You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

TicketNotifier.java 21KB

Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
Ticket tracker with patchset contributions A basic issue tracker styled as a hybrid of GitHub and BitBucket issues. You may attach commits to an existing ticket or you can push a single commit to create a *proposal* ticket. Tickets keep track of patchsets (one or more commits) and allow patchset rewriting (rebase, amend, squash) by detecing the non-fast-forward update and assigning a new patchset number to the new commits. Ticket tracker -------------- The ticket tracker stores tickets as an append-only journal of changes. The journals are deserialized and a ticket is built by applying the journal entries. Tickets are indexed using Apache Lucene and all queries and searches are executed against this Lucene index. There is one trade-off to this persistence design: user attributions are non-relational. What does that mean? Each journal entry stores the username of the author. If the username changes in the user service, the journal entry will not reflect that change because the values are hard-coded. Here are a few reasons/justifications for this design choice: 1. commit identifications (author, committer, tagger) are non-relational 2. maintains the KISS principle 3. your favorite text editor can still be your administration tool Persistence Choices ------------------- **FileTicketService**: stores journals on the filesystem **BranchTicketService**: stores journals on an orphan branch **RedisTicketService**: stores journals in a Redis key-value datastore It should be relatively straight-forward to develop other backends (MongoDB, etc) as long as the journal design is preserved. Pushing Commits --------------- Each push to a ticket is identified as a patchset revision. A patchset revision may add commits to the patchset (fast-forward) OR a patchset revision may rewrite history (rebase, squash, rebase+squash, or amend). Patchset authors should not be afraid to polish, revise, and rewrite their code before merging into the proposed branch. Gitblit will create one ref for each patchset. These refs are updated for fast-forward pushes or created for rewrites. They are formatted as `refs/tickets/{shard}/{id}/{patchset}`. The *shard* is the last two digits of the id. If the id < 10, prefix a 0. The *shard* is always two digits long. The shard's purpose is to ensure Gitblit doesn't exceed any filesystem directory limits for file creation. **Creating a Proposal Ticket** You may create a new change proposal ticket just by pushing a **single commit** to `refs/for/{branch}` where branch is the proposed integration branch OR `refs/for/new` or `refs/for/default` which both will use the default repository branch. git push origin HEAD:refs/for/new **Updating a Patchset** The safe way to update an existing patchset is to push to the patchset ref. git push origin HEAD:refs/heads/ticket/{id} This ensures you do not accidentally create a new patchset in the event that the patchset was updated after you last pulled. The not-so-safe way to update an existing patchset is to push using the magic ref. git push origin HEAD:refs/for/{id} This push ref will update an exisitng patchset OR create a new patchset if the update is non-fast-forward. **Rebasing, Squashing, Amending** Gitblit makes rebasing, squashing, and amending patchsets easy. Normally, pushing a non-fast-forward update would require rewind (RW+) repository permissions. Gitblit provides a magic ref which will allow ticket participants to rewrite a ticket patchset as long as the ticket is open. git push origin HEAD:refs/for/{id} Pushing changes to this ref allows the patchset authors to rebase, squash, or amend the patchset commits without requiring client-side use of the *--force* flag on push AND without requiring RW+ permission to the repository. Since each patchset is tracked with a ref it is easy to recover from accidental non-fast-forward updates. Features -------- - Ticket tracker with status changes and responsible assignments - Patchset revision scoring mechanism - Update/Rewrite patchset handling - Close-on-push detection - Server-side Merge button for simple merges - Comments with Markdown syntax support - Rich mail notifications - Voting - Mentions - Watch lists - Querying - Searches - Partial miletones support - Multiple backend options
10 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Copyright 2014 gitblit.com.
