You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

SimilarityIndex.java 11KB

Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Reduce content hash function collisions The hash code returned by RawTextComparator (or that is used by the SimilarityIndex) play an important role in the speed of any algorithm that is based upon them. The lower the number of collisions produced by the hash function, the shorter the hash chains within hash tables will be, and the less likely we are to fall into O(N^2) runtime behaviors for algorithms like PatienceDiff. Our prior hash function was absolutely horrid, so replace it with the proper definition of the DJB hash that was originally published by Professor Daniel J. Bernstein. To support this assertion, below is a table listing the maximum number of collisions that result when hashing the unique lines in each source code file of 3 randomly chosen projects: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 sha1 6 string_hash31 11 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 sha1 8 string_hash31 32 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 sha1 6 string_hash31 13 We can clearly see that prior_hash performed very poorly, resulting in 8,675 collisions (elements in the same hash bucket) for at least one file in the Linux kernel repository. This leads to some very bad O(N) style insertion and lookup performance, even though the hash table was sized to be the next power-of-2 larger than the total number of unique lines in the file. The djb hash we are replacing prior_hash with performs closer to SHA-1 in terms of having very few collisions. This indicates it provides a reasonably distributed output for this type of input, despite being a much simpler algorithm (and therefore will be much faster to execute). The string_hash31 function is provided just to compare results with, it is the algorithm commonly used by java.lang.String hashCode(). However, life isn't quite this simple. djb produces a 32 bit hash code, but our hash tables are always smaller than 2^32 buckets. Mashing the 32 bit code into an array index used to be done by simply taking the lower bits of the hash code by a bitwise and operator. This unfortuntely still produces many collisions, e.g. 32 on the linux-2.6 repository files. From [1] we can apply a final "cleanup" step to the hash code to mix the bits together a little better, and give priority to the higher order bits as they include data from more bytes of input: test_jgit: 931 files; 122 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 418 djb 5 djb + cleanup 6 test_linux26: 30198 files; 258 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 8675 djb 32 djb + cleanup 7 test_frameworks_base: 8381 files; 184 avg. unique lines/file Algorithm | Collisions -------------+----------- prior_hash 4615 djb 10 djb + cleanup 7 This is a massive improvement, as the number of collisions for common inputs drops to acceptable levels, and we haven't really made the hash functions any more complex than they were before. [1] http://lkml.org/lkml/2009/10/27/404 Change-Id: Ia753b695de9526a157ddba265824240bd05dead1 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
Implement similarity based rename detection Content similarity based rename detection is performed only after a linear time detection is performed using exact content match on the ObjectIds. Any names which were paired up during that exact match phase are excluded from the inexact similarity based rename, which reduces the space that must be considered. During rename detection two entries cannot be marked as a rename if they are different types of files. This prevents a symlink from being renamed to a regular file, even if their blob content appears to be similar, or is identical. Efficiently comparing two files is performed by building up two hash indexes and hashing lines or short blocks from each file, counting the number of bytes that each line or block represents. Instead of using a standard java.util.HashMap, we use a custom open hashing scheme similiar to what we use in ObjecIdSubclassMap. This permits us to have a very light-weight hash, with very little memory overhead per cell stored. As we only need two ints per record in the map (line/block key and number of bytes), we collapse them into a single long inside of a long array, making very efficient use of available memory when we create the index table. We only need object headers for the index structure itself, and the index table, but not per-cell. This offers a massive space savings over using java.util.HashMap. The score calculation is done by approximating how many bytes are the same between the two inputs (which for a delta would be how much is copied from the base into the result). The score is derived by dividing the approximate number of bytes in common into the length of the larger of the two input files. Right now the SimilarityIndex table should average about 1/2 full, which means we waste about 50% of our memory on empty entries after we are done indexing a file and sort the table's contents. If memory becomes an issue we could discard the table and copy all records over to a new array that is properly sized. Building the index requires O(M + N log N) time, where M is the size of the input file in bytes, and N is the number of unique lines/blocks in the file. The N log N time constraint comes from the sort of the index table that is necessary to perform linear time matching against another SimilarityIndex created for a different file. To actually perform the rename detection, a SxD matrix is created, placing the sources (aka deletions) along one dimension and the destinations (aka additions) along the other. A simple O(S x D) loop examines every cell in this matrix. A SimilarityIndex is built along the row and reused for each column compare along that row, avoiding the costly index rebuild at the row level. A future improvement would be to load a smaller square matrix into SimilarityIndexes and process everything in that sub-matrix before discarding the column dimension and moving down to the next sub-matrix block along that same grid of rows. An optional ProgressMonitor is permitted to be passed in, allowing applications to see the progress of the detector as it works through the matrix cells. This provides some indication of current status for very long running renames. The default line/block hash function used by the SimilarityIndex may not be optimal, and may produce too many collisions. It is borrowed from RawText's hash, which is used to quickly skip out of a longer equality test if two lines have different hash functions. We may need to refine this hash in the future, in order to minimize the number of collisions we get on common source files. Based on a handful of test commits in JGit (especially my own recent rename repository refactoring series), this rename detector produces output that is very close to C Git. The content similarity scores are sometimes off by 1%, which is most probably caused by our SimilarityIndex type using a different hash function than C Git uses when it computes the delta size between any two objects in the rename matrix. Bug: 318504 Change-Id: I11dff969e8a2e4cf252636d857d2113053bdd9dc Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
14 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * Copyright (C) 2010, Google Inc. and others
  3. *
  4. * This program and the accompanying materials are made available under the
  5. * terms of the Eclipse Distribution License v. 1.0 which is available at
  6. * https://www.eclipse.org/org/documents/edl-v10.php.
