize := 1 + (ebx & 2047)
			cachePhysPartitions := 1 + ((ebx >> 12) & 511)
			cacheNumWays := 1 + ((ebx >> 22) & 511)

			typ := eax & 15
			size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
			if typ == 0 {
				return
			}

			switch level {
			case 1:
				switch typ {
				case 1:
					// Data cache
					c.Cache.L1D = size
				case 2:
					// Inst cache
					c.Cache.L1I = size
				default:
					if c.Cache.L1D < 0 {
						c.Cache.L1I = size
					}
					if c.Cache.L1I < 0 {
						c.Cache.L1I = size
					}
				}
			case 2:
				c.Cache.L2 = size
			case 3:
				c.Cache.L3 = size
			}
		}
	}

	return
}

type SGXEPCSection struct {
	BaseAddress uint64
	EPCSize     uint64
}

type SGXSupport struct {
	Available           bool
	LaunchControl       bool
	SGX1Supported       bool
	SGX2Supported       bool
	MaxEnclaveSizeNot64 int64
	MaxEnclaveSize64    int64
	EPCSections         []SGXEPCSection
}

func hasSGX(available, lc bool) (rval SGXSupport) {
	rval.Available = available

	if !available {
		return
	}

	rval.LaunchControl = lc

	a, _, _, d := cpuidex(0x12, 0)
	rval.SGX1Supported = a&0x01 != 0
	rval.SGX2Supported = a&0x02 != 0
	rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF)     // pow 2
	rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
	rval.EPCSections = make([]SGXEPCSection, 0)

	for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
		eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
		leafType := eax & 0xf

		if leafType == 0 {
			// Invalid subleaf, stop iterating
			break
		} else if leafType == 1 {
			// EPC Section subleaf
			baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
			size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)

			section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
			rval.EPCSections = append(rval.EPCSections, section)
		}
	}

	return
}

func support() flagSet {
	var fs flagSet
	mfi := maxFunctionID()
	vend, _ := vendorID()
	if mfi < 0x1 {
		return fs
	}
	family, model := familyModel()

	_, _, c, d := cpuid(1)
	fs.setIf((d&(1<<15)) != 0, CMOV)
	fs.setIf((d&(1<<23)) != 0, MMX)
	fs.setIf((d&(1<<25)) != 0, MMXEXT)
	fs.setIf((d&(1<<25)) != 0, SSE)
	fs.setIf((d&(1<<26)) != 0, SSE2)
	fs.setIf((c&1) != 0, SSE3)
	fs.setIf((c&(1<<5)) != 0, VMX)
	fs.setIf((c&0x00000200) != 0, SSSE3)
	fs.setIf((c&0x00080000) != 0, SSE4)
	fs.setIf((c&0x00100000) != 0, SSE42)
	fs.setIf((c&(1<<25)) != 0, AESNI)
	fs.setIf((c&(1<<1)) != 0, CLMUL)
	fs.setIf(c&(1<<23) != 0, POPCNT)
	fs.setIf(c&(1<<30) != 0, RDRAND)

	// This bit has been reserved by Intel & AMD for use by hypervisors,
	// and indicates the presence of a hypervisor.
	fs.setIf(c&(1<<31) != 0, HYPERVISOR)
	fs.setIf(c&(1<<29) != 0, F16C)
	fs.setIf(c&(1<<13) != 0, CX16)

	if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
		fs.setIf(threadsPerCore() > 1, HTT)
	}
	if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
		fs.setIf(threadsPerCore() > 1, HTT)
	}
	// Check XGETBV/XSAVE (26), OXSAVE (27) and AVX (28) bits
	const avxCheck = 1<<26 | 1<<27 | 1<<28
	if c&avxCheck == avxCheck {
		// Check for OS support
		eax, _ := xgetbv(0)
		if (eax & 0x6) == 0x6 {
			fs.set(AVX)
			switch vend {
			case Intel:
				// Older than Haswell.
				fs.setIf(family == 6 && model < 60, AVXSLOW)
			case AMD:
				// Older than Zen 2
				fs.setIf(family < 23 || (family == 23 && model < 49), AVXSLOW)
			}
		}
	}
	// FMA3 can be used with SSE registers, so no OS support is strictly needed.
	// fma3 and OSXSAVE needed.
	const fma3Check = 1<<12 | 1<<27
	fs.setIf(c&fma3Check == fma3Check, FMA3)

	// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
	if mfi >= 7 {
		_, ebx, ecx, edx := cpuidex(7, 0)
		eax1, _, _, _ := cpuidex(7, 1)
		if fs.inSet(AVX) && (ebx&0x00000020) != 0 {
			fs.set(AVX2)
		}
		// CPUID.(EAX=7, ECX=0).EBX
		if (ebx & 0x00000008) != 0 {
			fs.set(BMI1)
			fs.setIf((ebx&0x00000100) != 0, BMI2)
		}
		fs.setIf(ebx&(1<<2) != 0, SGX)
		fs.setIf(ebx&(1<<4) != 0, HLE)
		fs.setIf(ebx&(1<<9) != 0, ERMS)
		fs.setIf(ebx&(1<<11) != 0, RTM)
		fs.setIf(ebx&(1<<14) != 0, MPX)
		fs.setIf(ebx&(1<<18) != 0, RDSEED)
		fs.setIf(ebx&(1<<19) != 0, ADX)
		fs.setIf(ebx&(1<<29) != 0, SHA)
		// CPUID.(EAX=7, ECX=0).ECX
		fs.setIf(ecx&(1<<5) != 0, WAITPKG)
		fs.setIf(ecx&(1<<25) != 0, CLDEMOTE)
		fs.setIf(ecx&(1<<27) != 0, MOVDIRI)
		fs.setIf(ecx&(1<<28) != 0, MOVDIR64B)
		fs.setIf(ecx&(1<<29) != 0, ENQCMD)
		fs.setIf(ecx&(1<<30) != 0, SGXLC)
		// CPUID.(EAX=7, ECX=0).EDX
		fs.setIf(edx&(1<<11) != 0, RTM_ALWAYS_ABORT)
		fs.setIf(edx&(1<<14) != 0, SERIALIZE)
		fs.setIf(edx&(1<<16) != 0, TSXLDTRK)
		fs.setIf(edx&(1<<26) != 0, IBPB)
		fs.setIf(edx&(1<<27) != 0, STIBP)

		// Only detect AVX-512 features if XGETBV is supported
		if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
			// Check for OS support
			eax, _ := xgetbv(0)

			// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
			// ZMM16-ZMM31 state are enabled by OS)
			/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
			hasAVX512 := (eax>>5)&7 == 7 && (eax>>1)&3 == 3
			if runtime.GOOS == "darwin" {
				hasAVX512 = fs.inSet(AVX) && darwinHasAVX512()
			}
			if hasAVX512 {
				fs.setIf(ebx&(1<<16) != 0, AVX512F)
				fs.setIf(ebx&(1<<17) != 0, AVX512DQ)
				fs.setIf(ebx&(1<<21) != 0, AVX512IFMA)
				fs.setIf(ebx&(1<<26) != 0, AVX512PF)
				fs.setIf(ebx&(1<<27) != 0, AVX512ER)
				fs.setIf(ebx&(1<<28) != 0, AVX512CD)
				fs.setIf(ebx&(1<<30) != 0, AVX512BW)
				fs.setIf(ebx&(1<<31) != 0, AVX512VL)
				// ecx
				fs.setIf(ecx&(1<<1) != 0, AVX512VBMI)
				fs.setIf(ecx&(1<<6) != 0, AVX512VBMI2)
				fs.setIf(ecx&(1<<8) != 0, GFNI)
				fs.setIf(ecx&(1<<9) != 0, VAES)
				fs.setIf(ecx&(1<<10) != 0, VPCLMULQDQ)
				fs.setIf(ecx&(1<<11) != 0, AVX512VNNI)
				fs.setIf(ecx&(1<<12) != 0, AVX512BITALG)
				fs.setIf(ecx&(1<<14) != 0, AVX512VPOPCNTDQ)
				// edx
				fs.setIf(edx&(1<<8) != 0, AVX512VP2INTERSECT)
				fs.setIf(edx&(1<<22) != 0, AMXBF16)
				fs.setIf(edx&(1<<24) != 0, AMXTILE)
				fs.setIf(edx&(1<<25) != 0, AMXINT8)
				// eax1 = CPUID.(EAX=7, ECX=1).EAX
				fs.setIf(eax1&(1<<5) != 0, AVX512BF16)
			}
		}
	}

