aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/xi2/xz/dec_lzma2.go
blob: fa42e471572f673e270c96e7577c8359c445c248 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
/*
 * LZMA2 decoder
 *
 * Authors: Lasse Collin <lasse.collin@tukaani.org>
 *          Igor Pavlov <http://7-zip.org/>
 *
 * Translation to Go: Michael Cross <https://github.com/xi2>
 *
 * This file has been put into the public domain.
 * You can do whatever you want with this file.
 */

package xz

/* from linux/lib/xz/xz_lzma2.h ***************************************/

/* Range coder constants */
const (
	rcShiftBits         = 8
	rcTopBits           = 24
	rcTopValue          = 1 << rcTopBits
	rcBitModelTotalBits = 11
	rcBitModelTotal     = 1 << rcBitModelTotalBits
	rcMoveBits          = 5
)

/*
 * Maximum number of position states. A position state is the lowest pb
 * number of bits of the current uncompressed offset. In some places there
 * are different sets of probabilities for different position states.
 */
const posStatesMax = 1 << 4

/*
 * lzmaState is used to track which LZMA symbols have occurred most recently
 * and in which order. This information is used to predict the next symbol.
 *
 * Symbols:
 *  - Literal: One 8-bit byte
 *  - Match: Repeat a chunk of data at some distance
 *  - Long repeat: Multi-byte match at a recently seen distance
 *  - Short repeat: One-byte repeat at a recently seen distance
 *
 * The symbol names are in from STATE-oldest-older-previous. REP means
 * either short or long repeated match, and NONLIT means any non-literal.
 */
type lzmaState int

const (
	stateLitLit lzmaState = iota
	stateMatchLitLit
	stateRepLitLit
	stateShortrepLitLit
	stateMatchLit
	stateRepList
	stateShortrepLit
	stateLitMatch
	stateLitLongrep
	stateLitShortrep
	stateNonlitMatch
	stateNonlitRep
)

/* Total number of states */
const states = 12

/* The lowest 7 states indicate that the previous state was a literal. */
const litStates = 7

/* Indicate that the latest symbol was a literal. */
func lzmaStateLiteral(state *lzmaState) {
	switch {
	case *state <= stateShortrepLitLit:
		*state = stateLitLit
	case *state <= stateLitShortrep:
		*state -= 3
	default:
		*state -= 6
	}
}

/* Indicate that the latest symbol was a match. */
func lzmaStateMatch(state *lzmaState) {
	if *state < litStates {
		*state = stateLitMatch
	} else {
		*state = stateNonlitMatch
	}
}

/* Indicate that the latest state was a long repeated match. */
func lzmaStateLongRep(state *lzmaState) {
	if *state < litStates {
		*state = stateLitLongrep
	} else {
		*state = stateNonlitRep
	}
}

/* Indicate that the latest symbol was a short match. */
func lzmaStateShortRep(state *lzmaState) {
	if *state < litStates {
		*state = stateLitShortrep
	} else {
		*state = stateNonlitRep
	}
}

/* Test if the previous symbol was a literal. */
func lzmaStateIsLiteral(state lzmaState) bool {
	return state < litStates
}

/* Each literal coder is divided in three sections:
 *   - 0x001-0x0FF: Without match byte
 *   - 0x101-0x1FF: With match byte; match bit is 0
 *   - 0x201-0x2FF: With match byte; match bit is 1
 *
 * Match byte is used when the previous LZMA symbol was something else than
 * a literal (that is, it was some kind of match).
 */
const literalCoderSize = 0x300

/* Maximum number of literal coders */
const literalCodersMax = 1 << 4

/* Minimum length of a match is two bytes. */
const matchLenMin = 2

/* Match length is encoded with 4, 5, or 10 bits.
 *
 * Length   Bits
 *  2-9      4 = Choice=0 + 3 bits
 * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
 * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
 */
const (
	lenLowBits     = 3
	lenLowSymbols  = 1 << lenLowBits
	lenMidBits     = 3
	lenMidSymbols  = 1 << lenMidBits
	lenHighBits    = 8
	lenHighSymbols = 1 << lenHighBits
)

/*
 * Different sets of probabilities are used for match distances that have
 * very short match length: Lengths of 2, 3, and 4 bytes have a separate
 * set of probabilities for each length. The matches with longer length
 * use a shared set of probabilities.
 */
const distStates = 4

/*
 * Get the index of the appropriate probability array for decoding
 * the distance slot.
 */
func lzmaGetDistState(len uint32) uint32 {
	if len < distStates+matchLenMin {
		return len - matchLenMin
	} else {
		return distStates - 1
	}
}

/*
 * The highest two bits of a 32-bit match distance are encoded using six bits.
 * This six-bit value is called a distance slot. This way encoding a 32-bit
 * value takes 6-36 bits, larger values taking more bits.
 */
const (
	distSlotBits = 6
	distSlots    = 1 << distSlotBits
)