  7. *
  8. * SPDX-License-Identifier: BSD-3-Clause
  9. */
  10. package org.eclipse.jgit.diff;
  11. import java.io.EOFException;
  12. import java.io.IOException;
  13. import java.io.InputStream;
  14. import java.util.Arrays;
  15. import org.eclipse.jgit.errors.MissingObjectException;
  16. import org.eclipse.jgit.lib.ObjectLoader;
  17. import org.eclipse.jgit.lib.ObjectStream;
  18. /**
  19. * Index structure of lines/blocks in one file.
  20. * <p>
  21. * This structure can be used to compute an approximation of the similarity
  22. * between two files. The index is used by
  23. * {@link org.eclipse.jgit.diff.SimilarityRenameDetector} to compute scores
  24. * between files.
  25. * <p>
  26. * To save space in memory, this index uses a space efficient encoding which
  27. * will not exceed 1 MiB per instance. The index starts out at a smaller size
  28. * (closer to 2 KiB), but may grow as more distinct blocks within the scanned
  29. * file are discovered.
  30. *
  31. * @since 4.0
  32. */
  33. public class SimilarityIndex {
  34. /** A special {@link TableFullException} used in place of OutOfMemoryError. */
  35. public static final TableFullException
  36. TABLE_FULL_OUT_OF_MEMORY = new TableFullException();
  37. /**
  38. * Shift to apply before storing a key.
  39. * <p>
  40. * Within the 64 bit table record space, we leave the highest bit unset so
  41. * all values are positive. The lower 32 bits to count bytes.
  42. */
  43. private static final int KEY_SHIFT = 32;
  44. /** Maximum value of the count field, also mask to extract the count. */
  45. private static final long MAX_COUNT = (1L << KEY_SHIFT) - 1;
  46. /**
  47. * Total amount of bytes hashed into the structure, including \n. This is
  48. * usually the size of the file minus number of CRLF encounters.
  49. */
  50. private long hashedCnt;
  51. /** Number of non-zero entries in {@link #idHash}. */
  52. private int idSize;
  53. /** {@link #idSize} that triggers {@link #idHash} to double in size. */
  54. private int idGrowAt;
  55. /**
  56. * Pairings of content keys and counters.
  57. * <p>
  58. * Slots in the table are actually two ints wedged into a single long. The
  59. * upper 32 bits stores the content key, and the remaining lower bits stores
  60. * the number of bytes associated with that key. Empty slots are denoted by
  61. * 0, which cannot occur because the count cannot be 0. Values can only be
  62. * positive, which we enforce during key addition.
  63. */
  64. private long[] idHash;
  65. /** {@code idHash.length == 1 << idHashBits}. */
  66. private int idHashBits;
  67. /**
  68. * Create a new similarity index for the given object
  69. *
  70. * @param obj
  71. * the object to hash
  72. * @return similarity index for this object
  73. * @throws java.io.IOException
  74. * file contents cannot be read from the repository.
  75. * @throws org.eclipse.jgit.diff.SimilarityIndex.TableFullException
  76. * object hashing overflowed the storage capacity of the
  77. * SimilarityIndex.
