summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/ssh/kex.go
blob: 16072004b17a9efcba32446d197ef0cca2a50ed9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssh

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rand"
	"crypto/subtle"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math/big"

	"golang.org/x/crypto/curve25519"
)

const (
	kexAlgoDH1SHA1          = "diffie-hellman-group1-sha1"
	kexAlgoDH14SHA1         = "diffie-hellman-group14-sha1"
	kexAlgoECDH256          = "ecdh-sha2-nistp256"
	kexAlgoECDH384          = "ecdh-sha2-nistp384"
	kexAlgoECDH521          = "ecdh-sha2-nistp521"
	kexAlgoCurve25519SHA256 = "curve25519-sha256@libssh.org"

	// For the following kex only the client half contains a production
	// ready implementation. The server half only consists of a minimal
	// implementation to satisfy the automated tests.
	kexAlgoDHGEXSHA1   = "diffie-hellman-group-exchange-sha1"
	kexAlgoDHGEXSHA256 = "diffie-hellman-group-exchange-sha256"
)

// kexResult captures the outcome of a key exchange.
type kexResult struct {
	// Session hash. See also RFC 4253, section 8.
	H []byte

	// Shared secret. See also RFC 4253, section 8.
	K []byte

	// Host key as hashed into H.
	HostKey []byte

	// Signature of H.
	Signature []byte

	// A cryptographic hash function that matches the security
	// level of the key exchange algorithm. It is used for
	// calculating H, and for deriving keys from H and K.
	Hash crypto.Hash

	// The session ID, which is the first H computed. This is used
	// to derive key material inside the transport.
	SessionID []byte
}

// handshakeMagics contains data that is always included in the
// session hash.
type handshakeMagics struct {
	clientVersion, serverVersion []byte
	clientKexInit, serverKexInit []byte
}

func (m *handshakeMagics) write(w io.Writer) {
	writeString(w, m.clientVersion)
	writeString(w, m.serverVersion)
	writeString(w, m.clientKexInit)
	writeString(w, m.serverKexInit)
}

// kexAlgorithm abstracts different key exchange algorithms.
type kexAlgorithm interface {
	// Server runs server-side key agreement, signing the result
	// with a hostkey.
	Server(p packetConn, rand io.Reader, magics *handshakeMagics, s Signer) (*kexResult, error)

	// Client runs the client-side key agreement. Caller is
	// responsible for verifying the host key signature.
	Client(p packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error)
}

// dhGroup is a multiplicative group suitable for implementing Diffie-Hellman key agreement.
type dhGroup struct {
	g, p, pMinus1 *big.Int
}

func (group *dhGroup) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) {
	if theirPublic.Cmp(bigOne) <= 0 || theirPublic.Cmp(group.pMinus1) >= 0 {
		return nil, errors.New("ssh: DH parameter out of bounds")
	}
	return new(big.Int).Exp(theirPublic, myPrivate, group.p), nil
}

func (group *dhGroup) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
	hashFunc := crypto.SHA1

	var x *big.Int
	for {
		var err error
		if x, err = rand.Int(randSource, group.pMinus1); err != nil {
			return nil, err
		}
		if x.Sign() > 0 {
			break
		}
	}

	X := new(big.Int).Exp(group.g, x, group.p)
	kexDHInit := kexDHInitMsg{
		X: X,
	}
	if err := c.writePacket(Marshal(&kexDHInit)); err != nil {
		return nil, err
	}

	packet, err := c.readPacket()
	if err != nil {
		return nil, err
	}

	var kexDHReply kexDHReplyMsg
	if err = Unmarshal(packet, &kexDHReply); err != nil {
		return nil, err
	}

	ki, err := group.diffieHellman(kexDHReply.Y, x)
	if err != nil {
		return nil, err
	}

	h := hashFunc.New()
	magics.write(h)
	writeString(h, kexDHReply.HostKey)
	writeInt(h, X)
	writeInt(h, kexDHReply.Y)
	K := make([]byte, intLength(ki))
	marshalInt(K, ki)
	h.Write(K)