/* Match distances up to 127 are fully encoded using probabilities. Since
 * the highest two bits (distance slot) are always encoded using six bits,
 * the distances 0-3 don't need any additional bits to encode, since the
 * distance slot itself is the same as the actual distance. distModelStart
 * indicates the first distance slot where at least one additional bit is
 * needed.
 */
const distModelStart = 4

/*
 * Match distances greater than 127 are encoded in three pieces:
 *   - distance slot: the highest two bits
 *   - direct bits: 2-26 bits below the highest two bits
 *   - alignment bits: four lowest bits
 *
 * Direct bits don't use any probabilities.
 *
 * The distance slot value of 14 is for distances 128-191.
 */
const distModelEnd = 14

/* Distance slots that indicate a distance <= 127. */
const (
	fullDistancesBits = distModelEnd / 2
	fullDistances     = 1 << fullDistancesBits
)

/*
 * For match distances greater than 127, only the highest two bits and the
 * lowest four bits (alignment) is encoded using probabilities.
 */
const (
	alignBits = 4
	alignSize = 1 << alignBits
)

/* from linux/lib/xz/xz_dec_lzma2.c ***********************************/

/*
 * Range decoder initialization eats the first five bytes of each LZMA chunk.
 */
const rcInitBytes = 5

/*
 * Minimum number of usable input buffer to safely decode one LZMA symbol.
 * The worst case is that we decode 22 bits using probabilities and 26
 * direct bits. This may decode at maximum of 20 bytes of input. However,
 * lzmaMain does an extra normalization before returning, thus we
 * need to put 21 here.
 */
const lzmaInRequired = 21

/*
 * Dictionary (history buffer)
 *
 * These are always true:
 *    start <= pos <= full <= end
 *    pos <= limit <= end
 *    end == size
 *    size <= sizeMax
 *    len(buf) <= size
 */
type dictionary struct {
	/* The history buffer */
	buf []byte
	/* Old position in buf (before decoding more data) */
	start uint32
	/* Position in buf */
	pos uint32
	/*
	 * How full dictionary is. This is used to detect corrupt input that
	 * would read beyond the beginning of the uncompressed stream.
	 */
	full uint32
	/* Write limit; we don't write to buf[limit] or later bytes. */
	limit uint32
	/*
	 * End of the dictionary buffer. This is the same as the
	 * dictionary size.
	 */
	end uint32
	/*
	 * Size of the dictionary as specified in Block Header. This is used
	 * together with "full" to detect corrupt input that would make us
	 * read beyond the beginning of the uncompressed stream.
	 */
	size uint32
	/* Maximum allowed dictionary size. */
	sizeMax uint32
}

/* Range decoder */
type rcDec struct {
	rnge uint32
	code uint32
	/*
	 * Number of initializing bytes remaining to be read
	 * by rcReadInit.
	 */
	initBytesLeft uint32
	/*
	 * Buffer from which we read our input. It can be either
	 * temp.buf or the caller-provided input buffer.
	 */
	in      []byte
	inPos   int
	inLimit int
}

/* Probabilities for a length decoder. */
type lzmaLenDec struct {
	/* Probability of match length being at least 10 */
	choice uint16
	/* Probability of match length being at least 18 */
	choice2 uint16
	/* Probabilities for match lengths 2-9 */
	low [posStatesMax][lenLowSymbols]uint16
	/* Probabilities for match lengths 10-17 */
	mid [posStatesMax][lenMidSymbols]uint16
	/* Probabilities for match lengths 18-273 */
	high [lenHighSymbols]uint16
}

type lzmaDec struct {
	/* Distances of latest four matches */
	rep0 uint32
	rep1 uint32
	rep2 uint32
	rep3 uint32
	/* Types of the most recently seen LZMA symbols */
	state lzmaState
	/*
	 * Length of a match. This is updated so that dictRepeat can
	 * be called again to finish repeating the whole match.
	 */
	len uint32
	/*
	 * LZMA properties or related bit masks (number of literal
	 * context bits, a mask derived from the number of literal
	 * position bits, and a mask derived from the number
	 * position bits)
	 */
	lc             uint32
	literalPosMask uint32
	posMask        uint32
	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
	isMatch [states][posStatesMax]uint16
	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
	isRep [states]uint16
	/*
	 * If 0, distance of a repeated match is rep0.
	 * Otherwise check is_rep1.
	 */
	isRep0 [states]uint16
	/*
	 * If 0, distance of a repeated match is rep1.
	 * Otherwise check is_rep2.
	 */
	isRep1 [states]uint16
	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
	isRep2 [states]uint16
	/*
	 * If 1, the repeated match has length of one byte. Otherwise
	 * the length is decoded from rep_len_decoder.
	 */
	isRep0Long [states][posStatesMax]uint16
	/*
	 * Probability tree for the highest two bits of the match
	 * distance. There is a separate probability tree for match
	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
	 */
	distSlot [distStates][distSlots]uint16
	/*
	 * Probility trees for additional bits for match distance
	 * when the distance is in the range [4, 127].
	 */
	distSpecial [fullDistances - distModelEnd]uint16
	/*
	 * Probability tree for the lowest four bits of a match
	 * distance that is equal to or greater than 128.
	 */
	distAlign [alignSize]uint16
	/* Length of a normal match */
	matchLenDec lzmaLenDec
	/* Length of a repeated match */
	repLenDec lzmaLenDec
	/* Probabilities of literals */
	literal [literalCodersMax][literalCoderSize]uint16
}

