aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/klauspost/crc32/crc32_amd64.s
blob: e8a7941ce7569ff82d0481ff098eddc71d4d4861 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build gc

#define NOSPLIT 4
#define RODATA 8

// castagnoliSSE42 updates the (non-inverted) crc with the given buffer.
//
// func castagnoliSSE42(crc uint32, p []byte) uint32
TEXT ·castagnoliSSE42(SB), NOSPLIT, $0
	MOVL crc+0(FP), AX    // CRC value
	MOVQ p+8(FP), SI      // data pointer
	MOVQ p_len+16(FP), CX // len(p)

	// If there are fewer than 8 bytes to process, skip alignment.
	CMPQ CX, $8
	JL   less_than_8

	MOVQ SI, BX
	ANDQ $7, BX
	JZ   aligned

	// Process the first few bytes to 8-byte align the input.

	// BX = 8 - BX. We need to process this many bytes to align.
	SUBQ $1, BX
	XORQ $7, BX

	BTQ $0, BX
	JNC align_2

	CRC32B (SI), AX
	DECQ   CX
	INCQ   SI

align_2:
	BTQ $1, BX
	JNC align_4

	// CRC32W (SI), AX
	BYTE $0x66; BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06

	SUBQ $2, CX
	ADDQ $2, SI

align_4:
	BTQ $2, BX
	JNC aligned

	// CRC32L (SI), AX
	BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06

	SUBQ $4, CX
	ADDQ $4, SI

aligned:
	// The input is now 8-byte aligned and we can process 8-byte chunks.
	CMPQ CX, $8
	JL   less_than_8

	CRC32Q (SI), AX
	ADDQ   $8, SI
	SUBQ   $8, CX
	JMP    aligned

less_than_8:
	// We may have some bytes left over; process 4 bytes, then 2, then 1.
	BTQ $2, CX
	JNC less_than_4

	// CRC32L (SI), AX
	BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
	ADDQ $4, SI

less_than_4:
	BTQ $1, CX
	JNC less_than_2

	// CRC32W (SI), AX
	BYTE $0x66; BYTE $0xf2; BYTE $0x0f; BYTE $0x38; BYTE $0xf1; BYTE $0x06
	ADDQ $2, SI

less_than_2:
	BTQ $0, CX
	JNC done

	CRC32B (SI), AX

done:
	MOVL AX, ret+32(FP)
	RET

// castagnoliSSE42Triple updates three (non-inverted) crcs with (24*rounds)
// bytes from each buffer.
//
// func castagnoliSSE42Triple(
//     crc1, crc2, crc3 uint32,
//     a, b, c []byte,
//     rounds uint32,
// ) (retA uint32, retB uint32, retC uint32)
TEXT ·castagnoliSSE42Triple(SB), NOSPLIT, $0
	MOVL crcA+0(FP), AX
	MOVL crcB+4(FP), CX
	MOVL crcC+8(FP), DX

	MOVQ a+16(FP), R8  // data pointer
	MOVQ b+40(FP), R9  // data pointer
	MOVQ c+64(FP), R10 // data pointer

	MOVL rounds+88(FP), R11

loop:
	CRC32Q (R8), AX
	CRC32Q (R9), CX
	CRC32Q (R10), DX

	CRC32Q 8(R8), AX
	CRC32Q 8(R9), CX
	CRC32Q 8(R10), DX

	CRC32Q 16(R8), AX
	CRC32Q 16(R9), CX
	CRC32Q 16(R10), DX

	ADDQ $24, R8
	ADDQ $24, R9
	ADDQ $24, R10

	DECQ R11
	JNZ  loop

	MOVL AX, retA+96(FP)
	MOVL CX, retB+100(FP)
	MOVL DX, retC+104(FP)
	RET

// func haveSSE42() bool
TEXT ·haveSSE42(SB), NOSPLIT, $0
	XORQ AX, AX
	INCL AX
	CPUID
	SHRQ $20, CX
	ANDQ $1, CX
	MOVB CX, ret+0(FP)
	RET

// func haveCLMUL() bool
TEXT ·haveCLMUL(SB), NOSPLIT, $0
	XORQ AX, AX
	INCL AX
	CPUID
	SHRQ $1, CX
	ANDQ $1, CX
	MOVB CX, ret+0(FP)
	RET

// func haveSSE41() bool
TEXT ·haveSSE41(SB), NOSPLIT, $0
	XORQ AX, AX
	INCL AX
	CPUID
	SHRQ $19, CX
	ANDQ $1, CX
	MOVB CX, ret+0(FP)
	RET