	return &kexResult{
		H:         h.Sum(nil),
		K:         K,
		HostKey:   kexDHReply.HostKey,
		Signature: kexDHReply.Signature,
		Hash:      crypto.SHA1,
	}, nil
}

func (group *dhGroup) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
	hashFunc := crypto.SHA1
	packet, err := c.readPacket()
	if err != nil {
		return
	}
	var kexDHInit kexDHInitMsg
	if err = Unmarshal(packet, &kexDHInit); err != nil {
		return
	}

	var y *big.Int
	for {
		if y, err = rand.Int(randSource, group.pMinus1); err != nil {
			return
		}
		if y.Sign() > 0 {
			break
		}
	}

	Y := new(big.Int).Exp(group.g, y, group.p)
	ki, err := group.diffieHellman(kexDHInit.X, y)
	if err != nil {
		return nil, err
	}

	hostKeyBytes := priv.PublicKey().Marshal()

	h := hashFunc.New()
	magics.write(h)
	writeString(h, hostKeyBytes)
	writeInt(h, kexDHInit.X)
	writeInt(h, Y)

	K := make([]byte, intLength(ki))
	marshalInt(K, ki)
	h.Write(K)

	H := h.Sum(nil)

	// H is already a hash, but the hostkey signing will apply its
	// own key-specific hash algorithm.
	sig, err := signAndMarshal(priv, randSource, H)
	if err != nil {
		return nil, err
	}

	kexDHReply := kexDHReplyMsg{
		HostKey:   hostKeyBytes,
		Y:         Y,
		Signature: sig,
	}
	packet = Marshal(&kexDHReply)

	err = c.writePacket(packet)
	return &kexResult{
		H:         H,
		K:         K,
		HostKey:   hostKeyBytes,
		Signature: sig,
		Hash:      crypto.SHA1,
	}, nil
}

// ecdh performs Elliptic Curve Diffie-Hellman key exchange as
// described in RFC 5656, section 4.
type ecdh struct {
	curve elliptic.Curve
}

func (kex *ecdh) Client(c packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error) {
	ephKey, err := ecdsa.GenerateKey(kex.curve, rand)
	if err != nil {
		return nil, err
	}

	kexInit := kexECDHInitMsg{
		ClientPubKey: elliptic.Marshal(kex.curve, ephKey.PublicKey.X, ephKey.PublicKey.Y),
	}

	serialized := Marshal(&kexInit)
	if err := c.writePacket(serialized); err != nil {
		return nil, err
	}

	packet, err := c.readPacket()
	if err != nil {
		return nil, err
	}

	var reply kexECDHReplyMsg
	if err = Unmarshal(packet, &reply); err != nil {
		return nil, err
	}

	x, y, err := unmarshalECKey(kex.curve, reply.EphemeralPubKey)
	if err != nil {
		return nil, err
	}

	// generate shared secret
	secret, _ := kex.curve.ScalarMult(x, y, ephKey.D.Bytes())

	h := ecHash(kex.curve).New()
	magics.write(h)
	writeString(h, reply.HostKey)
	writeString(h, kexInit.ClientPubKey)
	writeString(h, reply.EphemeralPubKey)
	K := make([]byte, intLength(secret))
	marshalInt(K, secret)
	h.Write(K)

	return &kexResult{
		H:         h.Sum(nil),
		K:         K,
		HostKey:   reply.HostKey,
		Signature: reply.Signature,
		Hash:      ecHash(kex.curve),
	}, nil
}

// unmarshalECKey parses and checks an EC key.
func unmarshalECKey(curve elliptic.Curve, pubkey []byte) (x, y *big.Int, err error) {
	x, y = elliptic.Unmarshal(curve, pubkey)
	if x == nil {
		return nil, nil, errors.New("ssh: elliptic.Unmarshal failure")
	}
	if !validateECPublicKey(curve, x, y) {
		return nil, nil, errors.New("ssh: public key not on curve")
	}
	return x, y, nil
}

