You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

DfsObjDatabase.java 22KB

DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
DFS: A storage layer for JGit In practice the DHT storage layer has not been performing as well as large scale server environments want to see from a Git server. The performance of the DHT schema degrades rapidly as small changes are pushed into the repository due to the chunk size being less than 1/3 of the pushed pack size. Small chunks cause poor prefetch performance during reading, and require significantly longer prefetch lists inside of the chunk meta field to work around the small size. The DHT code is very complex (>17,000 lines of code) and is very sensitive to the underlying database round-trip time, as well as the way objects were written into the pack stream that was chunked and stored on the database. A poor pack layout (from any version of C Git prior to Junio reworking it) can cause the DHT code to be unable to enumerate the objects of the linux-2.6 repository in a completable time scale. Performing a clone from a DHT stored repository of 2 million objects takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row for each object being cloned. This is very difficult for some DHTs to scale, even at 5000 rows/second the lookup stage alone takes 6 minutes (on local filesystem, this is almost too fast to bother measuring). Some servers like Apache Cassandra just fall over and cannot complete the 2 million lookups in rapid fire. On a ~400 MiB repository, the DHT schema has an extra 25 MiB of redundant data that gets downloaded to the JGit process, and that is before you consider the cost of the OBJECT_INDEX table also being fully loaded, which is at least 223 MiB of data for the linux kernel repository. In the DHT schema answering a `git clone` of the ~400 MiB linux kernel needs to load 248 MiB of "index" data from the DHT, in addition to the ~400 MiB of pack data that gets sent to the client. This is 193 MiB more data to be accessed than the native filesystem format, but it needs to come over a much smaller pipe (local Ethernet typically) than the local SATA disk drive. I also never got around to writing the "repack" support for the DHT schema, as it turns out to be fairly complex to safely repack data in the repository while also trying to minimize the amount of changes made to the database, due to very common limitations on database mutation rates.. This new DFS storage layer fixes a lot of those issues by taking the simple approach for storing relatively standard Git pack and index files on an abstract filesystem. Packs are accessed by an in-process buffer cache, similar to the WindowCache used by the local filesystem storage layer. Unlike the local file IO, there are some assumptions that the storage system has relatively high latency and no concept of "file handles". Instead it looks at the file more like HTTP byte range requests, where a read channel is a simply a thunk to trigger a read request over the network. The DFS code in this change is still abstract, it does not store on any particular filesystem, but is fairly well suited to the Amazon S3 or Apache Hadoop HDFS. Storing packs directly on HDFS rather than HBase removes a layer of abstraction, as most HBase row reads turn into an HDFS read. Most of the DFS code in this change was blatently copied from the local filesystem code. Most parts should be refactored to be shared between the two storage systems, but right now I am hesistent to do this due to how well tuned the local filesystem code currently is. Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb
13 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. /*
  2. * Copyright (C) 2011, Google Inc. and others
  3. *
  4. * This program and the accompanying materials are made available under the
  5. * terms of the Eclipse Distribution License v. 1.0 which is available at
  6. * https://www.eclipse.org/org/documents/edl-v10.php.
  7. *
  8. * SPDX-License-Identifier: BSD-3-Clause
  9. */
  10. package org.eclipse.jgit.internal.storage.dfs;
  11. import static java.util.stream.Collectors.joining;
  12. import java.io.FileNotFoundException;
  13. import java.io.IOException;
  14. import java.util.ArrayList;
  15. import java.util.Arrays;
  16. import java.util.Collection;
  17. import java.util.Collections;
  18. import java.util.Comparator;
  19. import java.util.HashMap;
  20. import java.util.HashSet;
  21. import java.util.List;
  22. import java.util.Map;
  23. import java.util.Set;
  24. import java.util.concurrent.atomic.AtomicReference;
  25. import org.eclipse.jgit.internal.storage.pack.PackExt;
  26. import org.eclipse.jgit.lib.AnyObjectId;
  27. import org.eclipse.jgit.lib.ObjectDatabase;
  28. import org.eclipse.jgit.lib.ObjectInserter;
  29. import org.eclipse.jgit.lib.ObjectReader;
  30. /**
  31. * Manages objects stored in
  32. * {@link org.eclipse.jgit.internal.storage.dfs.DfsPackFile} on a storage
  33. * system.
  34. */
  35. public abstract class DfsObjDatabase extends ObjectDatabase {
  36. private static final PackList NO_PACKS = new PackList(
  37. new DfsPackFile[0],
  38. new DfsReftable[0]) {
  39. @Override
  40. boolean dirty() {
  41. return true;
  42. }
  43. @Override
  44. void clearDirty() {
  45. // Always dirty.
  46. }
  47. @Override
  48. public void markDirty() {
  49. // Always dirty.
  50. }
  51. };
  52. /**
  53. * Sources for a pack file.
  54. * <p>
  55. * <strong>Note:</strong> When sorting packs by source, do not use the default
  56. * comparator based on {@link Enum#compareTo}. Prefer {@link
  57. * #DEFAULT_COMPARATOR} or your own {@link ComparatorBuilder}.
