Getting Started with Javassist
Previous page

5. Bytecode level API


5. Bytecode level API

Javassist also provides lower-level API for directly editing a class file. To use this level of API, you need detailed knowledge of the Java bytecode and the class file format while this level of API allows you any kind of modification of class files.

5.1 Obtaining a ClassFile object

A javassist.bytecode.ClassFile object represents a class file. To obtian this object, getClassFile() in CtClass should be called.

Otherwise, you can construct a javassist.bytecode.ClassFile directly from a class file. For example,

This code snippet creats a ClassFile object from Point.class.

A ClassFile object can be written back to a class file. write() in ClassFile writes the contents of the class file to a given DataOutputStream.


5.2 Adding and removing a member

ClassFile provides addField() and addMethod() for adding a field or a method (note that a constructor is regarded as a method at the bytecode level). It also provides addAttribute() for adding an attribute to the class file.

Note that FieldInfo, MethodInfo, and AttributeInfo objects include a link to a ConstPool (constant pool table) object. The ConstPool object must be common to the ClassFile object and a FieldInfo (or MethodInfo etc.) object that is added to that ClassFile object. In other words, a FieldInfo (or MethodInfo etc.) object must not be shared among different ClassFile objects.

To remove a field or a method, you must first obtain a java.util.List object containing all the fields of the class. getFields() and getMethods() return the lists. A field or a method can be removed by calling remove() on the List object. An attribute can be removed in a similar way. Call getAttributes() in FieldInfo or MethodInfo to obtain the list of attributes, and remove one from the list.


5.3 Traversing a method body

To examine every bytecode instruction in a method body, CodeIterator is useful. To otbain this object, do as follows:

A CodeIterator object allows you to visit every bytecode instruction one by one from the beginning to the end. The following methods are part of the methods declared in CodeIterator:


5.4 Producing a bytecode sequence

A Bytecode object represents a sequence of bytecode instructions. It is a growable array of bytecode. Here is a sample code snippet:

This produces the code attribute representing the following sequence:

You can also obtain a byte array containing this sequence by calling get() in Bytecode. The obtained array can be inserted in another code attribute.

While Bytecode provides a number of methods for adding a specific instruction to the sequence, it provides addOpcode() for adding an 8bit opcode and addIndex() for adding an index. The 8bit value of each opcode is defined in the Opcode interface.

addOpcode() and other methods for adding a specific instruction are automatically maintain the maximum stack depth unless the control flow does not include a branch. This value can be obtained by calling getMaxStack() on the Bytecode object. It is also reflected on the CodeAttribute object constructed from the Bytecode object. To recompute the maximum stack depth of a method body, call computeMaxStack() in CodeAttribute.


Previous page


Java(TM) is a trademark of Sun Microsystems, Inc.
Copyright (C) 2000-2004 by Shigeru Chiba, All rights reserved.