// validateECPublicKey checks that the point is a valid public key for
// the given curve. See [SEC1], 3.2.2
func validateECPublicKey(curve elliptic.Curve, x, y *big.Int) bool {
	if x.Sign() == 0 && y.Sign() == 0 {
		return false
	}

	if x.Cmp(curve.Params().P) >= 0 {
		return false
	}

	if y.Cmp(curve.Params().P) >= 0 {
		return false
	}

	if !curve.IsOnCurve(x, y) {
		return false
	}

	// We don't check if N * PubKey == 0, since
	//
	// - the NIST curves have cofactor = 1, so this is implicit.
	// (We don't foresee an implementation that supports non NIST
	// curves)
	//
	// - for ephemeral keys, we don't need to worry about small
	// subgroup attacks.
	return true
}

func (kex *ecdh) Server(c packetConn, rand io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
	packet, err := c.readPacket()
	if err != nil {
		return nil, err
	}

	var kexECDHInit kexECDHInitMsg
	if err = Unmarshal(packet, &kexECDHInit); err != nil {
		return nil, err
	}

	clientX, clientY, err := unmarshalECKey(kex.curve, kexECDHInit.ClientPubKey)
	if err != nil {
		return nil, err
	}

	// We could cache this key across multiple users/multiple
	// connection attempts, but the benefit is small. OpenSSH
	// generates a new key for each incoming connection.
	ephKey, err := ecdsa.GenerateKey(kex.curve, rand)
	if err != nil {
		return nil, err
	}

	hostKeyBytes := priv.PublicKey().Marshal()

	serializedEphKey := elliptic.Marshal(kex.curve, ephKey.PublicKey.X, ephKey.PublicKey.Y)

	// generate shared secret
	secret, _ := kex.curve.ScalarMult(clientX, clientY, ephKey.D.Bytes())

	h := ecHash(kex.curve).New()
	magics.write(h)
	writeString(h, hostKeyBytes)
	writeString(h, kexECDHInit.ClientPubKey)
	writeString(h, serializedEphKey)

	K := make([]byte, intLength(secret))
	marshalInt(K, secret)
	h.Write(K)

	H := h.Sum(nil)

	// H is already a hash, but the hostkey signing will apply its
	// own key-specific hash algorithm.
	sig, err := signAndMarshal(priv, rand, H)
	if err != nil {
		return nil, err
	}

	reply := kexECDHReplyMsg{
		EphemeralPubKey: serializedEphKey,
		HostKey:         hostKeyBytes,
		Signature:       sig,
	}

	serialized := Marshal(&reply)
	if err := c.writePacket(serialized); err != nil {
		return nil, err
	}

	return &kexResult{
		H:         H,
		K:         K,
		HostKey:   reply.HostKey,
		Signature: sig,
		Hash:      ecHash(kex.curve),
	}, nil
}

var kexAlgoMap = map[string]kexAlgorithm{}

func init() {
	// This is the group called diffie-hellman-group1-sha1 in RFC
	// 4253 and Oakley Group 2 in RFC 2409.
	p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF", 16)
	kexAlgoMap[kexAlgoDH1SHA1] = &dhGroup{
		g:       new(big.Int).SetInt64(2),
		p:       p,
		pMinus1: new(big.Int).Sub(p, bigOne),
	}

	// This is the group called diffie-hellman-group14-sha1 in RFC
	// 4253 and Oakley Group 14 in RFC 3526.
	p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)

	kexAlgoMap[kexAlgoDH14SHA1] = &dhGroup{
		g:       new(big.Int).SetInt64(2),
		p:       p,
		pMinus1: new(big.Int).Sub(p, bigOne),
	}

	kexAlgoMap[kexAlgoECDH521] = &ecdh{elliptic.P521()}
	kexAlgoMap[kexAlgoECDH384] = &ecdh{elliptic.P384()}
	kexAlgoMap[kexAlgoECDH256] = &ecdh{elliptic.P256()}
	kexAlgoMap[kexAlgoCurve25519SHA256] = &curve25519sha256{}
	kexAlgoMap[kexAlgoDHGEXSHA1] = &dhGEXSHA{hashFunc: crypto.SHA1}
	kexAlgoMap[kexAlgoDHGEXSHA256] = &dhGEXSHA{hashFunc: crypto.SHA256}
}