  58. */
  59. public enum PackSource {
  60. /** The pack is created by ObjectInserter due to local activity. */
  61. INSERT,
  62. /**
  63. * The pack is created by PackParser due to a network event.
  64. * <p>
  65. * A received pack can be from either a push into the repository, or a
  66. * fetch into the repository, the direction doesn't matter. A received
  67. * pack was built by the remote Git implementation and may not match the
  68. * storage layout preferred by this version. Received packs are likely
  69. * to be either compacted or garbage collected in the future.
  70. */
  71. RECEIVE,
  72. /**
  73. * The pack was created by compacting multiple packs together.
  74. * <p>
  75. * Packs created by compacting multiple packs together aren't nearly as
  76. * efficient as a fully garbage collected repository, but may save disk
  77. * space by reducing redundant copies of base objects.
  78. *
  79. * @see DfsPackCompactor
  80. */
  81. COMPACT,
  82. /**
  83. * Pack was created by Git garbage collection by this implementation.
  84. * <p>
  85. * This source is only used by the {@link DfsGarbageCollector} when it
  86. * builds a pack file by traversing the object graph and copying all
  87. * reachable objects into a new pack stream.
  88. *
  89. * @see DfsGarbageCollector
  90. */
  91. GC,
  92. /** Created from non-heads by {@link DfsGarbageCollector}. */
  93. GC_REST,
  94. /**
  95. * RefTreeGraph pack was created by Git garbage collection.
  96. *
  97. * @see DfsGarbageCollector
  98. */
  99. GC_TXN,
  100. /**
  101. * Pack was created by Git garbage collection.
  102. * <p>
  103. * This pack contains only unreachable garbage that was found during the
  104. * last GC pass. It is retained in a new pack until it is safe to prune
  105. * these objects from the repository.
  106. */
  107. UNREACHABLE_GARBAGE;
  108. /**
  109. * Default comparator for sources.
  110. * <p>
  111. * Sorts generally newer, smaller types such as {@code INSERT} and {@code
  112. * RECEIVE} earlier; older, larger types such as {@code GC} later; and
  113. * {@code UNREACHABLE_GARBAGE} at the end.
  114. */
  115. public static final Comparator<PackSource> DEFAULT_COMPARATOR =
  116. new ComparatorBuilder()
  117. .add(INSERT, RECEIVE)
  118. .add(COMPACT)
  119. .add(GC)
  120. .add(GC_REST)
  121. .add(GC_TXN)
  122. .add(UNREACHABLE_GARBAGE)
  123. .build();
  124. /**
  125. * Builder for describing {@link PackSource} ordering where some values are
  126. * explicitly considered equal to others.
  127. */
  128. public static class ComparatorBuilder {
  129. private final Map<PackSource, Integer> ranks = new HashMap<>();
  130. private int counter;
  131. /**
  132. * Add a collection of sources that should sort as equal.
  133. * <p>
  134. * Sources in the input will sort after sources listed in previous calls
  135. * to this method.
  136. *
  137. * @param sources
  138. * sources in this equivalence class.
  139. * @return this.
  140. */
  141. public ComparatorBuilder add(PackSource... sources) {
  142. for (PackSource s : sources) {
  143. ranks.put(s, Integer.valueOf(counter));
  144. }
  145. counter++;
  146. return this;
  147. }
  148. /**
  149. * Build the comparator.
  150. *
  151. * @return new comparator instance.
  152. * @throws IllegalArgumentException
  153. * not all {@link PackSource} instances were explicitly assigned
  154. * an equivalence class.
  155. */
  156. public Comparator<PackSource> build() {
  157. return new PackSourceComparator(ranks);
  158. }
  159. }
  160. private static class PackSourceComparator implements Comparator<PackSource> {
  161. private final Map<PackSource, Integer> ranks;
  162. private PackSourceComparator(Map<PackSource, Integer> ranks) {
  163. if (!ranks.keySet().equals(
  164. new HashSet<>(Arrays.asList(PackSource.values())))) {
  165. throw new IllegalArgumentException();
  166. }
  167. this.ranks = new HashMap<>(ranks);
  168. }
  169. @Override
  170. public int compare(PackSource a, PackSource b) {
  171. return ranks.get(a).compareTo(ranks.get(b));
  172. }
  173. @Override
  174. public String toString() {
  175. return Arrays.stream(PackSource.values())
  176. .map(s -> s + "=" + ranks.get(s)) //$NON-NLS-1$
  177. .collect(joining(", ", getClass().getSimpleName() + "{", "}")); //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$
  178. }
  179. }
  180. }
  181. private final AtomicReference<PackList> packList;
  182. private final DfsRepository repository;
  183. private DfsReaderOptions readerOptions;
  184. private Comparator<DfsPackDescription> packComparator;
  185. /**
  186. * Initialize an object database for our repository.
  187. *
  188. * @param repository
  189. * repository owning this object database.