	if maxExtendedFunction() >= 0x80000001 {
		_, _, c, d := cpuid(0x80000001)
		if (c & (1 << 5)) != 0 {
			fs.set(LZCNT)
			fs.set(POPCNT)
		}
		fs.setIf((c&(1<<10)) != 0, IBS)
		fs.setIf((d&(1<<31)) != 0, AMD3DNOW)
		fs.setIf((d&(1<<30)) != 0, AMD3DNOWEXT)
		fs.setIf((d&(1<<23)) != 0, MMX)
		fs.setIf((d&(1<<22)) != 0, MMXEXT)
		fs.setIf((c&(1<<6)) != 0, SSE4A)
		fs.setIf(d&(1<<20) != 0, NX)
		fs.setIf(d&(1<<27) != 0, RDTSCP)

		/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
		 * used unless the OS has AVX support. */
		if fs.inSet(AVX) {
			fs.setIf((c&0x00000800) != 0, XOP)
			fs.setIf((c&0x00010000) != 0, FMA4)
		}

	}
	if maxExtendedFunction() >= 0x80000007 {
		_, b, _, d := cpuid(0x80000007)
		fs.setIf((b&(1<<0)) != 0, MCAOVERFLOW)
		fs.setIf((b&(1<<1)) != 0, SUCCOR)
		fs.setIf((b&(1<<2)) != 0, HWA)
		fs.setIf((d&(1<<9)) != 0, CPBOOST)
	}

	if maxExtendedFunction() >= 0x80000008 {
		_, b, _, _ := cpuid(0x80000008)
		fs.setIf((b&(1<<9)) != 0, WBNOINVD)
		fs.setIf((b&(1<<8)) != 0, MCOMMIT)
		fs.setIf((b&(1<<13)) != 0, INT_WBINVD)
		fs.setIf((b&(1<<4)) != 0, RDPRU)
		fs.setIf((b&(1<<3)) != 0, INVLPGB)
		fs.setIf((b&(1<<1)) != 0, MSRIRC)
		fs.setIf((b&(1<<0)) != 0, CLZERO)
	}

	if maxExtendedFunction() >= 0x8000001b && fs.inSet(IBS) {
		eax, _, _, _ := cpuid(0x8000001b)
		fs.setIf((eax>>0)&1 == 1, IBSFFV)
		fs.setIf((eax>>1)&1 == 1, IBSFETCHSAM)
		fs.setIf((eax>>2)&1 == 1, IBSOPSAM)
		fs.setIf((eax>>3)&1 == 1, IBSRDWROPCNT)
		fs.setIf((eax>>4)&1 == 1, IBSOPCNT)
		fs.setIf((eax>>5)&1 == 1, IBSBRNTRGT)
		fs.setIf((eax>>6)&1 == 1, IBSOPCNTEXT)
		fs.setIf((eax>>7)&1 == 1, IBSRIPINVALIDCHK)
	}

	return fs
}

func valAsString(values ...uint32) []byte {
	r := make([]byte, 4*len(values))
	for i, v := range values {
		dst := r[i*4:]
		dst[0] = byte(v & 0xff)
		dst[1] = byte((v >> 8) & 0xff)
		dst[2] = byte((v >> 16) & 0xff)
		dst[3] = byte((v >> 24) & 0xff)
		switch {
		case dst[0] == 0:
			return r[:i*4]
		case dst[1] == 0:
			return r[:i*4+1]
		case dst[2] == 0:
			return r[:i*4+2]
		case dst[3] == 0:
			return r[:i*4+3]
		}
	}
	return r
}