// type of lzma2Dec.sequence
type lzma2Seq int

const (
	seqControl lzma2Seq = iota
	seqUncompressed1
	seqUncompressed2
	seqCompressed0
	seqCompressed1
	seqProperties
	seqLZMAPrepare
	seqLZMARun
	seqCopy
)

type lzma2Dec struct {
	/* Position in xzDecLZMA2Run. */
	sequence lzma2Seq
	/* Next position after decoding the compressed size of the chunk. */
	nextSequence lzma2Seq
	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
	uncompressed int
	/*
	 * Compressed size of LZMA chunk or compressed/uncompressed
	 * size of uncompressed chunk (64 KiB at maximum)
	 */
	compressed int
	/*
	 * True if dictionary reset is needed. This is false before
	 * the first chunk (LZMA or uncompressed).
	 */
	needDictReset bool
	/*
	 * True if new LZMA properties are needed. This is false
	 * before the first LZMA chunk.
	 */
	needProps bool
}

type xzDecLZMA2 struct {
	/*
	 * The order below is important on x86 to reduce code size and
	 * it shouldn't hurt on other platforms. Everything up to and
	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
	 * which allows using smaller instructions to access those
	 * variables. On x86-64, fewer variables fit into the first 128
	 * bytes, but this is still the best order without sacrificing
	 * the readability by splitting the structures.
	 */
	rc    rcDec
	dict  dictionary
	lzma2 lzma2Dec
	lzma  lzmaDec
	/*
	 * Temporary buffer which holds small number of input bytes between
	 * decoder calls. See lzma2LZMA for details.
	 */
	temp struct {
		buf      []byte // slice buf will be backed by bufArray
		bufArray [3 * lzmaInRequired]byte
	}
}

/**************
 * Dictionary *
 **************/

/*
 * Reset the dictionary state. When in single-call mode, set up the beginning
 * of the dictionary to point to the actual output buffer.
 */
func dictReset(dict *dictionary, b *xzBuf) {
	dict.start = 0
	dict.pos = 0
	dict.limit = 0
	dict.full = 0
}

/* Set dictionary write limit */
func dictLimit(dict *dictionary, outMax int) {
	if dict.end-dict.pos <= uint32(outMax) {
		dict.limit = dict.end
	} else {
		dict.limit = dict.pos + uint32(outMax)
	}
}

/* Return true if at least one byte can be written into the dictionary. */
func dictHasSpace(dict *dictionary) bool {
	return dict.pos < dict.limit
}

/*
 * Get a byte from the dictionary at the given distance. The distance is
 * assumed to valid, or as a special case, zero when the dictionary is
 * still empty. This special case is needed for single-call decoding to
 * avoid writing a '\x00' to the end of the destination buffer.
 */
func dictGet(dict *dictionary, dist uint32) uint32 {
	var offset uint32 = dict.pos - dist - 1
	if dist >= dict.pos {
		offset += dict.end
	}
	if dict.full > 0 {
		return uint32(dict.buf[offset])
	}
	return 0
}

/*
 * Put one byte into the dictionary. It is assumed that there is space for it.
 */
func dictPut(dict *dictionary, byte byte) {
	dict.buf[dict.pos] = byte
	dict.pos++
	if dict.full < dict.pos {
		dict.full = dict.pos
	}
}

/*
 * Repeat given number of bytes from the given distance. If the distance is
 * invalid, false is returned. On success, true is returned and *len is
 * updated to indicate how many bytes were left to be repeated.
 */
func dictRepeat(dict *dictionary, len *uint32, dist uint32) bool {
	var back uint32
	var left uint32
	if dist >= dict.full || dist >= dict.size {
		return false
	}
	left = dict.limit - dict.pos
	if left > *len {
		left = *len
	}
	*len -= left
	back = dict.pos - dist - 1
	if dist >= dict.pos {
		back += dict.end
	}
	for {
		dict.buf[dict.pos] = dict.buf[back]
		dict.pos++
		back++
		if back == dict.end {
			back = 0
		}
		left--
		if !(left > 0) {
			break
		}
	}
	if dict.full < dict.pos {
		dict.full = dict.pos
	}
	return true
}

