summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/ssh/handshake.go
blob: 37d42e47f71bb93351f66b0efdfcd68c43276cd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssh

import (
	"crypto/rand"
	"errors"
	"fmt"
	"io"
	"log"
	"net"
	"sync"
)

// debugHandshake, if set, prints messages sent and received.  Key
// exchange messages are printed as if DH were used, so the debug
// messages are wrong when using ECDH.
const debugHandshake = false

// keyingTransport is a packet based transport that supports key
// changes. It need not be thread-safe. It should pass through
// msgNewKeys in both directions.
type keyingTransport interface {
	packetConn

	// prepareKeyChange sets up a key change. The key change for a
	// direction will be effected if a msgNewKeys message is sent
	// or received.
	prepareKeyChange(*algorithms, *kexResult) error
}

// handshakeTransport implements rekeying on top of a keyingTransport
// and offers a thread-safe writePacket() interface.
type handshakeTransport struct {
	conn   keyingTransport
	config *Config

	serverVersion []byte
	clientVersion []byte

	// hostKeys is non-empty if we are the server. In that case,
	// it contains all host keys that can be used to sign the
	// connection.
	hostKeys []Signer

	// hostKeyAlgorithms is non-empty if we are the client. In that case,
	// we accept these key types from the server as host key.
	hostKeyAlgorithms []string

	// On read error, incoming is closed, and readError is set.
	incoming  chan []byte
	readError error

	// data for host key checking
	hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error
	dialAddress     string
	remoteAddr      net.Addr

	readSinceKex uint64

	// Protects the writing side of the connection
	mu              sync.Mutex
	cond            *sync.Cond
	sentInitPacket  []byte
	sentInitMsg     *kexInitMsg
	writtenSinceKex uint64
	writeError      error

	// The session ID or nil if first kex did not complete yet.
	sessionID []byte
}

func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
	t := &handshakeTransport{
		conn:          conn,
		serverVersion: serverVersion,
		clientVersion: clientVersion,
		incoming:      make(chan []byte, 16),
		config:        config,
	}
	t.cond = sync.NewCond(&t.mu)
	return t
}

func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
	t.dialAddress = dialAddr
	t.remoteAddr = addr
	t.hostKeyCallback = config.HostKeyCallback
	if config.HostKeyAlgorithms != nil {
		t.hostKeyAlgorithms = config.HostKeyAlgorithms
	} else {
		t.hostKeyAlgorithms = supportedHostKeyAlgos
	}
	go t.readLoop()
	return t
}

func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
	t.hostKeys = config.hostKeys
	go t.readLoop()
	return t
}

func (t *handshakeTransport) getSessionID() []byte {
	return t.sessionID
}

func (t *handshakeTransport) id() string {
	if len(t.hostKeys) > 0 {
		return "server"
	}
	return "client"
}

func (t *handshakeTransport) readPacket() ([]byte, error) {
	p, ok := <-t.incoming
	if !ok {
		return nil, t.readError
	}
	return p, nil
}

func (t *handshakeTransport) readLoop() {
	for {
		p, err := t.readOnePacket()
		if err != nil {
			t.readError = err
			close(t.incoming)
			break
		}
		if p[0] == msgIgnore || p[0] == msgDebug {
			continue
		}
		t.incoming <- p
	}

	// If we can't read, declare the writing part dead too.
	t.mu.Lock()
	defer t.mu.Unlock()
	if t.writeError == nil {
		t.writeError = t.readError
	}
	t.cond.Broadcast()
}

func (t *handshakeTransport) readOnePacket() ([]byte, error) {
	if t.readSinceKex > t.config.RekeyThreshold {
		if err := t.requestKeyChange(); err != nil {
			return nil, err
		}
	}

	p, err := t.conn.readPacket()
	if err != nil {
		return nil, err
	}

	t.readSinceKex += uint64(len(p))
	if debugHandshake {
		if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
			log.Printf("%s got data (packet %d bytes)", t.id(), len(p))
		} else {
			msg, err := decode(p)
			log.Printf("%s got %T %v (%v)", t.id(), msg, msg, err)
		}
	}
	if p[0] != msgKexInit {
		return p, nil
	}