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. package com.gitblit.tickets;
  17. import java.io.IOException;
  18. import java.io.InputStream;
  19. import java.text.DateFormat;
  20. import java.text.MessageFormat;
  21. import java.text.SimpleDateFormat;
  22. import java.util.ArrayList;
  23. import java.util.Arrays;
  24. import java.util.Collections;
  25. import java.util.HashMap;
  26. import java.util.HashSet;
  27. import java.util.List;
  28. import java.util.Map;
  29. import java.util.Set;
  30. import java.util.TreeMap;
  31. import java.util.TreeSet;
  32. import java.util.regex.Matcher;
  33. import java.util.regex.Pattern;
  34. import org.apache.commons.io.IOUtils;
  35. import org.eclipse.jgit.diff.DiffEntry.ChangeType;
  36. import org.eclipse.jgit.lib.Repository;
  37. import org.eclipse.jgit.revwalk.RevCommit;
  38. import org.slf4j.Logger;
  39. import org.slf4j.LoggerFactory;
  40. import com.gitblit.Constants;
  41. import com.gitblit.IStoredSettings;
  42. import com.gitblit.Keys;
  43. import com.gitblit.git.PatchsetCommand;
  44. import com.gitblit.manager.INotificationManager;
  45. import com.gitblit.manager.IRepositoryManager;
  46. import com.gitblit.manager.IRuntimeManager;
  47. import com.gitblit.manager.IUserManager;
  48. import com.gitblit.models.Mailing;
  49. import com.gitblit.models.PathModel.PathChangeModel;
  50. import com.gitblit.models.RepositoryModel;
  51. import com.gitblit.models.TicketModel;
  52. import com.gitblit.models.TicketModel.Change;
  53. import com.gitblit.models.TicketModel.Field;
  54. import com.gitblit.models.TicketModel.Patchset;
  55. import com.gitblit.models.TicketModel.Review;
  56. import com.gitblit.models.TicketModel.Status;
  57. import com.gitblit.models.UserModel;
  58. import com.gitblit.utils.ArrayUtils;
  59. import com.gitblit.utils.DiffUtils;
  60. import com.gitblit.utils.DiffUtils.DiffStat;
  61. import com.gitblit.utils.JGitUtils;
  62. import com.gitblit.utils.MarkdownUtils;
  63. import com.gitblit.utils.StringUtils;
  64. /**
  65. * Formats and queues ticket/patch notifications for dispatch to the
  66. * mail executor upon completion of a push or a ticket update. Messages are
  67. * created as Markdown and then transformed to html.
  68. *
  69. * @author James Moger
  70. *
  71. */
  72. public class TicketNotifier {
  73. protected final Map<Long, Mailing> queue = new TreeMap<Long, Mailing>();
  74. private final String SOFT_BRK = "\n";
  75. private final String HARD_BRK = "\n\n";
  76. private final String HR = "----\n\n";
  77. private final IStoredSettings settings;
  78. private final INotificationManager notificationManager;
  79. private final IUserManager userManager;
  80. private final IRepositoryManager repositoryManager;
  81. private final ITicketService ticketService;
  82. private final String addPattern = "<span style=\"color:darkgreen;\">+{0}</span>";
  83. private final String delPattern = "<span style=\"color:darkred;\">-{0}</span>";
  84. private final Logger log = LoggerFactory.getLogger(getClass());
  85. public TicketNotifier(
  86. IRuntimeManager runtimeManager,
  87. INotificationManager notificationManager,
  88. IUserManager userManager,
  89. IRepositoryManager repositoryManager,
  90. ITicketService ticketService) {
  91. this.settings = runtimeManager.getSettings();
  92. this.notificationManager = notificationManager;
  93. this.userManager = userManager;
  94. this.repositoryManager = repositoryManager;
  95. this.ticketService = ticketService;
  96. }
  97. public void sendAll() {
  98. for (Mailing mail : queue.values()) {
  99. notificationManager.send(mail);
  100. }
  101. }
  102. public void sendMailing(TicketModel ticket) {
  103. queueMailing(ticket);
  104. sendAll();
  105. }
  106. /**
  107. * Queues an update notification.