/* Copy uncompressed data as is from input to dictionary and output buffers. */
func dictUncompressed(dict *dictionary, b *xzBuf, left *int) {
	var copySize int
	for *left > 0 && b.inPos < len(b.in) && b.outPos < len(b.out) {
		copySize = len(b.in) - b.inPos
		if copySize > len(b.out)-b.outPos {
			copySize = len(b.out) - b.outPos
		}
		if copySize > int(dict.end-dict.pos) {
			copySize = int(dict.end - dict.pos)
		}
		if copySize > *left {
			copySize = *left
		}
		*left -= copySize
		copy(dict.buf[dict.pos:], b.in[b.inPos:b.inPos+copySize])
		dict.pos += uint32(copySize)
		if dict.full < dict.pos {
			dict.full = dict.pos
		}
		if dict.pos == dict.end {
			dict.pos = 0
		}
		copy(b.out[b.outPos:], b.in[b.inPos:b.inPos+copySize])
		dict.start = dict.pos
		b.outPos += copySize
		b.inPos += copySize
	}
}

/*
 * Flush pending data from dictionary to b.out. It is assumed that there is
 * enough space in b.out. This is guaranteed because caller uses dictLimit
 * before decoding data into the dictionary.
 */
func dictFlush(dict *dictionary, b *xzBuf) int {
	var copySize int = int(dict.pos - dict.start)
	if dict.pos == dict.end {
		dict.pos = 0
	}
	copy(b.out[b.outPos:], dict.buf[dict.start:dict.start+uint32(copySize)])
	dict.start = dict.pos
	b.outPos += copySize
	return copySize
}

/*****************
 * Range decoder *
 *****************/

/* Reset the range decoder. */
func rcReset(rc *rcDec) {
	rc.rnge = ^uint32(0)
	rc.code = 0
	rc.initBytesLeft = rcInitBytes
}

/*
 * Read the first five initial bytes into rc->code if they haven't been
 * read already. (Yes, the first byte gets completely ignored.)
 */
func rcReadInit(rc *rcDec, b *xzBuf) bool {
	for rc.initBytesLeft > 0 {
		if b.inPos == len(b.in) {
			return false
		}
		rc.code = rc.code<<8 + uint32(b.in[b.inPos])
		b.inPos++
		rc.initBytesLeft--
	}
	return true
}

/* Return true if there may not be enough input for the next decoding loop. */
func rcLimitExceeded(rc *rcDec) bool {
	return rc.inPos > rc.inLimit
}

/*
 * Return true if it is possible (from point of view of range decoder) that
 * we have reached the end of the LZMA chunk.
 */
func rcIsFinished(rc *rcDec) bool {
	return rc.code == 0
}

/* Read the next input byte if needed. */
func rcNormalize(rc *rcDec) {
	if rc.rnge < rcTopValue {
		rc.rnge <<= rcShiftBits
		rc.code = rc.code<<rcShiftBits + uint32(rc.in[rc.inPos])
		rc.inPos++
	}
}

/* Decode one bit. */
func rcBit(rc *rcDec, prob *uint16) bool {
	var bound uint32
	var bit bool
	rcNormalize(rc)
	bound = (rc.rnge >> rcBitModelTotalBits) * uint32(*prob)
	if rc.code < bound {
		rc.rnge = bound
		*prob += (rcBitModelTotal - *prob) >> rcMoveBits
		bit = false
	} else {
		rc.rnge -= bound
		rc.code -= bound
		*prob -= *prob >> rcMoveBits
		bit = true
	}
	return bit
}

/* Decode a bittree starting from the most significant bit. */
func rcBittree(rc *rcDec, probs []uint16, limit uint32) uint32 {
	var symbol uint32 = 1
	for {
		if rcBit(rc, &probs[symbol-1]) {
			symbol = symbol<<1 + 1
		} else {
			symbol <<= 1
		}
		if !(symbol < limit) {
			break
		}
	}
	return symbol
}

/* Decode a bittree starting from the least significant bit. */
func rcBittreeReverse(rc *rcDec, probs []uint16, dest *uint32, limit uint32) {
	var symbol uint32 = 1
	var i uint32 = 0
	for {
		if rcBit(rc, &probs[symbol-1]) {
			symbol = symbol<<1 + 1
			*dest += 1 << i
		} else {
			symbol <<= 1
		}
		i++
		if !(i < limit) {
			break
		}
	}
}

/* Decode direct bits (fixed fifty-fifty probability) */
func rcDirect(rc *rcDec, dest *uint32, limit uint32) {
	var mask uint32
	for {
		rcNormalize(rc)
		rc.rnge >>= 1
		rc.code -= rc.rnge
		mask = 0 - rc.code>>31
		rc.code += rc.rnge & mask
		*dest = *dest<<1 + mask + 1
		limit--
		if !(limit > 0) {
			break
		}
	}
}

/********
 * LZMA *
 ********/

/* Get pointer to literal coder probability array. */
func lzmaLiteralProbs(s *xzDecLZMA2) []uint16 {
	var prevByte uint32 = dictGet(&s.dict, 0)
	var low uint32 = prevByte >> (8 - s.lzma.lc)
	var high uint32 = (s.dict.pos & s.lzma.literalPosMask) << s.lzma.lc
	return s.lzma.literal[low+high][:]
}