	t.mu.Lock()

	firstKex := t.sessionID == nil

	err = t.enterKeyExchangeLocked(p)
	if err != nil {
		// drop connection
		t.conn.Close()
		t.writeError = err
	}

	if debugHandshake {
		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
	}

	// Unblock writers.
	t.sentInitMsg = nil
	t.sentInitPacket = nil
	t.cond.Broadcast()
	t.writtenSinceKex = 0
	t.mu.Unlock()

	if err != nil {
		return nil, err
	}

	t.readSinceKex = 0

	// By default, a key exchange is hidden from higher layers by
	// translating it into msgIgnore.
	successPacket := []byte{msgIgnore}
	if firstKex {
		// sendKexInit() for the first kex waits for
		// msgNewKeys so the authentication process is
		// guaranteed to happen over an encrypted transport.
		successPacket = []byte{msgNewKeys}
	}

	return successPacket, nil
}

// keyChangeCategory describes whether a key exchange is the first on a
// connection, or a subsequent one.
type keyChangeCategory bool

const (
	firstKeyExchange      keyChangeCategory = true
	subsequentKeyExchange keyChangeCategory = false
)

// sendKexInit sends a key change message, and returns the message
// that was sent. After initiating the key change, all writes will be
// blocked until the change is done, and a failed key change will
// close the underlying transport. This function is safe for
// concurrent use by multiple goroutines.
func (t *handshakeTransport) sendKexInit(isFirst keyChangeCategory) error {
	var err error

	t.mu.Lock()
	// If this is the initial key change, but we already have a sessionID,
	// then do nothing because the key exchange has already completed
	// asynchronously.
	if !isFirst || t.sessionID == nil {
		_, _, err = t.sendKexInitLocked(isFirst)
	}
	t.mu.Unlock()
	if err != nil {
		return err
	}
	if isFirst {
		if packet, err := t.readPacket(); err != nil {
			return err
		} else if packet[0] != msgNewKeys {
			return unexpectedMessageError(msgNewKeys, packet[0])
		}
	}
	return nil
}

func (t *handshakeTransport) requestInitialKeyChange() error {
	return t.sendKexInit(firstKeyExchange)
}

func (t *handshakeTransport) requestKeyChange() error {
	return t.sendKexInit(subsequentKeyExchange)
}

// sendKexInitLocked sends a key change message. t.mu must be locked
// while this happens.
func (t *handshakeTransport) sendKexInitLocked(isFirst keyChangeCategory) (*kexInitMsg, []byte, error) {
	// kexInits may be sent either in response to the other side,
	// or because our side wants to initiate a key change, so we
	// may have already sent a kexInit. In that case, don't send a
	// second kexInit.
	if t.sentInitMsg != nil {
		return t.sentInitMsg, t.sentInitPacket, nil
	}

	msg := &kexInitMsg{
		KexAlgos:                t.config.KeyExchanges,
		CiphersClientServer:     t.config.Ciphers,
		CiphersServerClient:     t.config.Ciphers,
		MACsClientServer:        t.config.MACs,
		MACsServerClient:        t.config.MACs,
		CompressionClientServer: supportedCompressions,
		CompressionServerClient: supportedCompressions,
	}
	io.ReadFull(rand.Reader, msg.Cookie[:])

	if len(t.hostKeys) > 0 {
		for _, k := range t.hostKeys {
			msg.ServerHostKeyAlgos = append(
				msg.ServerHostKeyAlgos, k.PublicKey().Type())
		}
	} else {
		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
	}
	packet := Marshal(msg)