// curve25519sha256 implements the curve25519-sha256@libssh.org key
// agreement protocol, as described in
// https://git.libssh.org/projects/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
type curve25519sha256 struct{}

type curve25519KeyPair struct {
	priv [32]byte
	pub  [32]byte
}

func (kp *curve25519KeyPair) generate(rand io.Reader) error {
	if _, err := io.ReadFull(rand, kp.priv[:]); err != nil {
		return err
	}
	curve25519.ScalarBaseMult(&kp.pub, &kp.priv)
	return nil
}

// curve25519Zeros is just an array of 32 zero bytes so that we have something
// convenient to compare against in order to reject curve25519 points with the
// wrong order.
var curve25519Zeros [32]byte

func (kex *curve25519sha256) Client(c packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error) {
	var kp curve25519KeyPair
	if err := kp.generate(rand); err != nil {
		return nil, err
	}
	if err := c.writePacket(Marshal(&kexECDHInitMsg{kp.pub[:]})); err != nil {
		return nil, err
	}

	packet, err := c.readPacket()
	if err != nil {
		return nil, err
	}

	var reply kexECDHReplyMsg
	if err = Unmarshal(packet, &reply); err != nil {
		return nil, err
	}
	if len(reply.EphemeralPubKey) != 32 {
		return nil, errors.New("ssh: peer's curve25519 public value has wrong length")
	}

	var servPub, secret [32]byte
	copy(servPub[:], reply.EphemeralPubKey)
	curve25519.ScalarMult(&secret, &kp.priv, &servPub)
	if subtle.ConstantTimeCompare(secret[:], curve25519Zeros[:]) == 1 {
		return nil, errors.New("ssh: peer's curve25519 public value has wrong order")
	}

	h := crypto.SHA256.New()
	magics.write(h)
	writeString(h, reply.HostKey)
	writeString(h, kp.pub[:])
	writeString(h, reply.EphemeralPubKey)

	ki := new(big.Int).SetBytes(secret[:])
	K := make([]byte, intLength(ki))
	marshalInt(K, ki)
	h.Write(K)

	return &kexResult{
		H:         h.Sum(nil),
		K:         K,
		HostKey:   reply.HostKey,
		Signature: reply.Signature,
		Hash:      crypto.SHA256,
	}, nil
}

func (kex *curve25519sha256) Server(c packetConn, rand io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
	packet, err := c.readPacket()
	if err != nil {
		return
	}
	var kexInit kexECDHInitMsg
	if err = Unmarshal(packet, &kexInit); err != nil {
		return
	}

	if len(kexInit.ClientPubKey) != 32 {
		return nil, errors.New("ssh: peer's curve25519 public value has wrong length")
	}

	var kp curve25519KeyPair
	if err := kp.generate(rand); err != nil {
		return nil, err
	}

	var clientPub, secret [32]byte
	copy(clientPub[:], kexInit.ClientPubKey)
	curve25519.ScalarMult(&secret, &kp.priv, &clientPub)
	if subtle.ConstantTimeCompare(secret[:], curve25519Zeros[:]) == 1 {
		return nil, errors.New("ssh: peer's curve25519 public value has wrong order")
	}

	hostKeyBytes := priv.PublicKey().Marshal()

	h := crypto.SHA256.New()
	magics.write(h)
	writeString(h, hostKeyBytes)
	writeString(h, kexInit.ClientPubKey)
	writeString(h, kp.pub[:])

	ki := new(big.Int).SetBytes(secret[:])
	K := make([]byte, intLength(ki))
	marshalInt(K, ki)
	h.Write(K)

	H := h.Sum(nil)

	sig, err := signAndMarshal(priv, rand, H)
	if err != nil {
		return nil, err
	}

	reply := kexECDHReplyMsg{
		EphemeralPubKey: kp.pub[:],
		HostKey:         hostKeyBytes,
		Signature:       sig,
	}
	if err := c.writePacket(Marshal(&reply)); err != nil {
		return nil, err
	}
	return &kexResult{
		H:         H,
		K:         K,
		HostKey:   hostKeyBytes,
		Signature: sig,
		Hash:      crypto.SHA256,
	}, nil
}