  108. *
  109. * @param ticket
  110. * @return a notification object used for testing
  111. */
  112. public Mailing queueMailing(TicketModel ticket) {
  113. try {
  114. // format notification message
  115. String markdown = formatLastChange(ticket);
  116. StringBuilder html = new StringBuilder();
  117. html.append("<head>");
  118. html.append(readStyle());
  119. html.append(readViewTicketAction(ticket));
  120. html.append("</head>");
  121. html.append("<body>");
  122. html.append(MarkdownUtils.transformGFM(settings, markdown, ticket.repository));
  123. html.append("</body>");
  124. Mailing mailing = Mailing.newHtml();
  125. mailing.from = getUserModel(ticket.updatedBy == null ? ticket.createdBy : ticket.updatedBy).getDisplayName();
  126. mailing.subject = getSubject(ticket);
  127. mailing.content = html.toString();
  128. mailing.id = "ticket." + ticket.number + "." + StringUtils.getSHA1(ticket.repository + ticket.number);
  129. setRecipients(ticket, mailing);
  130. queue.put(ticket.number, mailing);
  131. return mailing;
  132. } catch (Exception e) {
  133. log.error("failed to queue mailing for #{}", ticket.number, e);
  134. }
  135. return null;
  136. }
  137. protected String getSubject(TicketModel ticket) {
  138. Change lastChange = ticket.changes.get(ticket.changes.size() - 1);
  139. boolean newTicket = lastChange.isStatusChange() && ticket.changes.size() == 1;
  140. String re = newTicket ? "" : "Re: ";
  141. String subject = MessageFormat.format("{0}[{1}] {2} (#{3,number,0})",
  142. re, StringUtils.stripDotGit(ticket.repository), ticket.title, ticket.number);
  143. return subject;
  144. }
  145. protected String formatLastChange(TicketModel ticket) {
  146. Change lastChange = ticket.changes.get(ticket.changes.size() - 1);
  147. UserModel user = getUserModel(lastChange.author);
  148. // define the fields we do NOT want to see in an email notification
  149. Set<TicketModel.Field> fieldExclusions = new HashSet<TicketModel.Field>();
  150. fieldExclusions.addAll(Arrays.asList(Field.watchers, Field.voters));
  151. StringBuilder sb = new StringBuilder();
  152. boolean newTicket = lastChange.isStatusChange() && Status.New == lastChange.getStatus();
  153. boolean isFastForward = true;
  154. List<RevCommit> commits = null;
  155. DiffStat diffstat = null;
  156. String pattern;
  157. if (lastChange.hasPatchset()) {
  158. // patchset uploaded
  159. Patchset patchset = lastChange.patchset;
  160. String base = "";
  161. // determine the changed paths
  162. Repository repo = null;
  163. try {
  164. repo = repositoryManager.getRepository(ticket.repository);
  165. if (patchset.isFF() && (patchset.rev > 1)) {
  166. // fast-forward update, just show the new data
  167. isFastForward = true;
  168. Patchset prev = ticket.getPatchset(patchset.number, patchset.rev - 1);
  169. base = prev.tip;
  170. } else {
  171. // proposal OR non-fast-forward update
  172. isFastForward = false;
  173. base = patchset.base;
  174. }
  175. diffstat = DiffUtils.getDiffStat(repo, base, patchset.tip);
  176. commits = JGitUtils.getRevLog(repo, base, patchset.tip);
  177. } catch (Exception e) {
  178. log.error("failed to get changed paths", e);
  179. } finally {
  180. if (repo != null) {
  181. repo.close();
  182. }
  183. }
  184. String compareUrl = ticketService.getCompareUrl(ticket, base, patchset.tip);
  185. if (newTicket) {
  186. // new proposal
  187. pattern = "**{0}** is proposing a change.";
  188. sb.append(MessageFormat.format(pattern, user.getDisplayName()));
  189. fieldExclusions.add(Field.status);
  190. fieldExclusions.add(Field.title);
  191. fieldExclusions.add(Field.body);
  192. } else {
  193. // describe the patchset
  194. if (patchset.isFF()) {