	// writePacket destroys the contents, so save a copy.
	packetCopy := make([]byte, len(packet))
	copy(packetCopy, packet)

	if err := t.conn.writePacket(packetCopy); err != nil {
		return nil, nil, err
	}

	t.sentInitMsg = msg
	t.sentInitPacket = packet
	return msg, packet, nil
}

func (t *handshakeTransport) writePacket(p []byte) error {
	t.mu.Lock()
	defer t.mu.Unlock()

	if t.writtenSinceKex > t.config.RekeyThreshold {
		t.sendKexInitLocked(subsequentKeyExchange)
	}
	for t.sentInitMsg != nil && t.writeError == nil {
		t.cond.Wait()
	}
	if t.writeError != nil {
		return t.writeError
	}
	t.writtenSinceKex += uint64(len(p))

	switch p[0] {
	case msgKexInit:
		return errors.New("ssh: only handshakeTransport can send kexInit")
	case msgNewKeys:
		return errors.New("ssh: only handshakeTransport can send newKeys")
	default:
		return t.conn.writePacket(p)
	}
}

func (t *handshakeTransport) Close() error {
	return t.conn.Close()
}

// enterKeyExchange runs the key exchange. t.mu must be held while running this.
func (t *handshakeTransport) enterKeyExchangeLocked(otherInitPacket []byte) error {
	if debugHandshake {
		log.Printf("%s entered key exchange", t.id())
	}
	myInit, myInitPacket, err := t.sendKexInitLocked(subsequentKeyExchange)
	if err != nil {
		return err
	}

	otherInit := &kexInitMsg{}
	if err := Unmarshal(otherInitPacket, otherInit); err != nil {
		return err
	}

	magics := handshakeMagics{
		clientVersion: t.clientVersion,
		serverVersion: t.serverVersion,
		clientKexInit: otherInitPacket,
		serverKexInit: myInitPacket,
	}

	clientInit := otherInit
	serverInit := myInit
	if len(t.hostKeys) == 0 {
		clientInit = myInit
		serverInit = otherInit

		magics.clientKexInit = myInitPacket
		magics.serverKexInit = otherInitPacket
	}

	algs, err := findAgreedAlgorithms(clientInit, serverInit)
	if err != nil {
		return err
	}

	// We don't send FirstKexFollows, but we handle receiving it.
	//
	// RFC 4253 section 7 defines the kex and the agreement method for
	// first_kex_packet_follows. It states that the guessed packet
	// should be ignored if the "kex algorithm and/or the host
	// key algorithm is guessed wrong (server and client have
	// different preferred algorithm), or if any of the other
	// algorithms cannot be agreed upon". The other algorithms have
	// already been checked above so the kex algorithm and host key
	// algorithm are checked here.
	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
		// other side sent a kex message for the wrong algorithm,
		// which we have to ignore.
		if _, err := t.conn.readPacket(); err != nil {
			return err
		}
	}

	kex, ok := kexAlgoMap[algs.kex]
	if !ok {
		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", algs.kex)
	}

	var result *kexResult
	if len(t.hostKeys) > 0 {
		result, err = t.server(kex, algs, &magics)
	} else {
		result, err = t.client(kex, algs, &magics)
	}

	if err != nil {
		return err
	}

	if t.sessionID == nil {
		t.sessionID = result.H
	}
	result.SessionID = t.sessionID

	t.conn.prepareKeyChange(algs, result)
	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
		return err
	}
	if packet, err := t.conn.readPacket(); err != nil {
		return err
	} else if packet[0] != msgNewKeys {
		return unexpectedMessageError(msgNewKeys, packet[0])
	}

	return nil
}

func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
	var hostKey Signer
	for _, k := range t.hostKeys {
		if algs.hostKey == k.PublicKey().Type() {
			hostKey = k
		}
	}

	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
	return r, err
}

func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
	result, err := kex.Client(t.conn, t.config.Rand, magics)
	if err != nil {
		return nil, err
	}

	hostKey, err := ParsePublicKey(result.HostKey)
	if err != nil {
		return nil, err
	}

	if err := verifyHostKeySignature(hostKey, result); err != nil {
		return nil, err
	}

	if t.hostKeyCallback != nil {
		err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
		if err != nil {
			return nil, err
		}
	}

	return result, nil
}