// dhGEXSHA implements the diffie-hellman-group-exchange-sha1 and
// diffie-hellman-group-exchange-sha256 key agreement protocols,
// as described in RFC 4419
type dhGEXSHA struct {
	g, p     *big.Int
	hashFunc crypto.Hash
}

const numMRTests = 64

const (
	dhGroupExchangeMinimumBits   = 2048
	dhGroupExchangePreferredBits = 2048
	dhGroupExchangeMaximumBits   = 8192
)

func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) {
	if theirPublic.Sign() <= 0 || theirPublic.Cmp(gex.p) >= 0 {
		return nil, fmt.Errorf("ssh: DH parameter out of bounds")
	}
	return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil
}

func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
	// Send GexRequest
	kexDHGexRequest := kexDHGexRequestMsg{
		MinBits:      dhGroupExchangeMinimumBits,
		PreferedBits: dhGroupExchangePreferredBits,
		MaxBits:      dhGroupExchangeMaximumBits,
	}
	if err := c.writePacket(Marshal(&kexDHGexRequest)); err != nil {
		return nil, err
	}

	// Receive GexGroup
	packet, err := c.readPacket()
	if err != nil {
		return nil, err
	}

	var kexDHGexGroup kexDHGexGroupMsg
	if err = Unmarshal(packet, &kexDHGexGroup); err != nil {
		return nil, err
	}

	// reject if p's bit length < dhGroupExchangeMinimumBits or > dhGroupExchangeMaximumBits
	if kexDHGexGroup.P.BitLen() < dhGroupExchangeMinimumBits || kexDHGexGroup.P.BitLen() > dhGroupExchangeMaximumBits {
		return nil, fmt.Errorf("ssh: server-generated gex p is out of range (%d bits)", kexDHGexGroup.P.BitLen())
	}

	gex.p = kexDHGexGroup.P
	gex.g = kexDHGexGroup.G

	// Check if p is safe by verifing that p and (p-1)/2 are primes
	one := big.NewInt(1)
	var pHalf = &big.Int{}
	pHalf.Rsh(gex.p, 1)
	if !gex.p.ProbablyPrime(numMRTests) || !pHalf.ProbablyPrime(numMRTests) {
		return nil, fmt.Errorf("ssh: server provided gex p is not safe")
	}

	// Check if g is safe by verifing that g > 1 and g < p - 1
	var pMinusOne = &big.Int{}
	pMinusOne.Sub(gex.p, one)
	if gex.g.Cmp(one) != 1 && gex.g.Cmp(pMinusOne) != -1 {
		return nil, fmt.Errorf("ssh: server provided gex g is not safe")
	}

	// Send GexInit
	x, err := rand.Int(randSource, pHalf)
	if err != nil {
		return nil, err
	}
	X := new(big.Int).Exp(gex.g, x, gex.p)
	kexDHGexInit := kexDHGexInitMsg{
		X: X,
	}
	if err := c.writePacket(Marshal(&kexDHGexInit)); err != nil {
		return nil, err
	}

	// Receive GexReply
	packet, err = c.readPacket()
	if err != nil {
		return nil, err
	}

	var kexDHGexReply kexDHGexReplyMsg
	if err = Unmarshal(packet, &kexDHGexReply); err != nil {
		return nil, err
	}

	kInt, err := gex.diffieHellman(kexDHGexReply.Y, x)
	if err != nil {
		return nil, err
	}