// CRC32 polynomial data
//
// These constants are lifted from the
// Linux kernel, since they avoid the costly
// PSHUFB 16 byte reversal proposed in the
// original Intel paper.
DATA r2r1kp<>+0(SB)/8, $0x154442bd4
DATA r2r1kp<>+8(SB)/8, $0x1c6e41596
DATA r4r3kp<>+0(SB)/8, $0x1751997d0
DATA r4r3kp<>+8(SB)/8, $0x0ccaa009e
DATA rupolykp<>+0(SB)/8, $0x1db710641
DATA rupolykp<>+8(SB)/8, $0x1f7011641
DATA r5kp<>+0(SB)/8, $0x163cd6124

GLOBL r2r1kp<>(SB), RODATA, $16
GLOBL r4r3kp<>(SB), RODATA, $16
GLOBL rupolykp<>(SB), RODATA, $16
GLOBL r5kp<>(SB), RODATA, $8

// Based on http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
// len(p) must be at least 64, and must be a multiple of 16.

// func ieeeCLMUL(crc uint32, p []byte) uint32
TEXT ·ieeeCLMUL(SB), NOSPLIT, $0
	MOVL crc+0(FP), X0    // Initial CRC value
	MOVQ p+8(FP), SI      // data pointer
	MOVQ p_len+16(FP), CX // len(p)

	MOVOU (SI), X1
	MOVOU 16(SI), X2
	MOVOU 32(SI), X3
	MOVOU 48(SI), X4
	PXOR  X0, X1
	ADDQ  $64, SI    // buf+=64
	SUBQ  $64, CX    // len-=64
	CMPQ  CX, $64    // Less than 64 bytes left
	JB    remain64

	MOVOA r2r1kp<>+0(SB), X0

loopback64:
	MOVOA X1, X5
	MOVOA X2, X6
	MOVOA X3, X7
	MOVOA X4, X8

	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0, X0, X2
	PCLMULQDQ $0, X0, X3
	PCLMULQDQ $0, X0, X4

	// Load next early
	MOVOU (SI), X11
	MOVOU 16(SI), X12
	MOVOU 32(SI), X13
	MOVOU 48(SI), X14

	PCLMULQDQ $0x11, X0, X5
	PCLMULQDQ $0x11, X0, X6
	PCLMULQDQ $0x11, X0, X7
	PCLMULQDQ $0x11, X0, X8

	PXOR X5, X1
	PXOR X6, X2
	PXOR X7, X3
	PXOR X8, X4

	PXOR X11, X1
	PXOR X12, X2
	PXOR X13, X3
	PXOR X14, X4

	ADDQ $0x40, DI
	ADDQ $64, SI    // buf+=64
	SUBQ $64, CX    // len-=64
	CMPQ CX, $64    // Less than 64 bytes left?
	JGE  loopback64

	// Fold result into a single register (X1)
remain64:
	MOVOA r4r3kp<>+0(SB), X0

	MOVOA     X1, X5
	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0x11, X0, X5
	PXOR      X5, X1
	PXOR      X2, X1

	MOVOA     X1, X5
	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0x11, X0, X5
	PXOR      X5, X1
	PXOR      X3, X1

	MOVOA     X1, X5
	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0x11, X0, X5
	PXOR      X5, X1
	PXOR      X4, X1

	// If there is less than 16 bytes left we are done
	CMPQ CX, $16
	JB   finish

	// Encode 16 bytes
remain16:
	MOVOU     (SI), X10
	MOVOA     X1, X5
	PCLMULQDQ $0, X0, X1
	PCLMULQDQ $0x11, X0, X5
	PXOR      X5, X1
	PXOR      X10, X1
	SUBQ      $16, CX
	ADDQ      $16, SI
	CMPQ      CX, $16
	JGE       remain16

finish:
	// Fold final result into 32 bits and return it
	PCMPEQB   X3, X3
	PCLMULQDQ $1, X1, X0
	PSRLDQ    $8, X1
	PXOR      X0, X1

	MOVOA X1, X2
	MOVQ  r5kp<>+0(SB), X0

	// Creates 32 bit mask. Note that we don't care about upper half.
	PSRLQ $32, X3

	PSRLDQ    $4, X2
	PAND      X3, X1
	PCLMULQDQ $0, X0, X1
	PXOR      X2, X1

	MOVOA rupolykp<>+0(SB), X0

	MOVOA     X1, X2
	PAND      X3, X1
	PCLMULQDQ $0x10, X0, X1
	PAND      X3, X1
	PCLMULQDQ $0, X0, X1
	PXOR      X2, X1

	// PEXTRD   $1, X1, AX  (SSE 4.1)
	BYTE $0x66; BYTE $0x0f; BYTE $0x3a
	BYTE $0x16; BYTE $0xc8; BYTE $0x01
	MOVL AX, ret+32(FP)

	RET