/* Decode a literal (one 8-bit byte) */
func lzmaLiteral(s *xzDecLZMA2) {
	var probs []uint16
	var symbol uint32
	var matchByte uint32
	var matchBit uint32
	var offset uint32
	var i uint32
	probs = lzmaLiteralProbs(s)
	if lzmaStateIsLiteral(s.lzma.state) {
		symbol = rcBittree(&s.rc, probs[1:], 0x100)
	} else {
		symbol = 1
		matchByte = dictGet(&s.dict, s.lzma.rep0) << 1
		offset = 0x100
		for {
			matchBit = matchByte & offset
			matchByte <<= 1
			i = offset + matchBit + symbol
			if rcBit(&s.rc, &probs[i]) {
				symbol = symbol<<1 + 1
				offset &= matchBit
			} else {
				symbol <<= 1
				offset &= ^matchBit
			}
			if !(symbol < 0x100) {
				break
			}
		}
	}
	dictPut(&s.dict, byte(symbol))
	lzmaStateLiteral(&s.lzma.state)
}

/* Decode the length of the match into s.lzma.len. */
func lzmaLen(s *xzDecLZMA2, l *lzmaLenDec, posState uint32) {
	var probs []uint16
	var limit uint32
	switch {
	case !rcBit(&s.rc, &l.choice):
		probs = l.low[posState][:]
		limit = lenLowSymbols
		s.lzma.len = matchLenMin
	case !rcBit(&s.rc, &l.choice2):
		probs = l.mid[posState][:]
		limit = lenMidSymbols
		s.lzma.len = matchLenMin + lenLowSymbols
	default:
		probs = l.high[:]
		limit = lenHighSymbols
		s.lzma.len = matchLenMin + lenLowSymbols + lenMidSymbols
	}
	s.lzma.len += rcBittree(&s.rc, probs[1:], limit) - limit
}

/* Decode a match. The distance will be stored in s.lzma.rep0. */
func lzmaMatch(s *xzDecLZMA2, posState uint32) {
	var probs []uint16
	var distSlot uint32
	var limit uint32
	lzmaStateMatch(&s.lzma.state)
	s.lzma.rep3 = s.lzma.rep2
	s.lzma.rep2 = s.lzma.rep1
	s.lzma.rep1 = s.lzma.rep0
	lzmaLen(s, &s.lzma.matchLenDec, posState)
	probs = s.lzma.distSlot[lzmaGetDistState(s.lzma.len)][:]
	distSlot = rcBittree(&s.rc, probs[1:], distSlots) - distSlots
	if distSlot < distModelStart {
		s.lzma.rep0 = distSlot
	} else {
		limit = distSlot>>1 - 1
		s.lzma.rep0 = 2 + distSlot&1
		if distSlot < distModelEnd {
			s.lzma.rep0 <<= limit
			probs = s.lzma.distSpecial[s.lzma.rep0-distSlot:]
			rcBittreeReverse(&s.rc, probs, &s.lzma.rep0, limit)
		} else {
			rcDirect(&s.rc, &s.lzma.rep0, limit-alignBits)
			s.lzma.rep0 <<= alignBits
			rcBittreeReverse(
				&s.rc, s.lzma.distAlign[1:], &s.lzma.rep0, alignBits)
		}
	}
}

/*
 * Decode a repeated match. The distance is one of the four most recently
 * seen matches. The distance will be stored in s.lzma.rep0.
 */
func lzmaRepMatch(s *xzDecLZMA2, posState uint32) {
	var tmp uint32
	if !rcBit(&s.rc, &s.lzma.isRep0[s.lzma.state]) {
		if !rcBit(&s.rc, &s.lzma.isRep0Long[s.lzma.state][posState]) {
			lzmaStateShortRep(&s.lzma.state)
			s.lzma.len = 1
			return
		}
	} else {
		if !rcBit(&s.rc, &s.lzma.isRep1[s.lzma.state]) {
			tmp = s.lzma.rep1
		} else {
			if !rcBit(&s.rc, &s.lzma.isRep2[s.lzma.state]) {
				tmp = s.lzma.rep2
			} else {
				tmp = s.lzma.rep3
				s.lzma.rep3 = s.lzma.rep2
			}
			s.lzma.rep2 = s.lzma.rep1
		}
		s.lzma.rep1 = s.lzma.rep0
		s.lzma.rep0 = tmp
	}
	lzmaStateLongRep(&s.lzma.state)
	lzmaLen(s, &s.lzma.repLenDec, posState)
}