  195. pattern = "**{0}** added {1} {2} to patchset {3}.";
  196. sb.append(MessageFormat.format(pattern, user.getDisplayName(), patchset.added, patchset.added == 1 ? "commit" : "commits", patchset.number));
  197. } else {
  198. pattern = "**{0}** uploaded patchset {1}. *({2})*";
  199. sb.append(MessageFormat.format(pattern, user.getDisplayName(), patchset.number, patchset.type.toString().toUpperCase()));
  200. }
  201. }
  202. sb.append(HARD_BRK);
  203. sb.append(MessageFormat.format("{0} {1}, {2} {3}, <span style=\"color:darkgreen;\">+{4} insertions</span>, <span style=\"color:darkred;\">-{5} deletions</span> from {6}. [compare]({7})",
  204. commits.size(), commits.size() == 1 ? "commit" : "commits",
  205. diffstat.paths.size(),
  206. diffstat.paths.size() == 1 ? "file" : "files",
  207. diffstat.getInsertions(),
  208. diffstat.getDeletions(),
  209. isFastForward ? "previous revision" : "merge base",
  210. compareUrl));
  211. // note commit additions on a rebase,if any
  212. switch (lastChange.patchset.type) {
  213. case Rebase:
  214. if (lastChange.patchset.added > 0) {
  215. sb.append(SOFT_BRK);
  216. sb.append(MessageFormat.format("{0} {1} added.", lastChange.patchset.added, lastChange.patchset.added == 1 ? "commit" : "commits"));
  217. }
  218. break;
  219. default:
  220. break;
  221. }
  222. sb.append(HARD_BRK);
  223. } else if (lastChange.isStatusChange()) {
  224. if (newTicket) {
  225. fieldExclusions.add(Field.status);
  226. fieldExclusions.add(Field.title);
  227. fieldExclusions.add(Field.body);
  228. pattern = "**{0}** created this ticket.";
  229. sb.append(MessageFormat.format(pattern, user.getDisplayName()));
  230. } else if (lastChange.hasField(Field.mergeSha)) {
  231. // closed by merged
  232. pattern = "**{0}** closed this ticket by merging {1} to {2}.";
  233. // identify patchset that closed the ticket
  234. String merged = ticket.mergeSha;
  235. for (Patchset patchset : ticket.getPatchsets()) {
  236. if (patchset.tip.equals(ticket.mergeSha)) {
  237. merged = patchset.toString();
  238. break;
  239. }
  240. }
  241. sb.append(MessageFormat.format(pattern, user.getDisplayName(), merged, ticket.mergeTo));
  242. } else {
  243. // workflow status change by user
  244. pattern = "**{0}** changed the status of this ticket to **{1}**.";
  245. sb.append(MessageFormat.format(pattern, user.getDisplayName(), lastChange.getStatus().toString().toUpperCase()));
  246. }
  247. sb.append(HARD_BRK);
  248. } else if (lastChange.hasReview()) {
  249. // review
  250. Review review = lastChange.review;
  251. pattern = "**{0}** has reviewed patchset {1,number,0} revision {2,number,0}.";
  252. sb.append(MessageFormat.format(pattern, user.getDisplayName(), review.patchset, review.rev));
  253. sb.append(HARD_BRK);
  254. String d = settings.getString(Keys.web.datestampShortFormat, "yyyy-MM-dd");
  255. String t = settings.getString(Keys.web.timeFormat, "HH:mm");
  256. DateFormat df = new SimpleDateFormat(d + " " + t);
  257. List<Change> reviews = ticket.getReviews(ticket.getPatchset(review.patchset, review.rev));
  258. sb.append("| Date | Reviewer | Score | Description |\n");
  259. sb.append("| :--- | :------------ | :---: | :----------- |\n");
  260. for (Change change : reviews) {
  261. String name = change.author;
  262. UserModel u = userManager.getUserModel(change.author);
  263. if (u != null) {
  264. name = u.getDisplayName();
  265. }
  266. String score;
  267. switch (change.review.score) {
  268. case approved:
  269. score = MessageFormat.format(addPattern, change.review.score.getValue());
  270. break;
  271. case vetoed:
  272. score = MessageFormat.format(delPattern, Math.abs(change.review.score.getValue()));
  273. break;
  274. default:
  275. score = "" + change.review.score.getValue();