  78. */
  79. public static SimilarityIndex create(ObjectLoader obj) throws IOException,
  80. TableFullException {
  81. SimilarityIndex idx = new SimilarityIndex();
  82. idx.hash(obj);
  83. idx.sort();
  84. return idx;
  85. }
  86. SimilarityIndex() {
  87. idHashBits = 8;
  88. idHash = new long[1 << idHashBits];
  89. idGrowAt = growAt(idHashBits);
  90. }
  91. static boolean isBinary(ObjectLoader obj) throws IOException {
  92. if (obj.isLarge()) {
  93. try (ObjectStream in1 = obj.openStream()) {
  94. return RawText.isBinary(in1);
  95. }
  96. }
  97. return RawText.isBinary(obj.getCachedBytes());
  98. }
  99. void hash(ObjectLoader obj) throws MissingObjectException, IOException,
  100. TableFullException {
  101. if (obj.isLarge()) {
  102. hashLargeObject(obj);
  103. } else {
  104. byte[] raw = obj.getCachedBytes();
  105. hash(raw, 0, raw.length);
  106. }
  107. }
  108. private void hashLargeObject(ObjectLoader obj) throws IOException,
  109. TableFullException {
  110. boolean text;
  111. text = !isBinary(obj);
  112. try (ObjectStream in2 = obj.openStream()) {
  113. hash(in2, in2.getSize(), text);
  114. }
  115. }
  116. void hash(byte[] raw, int ptr, int end) throws TableFullException {
  117. final boolean text = !RawText.isBinary(raw);
  118. hashedCnt = 0;
  119. while (ptr < end) {
  120. int hash = 5381;
  121. int blockHashedCnt = 0;
  122. int start = ptr;
  123. // Hash one line, or one block, whichever occurs first.
  124. do {
  125. int c = raw[ptr++] & 0xff;
  126. // Ignore CR in CRLF sequence if text
  127. if (text && c == '\r' && ptr < end && raw[ptr] == '\n')
  128. continue;
  129. blockHashedCnt++;
  130. if (c == '\n')
  131. break;
  132. hash = (hash << 5) + hash + c;
  133. } while (ptr < end && ptr - start < 64);
  134. hashedCnt += blockHashedCnt;
  135. add(hash, blockHashedCnt);
  136. }
  137. }
  138. void hash(InputStream in, long remaining, boolean text) throws IOException,
  139. TableFullException {
  140. byte[] buf = new byte[4096];
  141. int ptr = 0;
  142. int cnt = 0;
  143. while (0 < remaining) {
  144. int hash = 5381;
  145. int blockHashedCnt = 0;
  146. // Hash one line, or one block, whichever occurs first.
  147. int n = 0;
  148. do {
  149. if (ptr == cnt) {
  150. ptr = 0;
  151. cnt = in.read(buf, 0, buf.length);
  152. if (cnt <= 0)
  153. throw new EOFException();
  154. }
  155. n++;
  156. int c = buf[ptr++] & 0xff;
  157. // Ignore CR in CRLF sequence if text
  158. if (text && c == '\r' && ptr < cnt && buf[ptr] == '\n')
  159. continue;
  160. blockHashedCnt++;
  161. if (c == '\n')
  162. break;
  163. hash = (hash << 5) + hash + c;
  164. } while (n < 64 && n < remaining);
  165. hashedCnt += blockHashedCnt;
  166. add(hash, blockHashedCnt);
  167. remaining -= n;
  168. }
  169. }
  170. /**
  171. * Sort the internal table so it can be used for efficient scoring.
  172. * <p>
  173. * Once sorted, additional lines/blocks cannot be added to the index.
  174. */
  175. void sort() {
  176. // Sort the array. All of the empty space will wind up at the front,
  177. // because we forced all of the keys to always be positive. Later
  178. // we only work with the back half of the array.
  179. //
  180. Arrays.sort(idHash);
  181. }
  182. /**
  183. * Compute the similarity score between this index and another.
  184. * <p>
  185. * A region of a file is defined as a line in a text file or a fixed-size
  186. * block in a binary file. To prepare an index, each region in the file is
  187. * hashed; the values and counts of hashes are retained in a sorted table.
  188. * Define the similarity fraction F as the count of matching regions
  189. * between the two files divided between the maximum count of regions in
  190. * either file. The similarity score is F multiplied by the maxScore
  191. * constant, yielding a range [0, maxScore]. It is defined as maxScore for
  192. * the degenerate case of two empty files.
  193. * <p>
  194. * The similarity score is symmetrical; i.e. a.score(b) == b.score(a).