/* LZMA decoder core */
func lzmaMain(s *xzDecLZMA2) bool {
	var posState uint32
	/*
	 * If the dictionary was reached during the previous call, try to
	 * finish the possibly pending repeat in the dictionary.
	 */
	if dictHasSpace(&s.dict) && s.lzma.len > 0 {
		dictRepeat(&s.dict, &s.lzma.len, s.lzma.rep0)
	}
	/*
	 * Decode more LZMA symbols. One iteration may consume up to
	 * lzmaInRequired - 1 bytes.
	 */
	for dictHasSpace(&s.dict) && !rcLimitExceeded(&s.rc) {
		posState = s.dict.pos & s.lzma.posMask
		if !rcBit(&s.rc, &s.lzma.isMatch[s.lzma.state][posState]) {
			lzmaLiteral(s)
		} else {
			if rcBit(&s.rc, &s.lzma.isRep[s.lzma.state]) {
				lzmaRepMatch(s, posState)
			} else {
				lzmaMatch(s, posState)
			}
			if !dictRepeat(&s.dict, &s.lzma.len, s.lzma.rep0) {
				return false
			}
		}
	}
	/*
	 * Having the range decoder always normalized when we are outside
	 * this function makes it easier to correctly handle end of the chunk.
	 */
	rcNormalize(&s.rc)
	return true
}

/*
 * Reset the LZMA decoder and range decoder state. Dictionary is not reset
 * here, because LZMA state may be reset without resetting the dictionary.
 */
func lzmaReset(s *xzDecLZMA2) {
	s.lzma.state = stateLitLit
	s.lzma.rep0 = 0
	s.lzma.rep1 = 0
	s.lzma.rep2 = 0
	s.lzma.rep3 = 0
	/* All probabilities are initialized to the same value, v */
	v := uint16(rcBitModelTotal / 2)
	s.lzma.matchLenDec.choice = v
	s.lzma.matchLenDec.choice2 = v
	s.lzma.repLenDec.choice = v
	s.lzma.repLenDec.choice2 = v
	for _, m := range [][]uint16{
		s.lzma.isRep[:], s.lzma.isRep0[:], s.lzma.isRep1[:],
		s.lzma.isRep2[:], s.lzma.distSpecial[:], s.lzma.distAlign[:],
		s.lzma.matchLenDec.high[:], s.lzma.repLenDec.high[:],
	} {
		for j := range m {
			m[j] = v
		}
	}
	for i := range s.lzma.isMatch {
		for j := range s.lzma.isMatch[i] {
			s.lzma.isMatch[i][j] = v
		}
	}
	for i := range s.lzma.isRep0Long {
		for j := range s.lzma.isRep0Long[i] {
			s.lzma.isRep0Long[i][j] = v
		}
	}
	for i := range s.lzma.distSlot {
		for j := range s.lzma.distSlot[i] {
			s.lzma.distSlot[i][j] = v
		}
	}
	for i := range s.lzma.literal {
		for j := range s.lzma.literal[i] {
			s.lzma.literal[i][j] = v
		}
	}
	for i := range s.lzma.matchLenDec.low {
		for j := range s.lzma.matchLenDec.low[i] {
			s.lzma.matchLenDec.low[i][j] = v
		}
	}
	for i := range s.lzma.matchLenDec.mid {
		for j := range s.lzma.matchLenDec.mid[i] {
			s.lzma.matchLenDec.mid[i][j] = v
		}
	}
	for i := range s.lzma.repLenDec.low {
		for j := range s.lzma.repLenDec.low[i] {
			s.lzma.repLenDec.low[i][j] = v
		}
	}
	for i := range s.lzma.repLenDec.mid {
		for j := range s.lzma.repLenDec.mid[i] {
			s.lzma.repLenDec.mid[i][j] = v
		}
	}
	rcReset(&s.rc)
}

/*
 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 * from the decoded lp and pb values. On success, the LZMA decoder state is
 * reset and true is returned.
 */
func lzmaProps(s *xzDecLZMA2, props byte) bool {
	if props > (4*5+4)*9+8 {
		return false
	}
	s.lzma.posMask = 0
	for props >= 9*5 {
		props -= 9 * 5
		s.lzma.posMask++
	}
	s.lzma.posMask = 1<<s.lzma.posMask - 1
	s.lzma.literalPosMask = 0
	for props >= 9 {
		props -= 9
		s.lzma.literalPosMask++
	}
	s.lzma.lc = uint32(props)
	if s.lzma.lc+s.lzma.literalPosMask > 4 {
		return false
	}
	s.lzma.literalPosMask = 1<<s.lzma.literalPosMask - 1
	lzmaReset(s)
	return true
}