  276. }
  277. String date = df.format(change.date);
  278. sb.append(String.format("| %1$s | %2$s | %3$s | %4$s |\n",
  279. date, name, score, change.review.score.toString()));
  280. }
  281. sb.append(HARD_BRK);
  282. } else if (lastChange.hasComment()) {
  283. // comment update
  284. sb.append(MessageFormat.format("**{0}** commented on this ticket.", user.getDisplayName()));
  285. sb.append(HARD_BRK);
  286. } else if (lastChange.hasReference()) {
  287. // reference update
  288. String type = "?";
  289. switch (lastChange.reference.getSourceType()) {
  290. case Commit: { type = "commit"; } break;
  291. case Ticket: { type = "ticket"; } break;
  292. default: { } break;
  293. }
  294. sb.append(MessageFormat.format("**{0}** referenced this ticket in {1} {2}", type, lastChange.toString()));
  295. sb.append(HARD_BRK);
  296. } else {
  297. // general update
  298. pattern = "**{0}** has updated this ticket.";
  299. sb.append(MessageFormat.format(pattern, user.getDisplayName()));
  300. sb.append(HARD_BRK);
  301. }
  302. // ticket link
  303. sb.append(MessageFormat.format("[view ticket {0,number,0}]({1})",
  304. ticket.number, ticketService.getTicketUrl(ticket)));
  305. sb.append(HARD_BRK);
  306. if (newTicket) {
  307. // ticket title
  308. sb.append(MessageFormat.format("### {0}", ticket.title));
  309. sb.append(HARD_BRK);
  310. // ticket description, on state change
  311. if (StringUtils.isEmpty(ticket.body)) {
  312. sb.append("<span style=\"color: #888;\">no description entered</span>");
  313. } else {
  314. sb.append(ticket.body);
  315. }
  316. sb.append(HARD_BRK);
  317. sb.append(HR);
  318. }
  319. // field changes
  320. if (lastChange.hasFieldChanges()) {
  321. Map<Field, String> filtered = new HashMap<Field, String>();
  322. for (Map.Entry<Field, String> fc : lastChange.fields.entrySet()) {
  323. if (!fieldExclusions.contains(fc.getKey())) {
  324. // field is included
  325. filtered.put(fc.getKey(), fc.getValue());
  326. }
  327. }
  328. // sort by field ordinal
  329. List<Field> fields = new ArrayList<Field>(filtered.keySet());
  330. Collections.sort(fields);
  331. if (filtered.size() > 0) {
  332. sb.append(HARD_BRK);
  333. sb.append("| Field Changes ||\n");
  334. sb.append("| ------------: | :----------- |\n");
  335. for (Field field : fields) {
  336. String value;
  337. if (filtered.get(field) == null) {
  338. value = "";
  339. } else {
  340. value = filtered.get(field).replace("\r\n", "<br/>").replace("\n", "<br/>").replace("|", "&#124;");
  341. }
  342. sb.append(String.format("| **%1$s:** | %2$s |\n", field.name(), value));
  343. }
  344. sb.append(HARD_BRK);
  345. }
  346. }
  347. // new comment
  348. if (lastChange.hasComment()) {
  349. sb.append(HR);
  350. sb.append(lastChange.comment.text);
  351. sb.append(HARD_BRK);
  352. }
  353. // insert the patchset details and review instructions
  354. if (lastChange.hasPatchset() && ticket.isOpen()) {
  355. if (commits != null && commits.size() > 0) {
  356. // append the commit list
  357. String title = isFastForward ? "Commits added to previous patchset revision" : "All commits in patchset";
  358. sb.append(MessageFormat.format("| {0} |||\n", title));
  359. sb.append("| SHA | Author | Title |\n");
  360. sb.append("| :-- | :----- | :---- |\n");
  361. for (RevCommit commit : commits) {
  362. sb.append(MessageFormat.format("| {0} | {1} | {2} |\n",
  363. commit.getName(), commit.getAuthorIdent().getName(),
  364. StringUtils.trimString(commit.getShortMessage(), Constants.LEN_SHORTLOG).replace("|", "&#124;")));
  365. }
  366. sb.append(HARD_BRK);
  367. }
  368. if (diffstat != null) {
  369. // append the changed path list