  195. *
  196. * @param dst
  197. * the other index
  198. * @param maxScore
  199. * the score representing a 100% match
  200. * @return the similarity score
  201. */
  202. public int score(SimilarityIndex dst, int maxScore) {
  203. long max = Math.max(hashedCnt, dst.hashedCnt);
  204. if (max == 0)
  205. return maxScore;
  206. return (int) ((common(dst) * maxScore) / max);
  207. }
  208. long common(SimilarityIndex dst) {
  209. return common(this, dst);
  210. }
  211. private static long common(SimilarityIndex src, SimilarityIndex dst) {
  212. int srcIdx = src.packedIndex(0);
  213. int dstIdx = dst.packedIndex(0);
  214. long[] srcHash = src.idHash;
  215. long[] dstHash = dst.idHash;
  216. return common(srcHash, srcIdx, dstHash, dstIdx);
  217. }
  218. private static long common(long[] srcHash, int srcIdx, //
  219. long[] dstHash, int dstIdx) {
  220. if (srcIdx == srcHash.length || dstIdx == dstHash.length)
  221. return 0;
  222. long common = 0;
  223. int srcKey = keyOf(srcHash[srcIdx]);
  224. int dstKey = keyOf(dstHash[dstIdx]);
  225. for (;;) {
  226. if (srcKey == dstKey) {
  227. common += Math.min(countOf(srcHash[srcIdx]),
  228. countOf(dstHash[dstIdx]));
  229. if (++srcIdx == srcHash.length)
  230. break;
  231. srcKey = keyOf(srcHash[srcIdx]);
  232. if (++dstIdx == dstHash.length)
  233. break;
  234. dstKey = keyOf(dstHash[dstIdx]);
  235. } else if (srcKey < dstKey) {
  236. // Regions of src which do not appear in dst.
  237. if (++srcIdx == srcHash.length)
  238. break;
  239. srcKey = keyOf(srcHash[srcIdx]);
  240. } else /* if (dstKey < srcKey) */{
  241. // Regions of dst which do not appear in src.
  242. if (++dstIdx == dstHash.length)
  243. break;
  244. dstKey = keyOf(dstHash[dstIdx]);
  245. }
  246. }
  247. return common;
  248. }
  249. // Testing only
  250. int size() {
  251. return idSize;
  252. }
  253. // Testing only
  254. int key(int idx) {
  255. return keyOf(idHash[packedIndex(idx)]);
  256. }
  257. // Testing only
  258. long count(int idx) {
  259. return countOf(idHash[packedIndex(idx)]);
  260. }
  261. // Brute force approach only for testing.
  262. int findIndex(int key) {
  263. for (int i = 0; i < idSize; i++)
  264. if (key(i) == key)
  265. return i;
  266. return -1;
  267. }
  268. private int packedIndex(int idx) {
  269. return (idHash.length - idSize) + idx;
  270. }
  271. void add(int key, int cnt) throws TableFullException {
  272. key = (key * 0x9e370001) >>> 1; // Mix bits and ensure not negative.
  273. int j = slot(key);
  274. for (;;) {
  275. long v = idHash[j];
  276. if (v == 0) {
  277. // Empty slot in the table, store here.
  278. if (idGrowAt <= idSize) {
  279. grow();
  280. j = slot(key);
  281. continue;
  282. }
  283. idHash[j] = pair(key, cnt);
  284. idSize++;
  285. return;
  286. } else if (keyOf(v) == key) {
  287. // Same key, increment the counter. If it overflows, fail
  288. // indexing to prevent the key from being impacted.
  289. //
  290. idHash[j] = pair(key, countOf(v) + cnt);
  291. return;
  292. } else if (++j >= idHash.length) {
  293. j = 0;
  294. }
  295. }
  296. }
  297. private static long pair(int key, long cnt) throws TableFullException {
  298. if (MAX_COUNT < cnt)
  299. throw new TableFullException();
  300. return (((long) key) << KEY_SHIFT) | cnt;
  301. }
  302. private int slot(int key) {
  303. // We use 31 - idHashBits because the upper bit was already forced
  304. // to be 0 and we want the remaining high bits to be used as the
  305. // table slot.
  306. //
  307. return key >>> (31 - idHashBits);
  308. }
  309. private static int growAt(int idHashBits) {
  310. return (1 << idHashBits) * (idHashBits - 3) / idHashBits;
  311. }
  312. @SuppressWarnings("UnusedException")
  313. private void grow() throws TableFullException {
  314. if (idHashBits == 30)
  315. throw new TableFullException();
  316. long[] oldHash = idHash;
  317. int oldSize = idHash.length;
  318. idHashBits++;
  319. idGrowAt = growAt(idHashBits);
  320. try {
  321. idHash = new long[1 << idHashBits];
  322. } catch (OutOfMemoryError noMemory) {
  323. throw TABLE_FULL_OUT_OF_MEMORY;
  324. }
  325. for (int i = 0; i < oldSize; i++) {
  326. long v = oldHash[i];
  327. if (v != 0) {
  328. int j = slot(keyOf(v));
  329. while (idHash[j] != 0)
  330. if (++j >= idHash.length)
  331. j = 0;
  332. idHash[j] = v;
  333. }
  334. }
  335. }
  336. private static int keyOf(long v) {
  337. return (int) (v >>> KEY_SHIFT);
  338. }
  339. private static long countOf(long v) {
  340. return v & MAX_COUNT;
  341. }
  342. /** Thrown by {@code create()} when file is too large. */
  343. public static class TableFullException extends Exception {
  344. private static final long serialVersionUID = 1L;
  345. }
  346. }