/*********
 * LZMA2 *
 *********/

/*
 * The LZMA decoder assumes that if the input limit (s.rc.inLimit) hasn't
 * been exceeded, it is safe to read up to lzmaInRequired bytes. This
 * wrapper function takes care of making the LZMA decoder's assumption safe.
 *
 * As long as there is plenty of input left to be decoded in the current LZMA
 * chunk, we decode directly from the caller-supplied input buffer until
 * there's lzmaInRequired bytes left. Those remaining bytes are copied into
 * s.temp.buf, which (hopefully) gets filled on the next call to this
 * function. We decode a few bytes from the temporary buffer so that we can
 * continue decoding from the caller-supplied input buffer again.
 */
func lzma2LZMA(s *xzDecLZMA2, b *xzBuf) bool {
	var inAvail int
	var tmp int
	inAvail = len(b.in) - b.inPos
	if len(s.temp.buf) > 0 || s.lzma2.compressed == 0 {
		tmp = 2*lzmaInRequired - len(s.temp.buf)
		if tmp > s.lzma2.compressed-len(s.temp.buf) {
			tmp = s.lzma2.compressed - len(s.temp.buf)
		}
		if tmp > inAvail {
			tmp = inAvail
		}
		copy(s.temp.bufArray[len(s.temp.buf):], b.in[b.inPos:b.inPos+tmp])
		switch {
		case len(s.temp.buf)+tmp == s.lzma2.compressed:
			for i := len(s.temp.buf) + tmp; i < len(s.temp.bufArray); i++ {
				s.temp.bufArray[i] = 0
			}
			s.rc.inLimit = len(s.temp.buf) + tmp
		case len(s.temp.buf)+tmp < lzmaInRequired:
			s.temp.buf = s.temp.bufArray[:len(s.temp.buf)+tmp]
			b.inPos += tmp
			return true
		default:
			s.rc.inLimit = len(s.temp.buf) + tmp - lzmaInRequired
		}
		s.rc.in = s.temp.bufArray[:]
		s.rc.inPos = 0
		if !lzmaMain(s) || s.rc.inPos > len(s.temp.buf)+tmp {
			return false
		}
		s.lzma2.compressed -= s.rc.inPos
		if s.rc.inPos < len(s.temp.buf) {
			copy(s.temp.buf, s.temp.buf[s.rc.inPos:])
			s.temp.buf = s.temp.buf[:len(s.temp.buf)-s.rc.inPos]
			return true
		}
		b.inPos += s.rc.inPos - len(s.temp.buf)
		s.temp.buf = nil
	}
	inAvail = len(b.in) - b.inPos
	if inAvail >= lzmaInRequired {
		s.rc.in = b.in
		s.rc.inPos = b.inPos
		if inAvail >= s.lzma2.compressed+lzmaInRequired {
			s.rc.inLimit = b.inPos + s.lzma2.compressed
		} else {
			s.rc.inLimit = len(b.in) - lzmaInRequired
		}
		if !lzmaMain(s) {
			return false
		}
		inAvail = s.rc.inPos - b.inPos
		if inAvail > s.lzma2.compressed {
			return false
		}
		s.lzma2.compressed -= inAvail
		b.inPos = s.rc.inPos
	}
	inAvail = len(b.in) - b.inPos
	if inAvail < lzmaInRequired {
		if inAvail > s.lzma2.compressed {
			inAvail = s.lzma2.compressed
		}
		s.temp.buf = s.temp.bufArray[:inAvail]
		copy(s.temp.buf, b.in[b.inPos:])
		b.inPos += inAvail
	}
	return true
}