	// Check if k is safe by verifing that k > 1 and k < p - 1
	if kInt.Cmp(one) != 1 && kInt.Cmp(pMinusOne) != -1 {
		return nil, fmt.Errorf("ssh: derived k is not safe")
	}

	h := gex.hashFunc.New()
	magics.write(h)
	writeString(h, kexDHGexReply.HostKey)
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMinimumBits))
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangePreferredBits))
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMaximumBits))
	writeInt(h, gex.p)
	writeInt(h, gex.g)
	writeInt(h, X)
	writeInt(h, kexDHGexReply.Y)
	K := make([]byte, intLength(kInt))
	marshalInt(K, kInt)
	h.Write(K)

	return &kexResult{
		H:         h.Sum(nil),
		K:         K,
		HostKey:   kexDHGexReply.HostKey,
		Signature: kexDHGexReply.Signature,
		Hash:      gex.hashFunc,
	}, nil
}

// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
//
// This is a minimal implementation to satisfy the automated tests.
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
	// Receive GexRequest
	packet, err := c.readPacket()
	if err != nil {
		return
	}
	var kexDHGexRequest kexDHGexRequestMsg
	if err = Unmarshal(packet, &kexDHGexRequest); err != nil {
		return
	}

	// smoosh the user's preferred size into our own limits
	if kexDHGexRequest.PreferedBits > dhGroupExchangeMaximumBits {
		kexDHGexRequest.PreferedBits = dhGroupExchangeMaximumBits
	}
	if kexDHGexRequest.PreferedBits < dhGroupExchangeMinimumBits {
		kexDHGexRequest.PreferedBits = dhGroupExchangeMinimumBits
	}
	// fix min/max if they're inconsistent.  technically, we could just pout
	// and hang up, but there's no harm in giving them the benefit of the
	// doubt and just picking a bitsize for them.
	if kexDHGexRequest.MinBits > kexDHGexRequest.PreferedBits {
		kexDHGexRequest.MinBits = kexDHGexRequest.PreferedBits
	}
	if kexDHGexRequest.MaxBits < kexDHGexRequest.PreferedBits {
		kexDHGexRequest.MaxBits = kexDHGexRequest.PreferedBits
	}

	// Send GexGroup
	// This is the group called diffie-hellman-group14-sha1 in RFC
	// 4253 and Oakley Group 14 in RFC 3526.
	p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
	gex.p = p
	gex.g = big.NewInt(2)

	kexDHGexGroup := kexDHGexGroupMsg{
		P: gex.p,
		G: gex.g,
	}
	if err := c.writePacket(Marshal(&kexDHGexGroup)); err != nil {
		return nil, err
	}

	// Receive GexInit
	packet, err = c.readPacket()
	if err != nil {
		return
	}
	var kexDHGexInit kexDHGexInitMsg
	if err = Unmarshal(packet, &kexDHGexInit); err != nil {
		return
	}

	var pHalf = &big.Int{}
	pHalf.Rsh(gex.p, 1)

	y, err := rand.Int(randSource, pHalf)
	if err != nil {
		return
	}

	Y := new(big.Int).Exp(gex.g, y, gex.p)
	kInt, err := gex.diffieHellman(kexDHGexInit.X, y)
	if err != nil {
		return nil, err
	}

	hostKeyBytes := priv.PublicKey().Marshal()

	h := gex.hashFunc.New()
	magics.write(h)
	writeString(h, hostKeyBytes)
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMinimumBits))
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangePreferredBits))
	binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMaximumBits))
	writeInt(h, gex.p)
	writeInt(h, gex.g)
	writeInt(h, kexDHGexInit.X)
	writeInt(h, Y)

	K := make([]byte, intLength(kInt))
	marshalInt(K, kInt)
	h.Write(K)

	H := h.Sum(nil)

	// H is already a hash, but the hostkey signing will apply its
	// own key-specific hash algorithm.
	sig, err := signAndMarshal(priv, randSource, H)
	if err != nil {
		return nil, err
	}

	kexDHGexReply := kexDHGexReplyMsg{
		HostKey:   hostKeyBytes,
		Y:         Y,
		Signature: sig,
	}
	packet = Marshal(&kexDHGexReply)

	err = c.writePacket(packet)

	return &kexResult{
		H:         H,
		K:         K,
		HostKey:   hostKeyBytes,
		Signature: sig,
		Hash:      gex.hashFunc,
	}, err
}