  370. String title = isFastForward ? "Files changed since previous patchset revision" : "All files changed in patchset";
  371. sb.append(MessageFormat.format("| {0} |||\n", title));
  372. sb.append("| :-- | :----------- | :-: |\n");
  373. for (PathChangeModel path : diffstat.paths) {
  374. String add = MessageFormat.format(addPattern, path.insertions);
  375. String del = MessageFormat.format(delPattern, path.deletions);
  376. String diff = null;
  377. switch (path.changeType) {
  378. case ADD:
  379. diff = add;
  380. break;
  381. case DELETE:
  382. diff = del;
  383. break;
  384. case MODIFY:
  385. if (path.insertions > 0 && path.deletions > 0) {
  386. // insertions & deletions
  387. diff = add + "/" + del;
  388. } else if (path.insertions > 0) {
  389. // just insertions
  390. diff = add;
  391. } else {
  392. // just deletions
  393. diff = del;
  394. }
  395. break;
  396. default:
  397. diff = path.changeType.name();
  398. break;
  399. }
  400. sb.append(MessageFormat.format("| {0} | {1} | {2} |\n",
  401. getChangeType(path.changeType), path.name, diff));
  402. }
  403. sb.append(HARD_BRK);
  404. }
  405. sb.append(formatPatchsetInstructions(ticket, lastChange.patchset));
  406. }
  407. return sb.toString();
  408. }
  409. protected String getChangeType(ChangeType type) {
  410. String style = null;
  411. switch (type) {
  412. case ADD:
  413. style = "color:darkgreen;";
  414. break;
  415. case COPY:
  416. style = "";
  417. break;
  418. case DELETE:
  419. style = "color:darkred;";
  420. break;
  421. case MODIFY:
  422. style = "";
  423. break;
  424. case RENAME:
  425. style = "";
  426. break;
  427. default:
  428. break;
  429. }
  430. String code = type.name().toUpperCase().substring(0, 1);
  431. if (style == null) {
  432. return code;
  433. } else {
  434. return MessageFormat.format("<strong><span style=\"{0}padding:2px;margin:2px;border:1px solid #ddd;\">{1}</span></strong>", style, code);
  435. }
  436. }
  437. /**
  438. * Generates patchset review instructions for command-line git
  439. *
  440. * @param patchset
  441. * @return instructions
  442. */
  443. protected String formatPatchsetInstructions(TicketModel ticket, Patchset patchset) {
  444. String canonicalUrl = settings.getString(Keys.web.canonicalUrl, "https://localhost:8443");
  445. String repositoryUrl = canonicalUrl + Constants.R_PATH + ticket.repository;
  446. String ticketBranch = Repository.shortenRefName(PatchsetCommand.getTicketBranch(ticket.number));
  447. String patchsetBranch = PatchsetCommand.getPatchsetBranch(ticket.number, patchset.number);
  448. String reviewBranch = PatchsetCommand.getReviewBranch(ticket.number);
  449. String instructions = readResource("commands.md");
  450. instructions = instructions.replace("${ticketId}", "" + ticket.number);
  451. instructions = instructions.replace("${patchset}", "" + patchset.number);
  452. instructions = instructions.replace("${repositoryUrl}", repositoryUrl);
  453. instructions = instructions.replace("${ticketRef}", ticketBranch);
  454. instructions = instructions.replace("${patchsetRef}", patchsetBranch);
  455. instructions = instructions.replace("${reviewBranch}", reviewBranch);
  456. instructions = instructions.replace("${ticketBranch}", ticketBranch);
  457. return instructions;
  458. }
  459. /**
  460. * Gets the usermodel for the username. Creates a temp model, if required.
  461. *
  462. * @param username
  463. * @return a usermodel
  464. */
  465. protected UserModel getUserModel(String username) {
  466. UserModel user = userManager.getUserModel(username);
  467. if (user == null) {
  468. // create a temporary user model (for unit tests)
  469. user = new UserModel(username);
  470. }
  471. return user;
  472. }
  473. /**
  474. * Set the proper recipients for a ticket.