/*
 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 * decoding or copying of uncompressed chunks to other functions.
 */
func xzDecLZMA2Run(s *xzDecLZMA2, b *xzBuf) xzRet {
	var tmp int
	for b.inPos < len(b.in) || s.lzma2.sequence == seqLZMARun {
		switch s.lzma2.sequence {
		case seqControl:
			/*
			 * LZMA2 control byte
			 *
			 * Exact values:
			 *   0x00   End marker
			 *   0x01   Dictionary reset followed by
			 *          an uncompressed chunk
			 *   0x02   Uncompressed chunk (no dictionary reset)
			 *
			 * Highest three bits (s.control & 0xE0):
			 *   0xE0   Dictionary reset, new properties and state
			 *          reset, followed by LZMA compressed chunk
			 *   0xC0   New properties and state reset, followed
			 *          by LZMA compressed chunk (no dictionary
			 *          reset)
			 *   0xA0   State reset using old properties,
			 *          followed by LZMA compressed chunk (no
			 *          dictionary reset)
			 *   0x80   LZMA chunk (no dictionary or state reset)
			 *
			 * For LZMA compressed chunks, the lowest five bits
			 * (s.control & 1F) are the highest bits of the
			 * uncompressed size (bits 16-20).
			 *
			 * A new LZMA2 stream must begin with a dictionary
			 * reset. The first LZMA chunk must set new
			 * properties and reset the LZMA state.
			 *
			 * Values that don't match anything described above
			 * are invalid and we return xzDataError.
			 */
			tmp = int(b.in[b.inPos])
			b.inPos++
			if tmp == 0x00 {
				return xzStreamEnd
			}
			switch {
			case tmp >= 0xe0 || tmp == 0x01:
				s.lzma2.needProps = true
				s.lzma2.needDictReset = false
				dictReset(&s.dict, b)
			case s.lzma2.needDictReset:
				return xzDataError
			}
			if tmp >= 0x80 {
				s.lzma2.uncompressed = (tmp & 0x1f) << 16
				s.lzma2.sequence = seqUncompressed1
				switch {
				case tmp >= 0xc0:
					/*
					 * When there are new properties,
					 * state reset is done at
					 * seqProperties.
					 */
					s.lzma2.needProps = false
					s.lzma2.nextSequence = seqProperties
				case s.lzma2.needProps:
					return xzDataError
				default:
					s.lzma2.nextSequence = seqLZMAPrepare
					if tmp >= 0xa0 {
						lzmaReset(s)
					}
				}
			} else {
				if tmp > 0x02 {
					return xzDataError
				}
				s.lzma2.sequence = seqCompressed0
				s.lzma2.nextSequence = seqCopy
			}
		case seqUncompressed1:
			s.lzma2.uncompressed += int(b.in[b.inPos]) << 8
			b.inPos++
			s.lzma2.sequence = seqUncompressed2
		case seqUncompressed2:
			s.lzma2.uncompressed += int(b.in[b.inPos]) + 1
			b.inPos++
			s.lzma2.sequence = seqCompressed0
		case seqCompressed0:
			s.lzma2.compressed += int(b.in[b.inPos]) << 8
			b.inPos++
			s.lzma2.sequence = seqCompressed1
		case seqCompressed1:
			s.lzma2.compressed += int(b.in[b.inPos]) + 1
			b.inPos++
			s.lzma2.sequence = s.lzma2.nextSequence
		case seqProperties:
			if !lzmaProps(s, b.in[b.inPos]) {
				return xzDataError
			}
			b.inPos++
			s.lzma2.sequence = seqLZMAPrepare
			fallthrough
		case seqLZMAPrepare:
			if s.lzma2.compressed < rcInitBytes {
				return xzDataError
			}
			if !rcReadInit(&s.rc, b) {
				return xzOK
			}
			s.lzma2.compressed -= rcInitBytes
			s.lzma2.sequence = seqLZMARun
			fallthrough
		case seqLZMARun:
			/*
			 * Set dictionary limit to indicate how much we want
			 * to be encoded at maximum. Decode new data into the
			 * dictionary. Flush the new data from dictionary to
			 * b.out. Check if we finished decoding this chunk.
			 * In case the dictionary got full but we didn't fill
			 * the output buffer yet, we may run this loop
			 * multiple times without changing s.lzma2.sequence.
			 */
			outMax := len(b.out) - b.outPos
			if outMax > s.lzma2.uncompressed {
				outMax = s.lzma2.uncompressed
			}
			dictLimit(&s.dict, outMax)
			if !lzma2LZMA(s, b) {
				return xzDataError
			}
			s.lzma2.uncompressed -= dictFlush(&s.dict, b)
			switch {
			case s.lzma2.uncompressed == 0:
				if s.lzma2.compressed > 0 || s.lzma.len > 0 ||
					!rcIsFinished(&s.rc) {
					return xzDataError
				}
				rcReset(&s.rc)
				s.lzma2.sequence = seqControl
			case b.outPos == len(b.out) ||
				b.inPos == len(b.in) &&
					len(s.temp.buf) < s.lzma2.compressed:
				return xzOK
			}
		case seqCopy:
			dictUncompressed(&s.dict, b, &s.lzma2.compressed)
			if s.lzma2.compressed > 0 {
				return xzOK
			}
			s.lzma2.sequence = seqControl
		}
	}
	return xzOK
}

/*
 * Allocate memory for LZMA2 decoder. xzDecLZMA2Reset must be used
 * before calling xzDecLZMA2Run.
 */
func xzDecLZMA2Create(dictMax uint32) *xzDecLZMA2 {
	s := new(xzDecLZMA2)
	s.dict.sizeMax = dictMax
	return s
}

/*
 * Decode the LZMA2 properties (one byte) and reset the decoder. Return
 * xzOK on success, xzMemlimitError if the preallocated dictionary is not
 * big enough, and xzOptionsError if props indicates something that this
 * decoder doesn't support.
 */
func xzDecLZMA2Reset(s *xzDecLZMA2, props byte) xzRet {
	if props > 40 {
		return xzOptionsError // Bigger than 4 GiB
	}
	if props == 40 {
		s.dict.size = ^uint32(0)
	} else {
		s.dict.size = uint32(2 + props&1)
		s.dict.size <<= props>>1 + 11
	}
	if s.dict.size > s.dict.sizeMax {
		return xzMemlimitError
	}
	s.dict.end = s.dict.size
	if len(s.dict.buf) < int(s.dict.size) {
		s.dict.buf = make([]byte, s.dict.size)
	}
	s.lzma.len = 0
	s.lzma2.sequence = seqControl
	s.lzma2.compressed = 0
	s.lzma2.uncompressed = 0
	s.lzma2.needDictReset = true
	s.temp.buf = nil
	return xzOK
}