  475. *
  476. * @param ticket
  477. * @param mailing
  478. */
  479. protected void setRecipients(TicketModel ticket, Mailing mailing) {
  480. RepositoryModel repository = repositoryManager.getRepositoryModel(ticket.repository);
  481. //
  482. // Direct TO recipients
  483. // reporter & responsible
  484. //
  485. Set<String> tos = new TreeSet<String>();
  486. tos.add(ticket.createdBy);
  487. if (!StringUtils.isEmpty(ticket.responsible)) {
  488. tos.add(ticket.responsible);
  489. }
  490. Set<String> toAddresses = new TreeSet<String>();
  491. for (String name : tos) {
  492. UserModel user = userManager.getUserModel(name);
  493. if (user != null && !user.disabled) {
  494. if (!StringUtils.isEmpty(user.emailAddress)) {
  495. if (user.canView(repository)) {
  496. toAddresses.add(user.emailAddress);
  497. } else {
  498. log.warn("ticket {}-{}: {} can not receive notification", repository.name, ticket.number, user.username);
  499. }
  500. }
  501. }
  502. }
  503. //
  504. // CC recipients
  505. //
  506. Set<String> ccs = new TreeSet<String>();
  507. // repository owners
  508. if (!ArrayUtils.isEmpty(repository.owners)) {
  509. ccs.addAll(repository.owners);
  510. }
  511. // cc users mentioned in last comment
  512. Change lastChange = ticket.changes.get(ticket.changes.size() - 1);
  513. if (lastChange.hasComment()) {
  514. Pattern p = Pattern.compile(Constants.REGEX_TICKET_MENTION);
  515. Matcher m = p.matcher(lastChange.comment.text);
  516. while (m.find()) {
  517. String username = m.group("user");
  518. ccs.add(username);
  519. }
  520. }
  521. // cc users who are watching the ticket
  522. ccs.addAll(ticket.getWatchers());
  523. // TODO cc users who are watching the repository
  524. Set<String> ccAddresses = new TreeSet<String>();
  525. for (String name : ccs) {
  526. UserModel user = userManager.getUserModel(name);
  527. if (user != null && !user.disabled) {
  528. if (!StringUtils.isEmpty(user.emailAddress)) {
  529. if (user.canView(repository)) {
  530. ccAddresses.add(user.emailAddress);
  531. } else {
  532. log.warn("ticket {}-{}: {} can not receive notification", repository.name, ticket.number, user.username);
  533. }
  534. }
  535. }
  536. }
  537. // cc repository mailing list addresses
  538. if (!ArrayUtils.isEmpty(repository.mailingLists)) {
  539. ccAddresses.addAll(repository.mailingLists);
  540. }
  541. ccAddresses.addAll(settings.getStrings(Keys.mail.mailingLists));
  542. // respect the author's email preference
  543. UserModel lastAuthor = userManager.getUserModel(lastChange.author);
  544. if (lastAuthor != null && !lastAuthor.getPreferences().isEmailMeOnMyTicketChanges()) {
  545. toAddresses.remove(lastAuthor.emailAddress);
  546. ccAddresses.remove(lastAuthor.emailAddress);
  547. }
  548. mailing.setRecipients(toAddresses);
  549. mailing.setCCs(ccAddresses);
  550. }
  551. protected String readStyle() {
  552. StringBuilder sb = new StringBuilder();
  553. sb.append("<style>\n");
  554. sb.append(readResource("email.css"));
  555. sb.append("</style>\n");
  556. return sb.toString();
  557. }
  558. protected String readViewTicketAction(TicketModel ticket) {
  559. String action = readResource("viewTicket.html");
  560. action = action.replace("${url}", ticketService.getTicketUrl(ticket));
  561. return action;
  562. }
  563. protected String readResource(String resource) {
  564. StringBuilder sb = new StringBuilder();
  565. InputStream is = null;
  566. try {
  567. is = getClass().getResourceAsStream(resource);
  568. List<String> lines = IOUtils.readLines(is);
  569. for (String line : lines) {
  570. sb.append(line).append('\n');
  571. }
  572. } catch (IOException e) {
  573. } finally {
  574. if (is != null) {
  575. try {
  576. is.close();
  577. } catch (IOException e) {
  578. }
  579. }
  580. }
  581. return sb.toString();
  582. }
  583. }