  190. * @param options
  191. * how readers should access the object database.
  192. */
  193. protected DfsObjDatabase(DfsRepository repository,
  194. DfsReaderOptions options) {
  195. this.repository = repository;
  196. this.packList = new AtomicReference<>(NO_PACKS);
  197. this.readerOptions = options;
  198. this.packComparator = DfsPackDescription.objectLookupComparator();
  199. }
  200. /**
  201. * Get configured reader options, such as read-ahead.
  202. *
  203. * @return configured reader options, such as read-ahead.
  204. */
  205. public DfsReaderOptions getReaderOptions() {
  206. return readerOptions;
  207. }
  208. /**
  209. * Set the comparator used when searching for objects across packs.
  210. * <p>
  211. * An optimal comparator will find more objects without having to load large
  212. * idx files from storage only to find that they don't contain the object.
  213. * See {@link DfsPackDescription#objectLookupComparator()} for the default
  214. * heuristics.
  215. *
  216. * @param packComparator
  217. * comparator.
  218. */
  219. public void setPackComparator(Comparator<DfsPackDescription> packComparator) {
  220. this.packComparator = packComparator;
  221. }
  222. /** {@inheritDoc} */
  223. @Override
  224. public DfsReader newReader() {
  225. return new DfsReader(this);
  226. }
  227. /** {@inheritDoc} */
  228. @Override
  229. public ObjectInserter newInserter() {
  230. return new DfsInserter(this);
  231. }
  232. /**
  233. * Scan and list all available pack files in the repository.
  234. *
  235. * @return list of available packs. The returned array is shared with the
  236. * implementation and must not be modified by the caller.
  237. * @throws java.io.IOException
  238. * the pack list cannot be initialized.
  239. */
  240. public DfsPackFile[] getPacks() throws IOException {
  241. return getPackList().packs;
  242. }
  243. /**
  244. * Scan and list all available reftable files in the repository.
  245. *
  246. * @return list of available reftables. The returned array is shared with
  247. * the implementation and must not be modified by the caller.
  248. * @throws java.io.IOException
  249. * the pack list cannot be initialized.
  250. */
  251. public DfsReftable[] getReftables() throws IOException {
  252. return getPackList().reftables;
  253. }
  254. /**
  255. * Scan and list all available pack files in the repository.
  256. *
  257. * @return list of available packs, with some additional metadata. The
  258. * returned array is shared with the implementation and must not be
  259. * modified by the caller.
  260. * @throws java.io.IOException
  261. * the pack list cannot be initialized.
  262. */
  263. public PackList getPackList() throws IOException {
  264. return scanPacks(NO_PACKS);
  265. }
  266. /**
  267. * Get repository owning this object database.
  268. *
  269. * @return repository owning this object database.
  270. */
  271. protected DfsRepository getRepository() {
  272. return repository;
  273. }
  274. /**
  275. * List currently known pack files in the repository, without scanning.
  276. *
  277. * @return list of available packs. The returned array is shared with the
  278. * implementation and must not be modified by the caller.
  279. */
  280. public DfsPackFile[] getCurrentPacks() {
  281. return getCurrentPackList().packs;
  282. }
  283. /**
  284. * List currently known reftable files in the repository, without scanning.
  285. *
  286. * @return list of available reftables. The returned array is shared with
  287. * the implementation and must not be modified by the caller.
  288. */
  289. public DfsReftable[] getCurrentReftables() {
  290. return getCurrentPackList().reftables;
  291. }
  292. /**
  293. * List currently known pack files in the repository, without scanning.
  294. *
  295. * @return list of available packs, with some additional metadata. The
  296. * returned array is shared with the implementation and must not be
  297. * modified by the caller.
  298. */
  299. public PackList getCurrentPackList() {
  300. return packList.get();
  301. }
  302. /**
  303. * Does the requested object exist in this database?
  304. * <p>
  305. * This differs from ObjectDatabase's implementation in that we can selectively
  306. * ignore unreachable (garbage) objects.
  307. *
  308. * @param objectId
  309. * identity of the object to test for existence of.
  310. * @param avoidUnreachableObjects
  311. * if true, ignore objects that are unreachable.
  312. * @return true if the specified object is stored in this database.
  313. * @throws java.io.IOException
  314. * the object store cannot be accessed.
  315. */
  316. public boolean has(AnyObjectId objectId, boolean avoidUnreachableObjects)
  317. throws IOException {
  318. try (ObjectReader or = newReader()) {
  319. or.setAvoidUnreachableObjects(avoidUnreachableObjects);
  320. return or.has(objectId);
  321. }
  322. }
  323. /**
  324. * Generate a new unique name for a pack file.
  325. *
  326. * @param source
  327. * where the pack stream is created.
  328. * @return a unique name for the pack file. Must not collide with any other
  329. * pack file name in the same DFS.
  330. * @throws java.io.IOException
  331. * a new unique pack description cannot be generated.
  332. */
  333. protected abstract DfsPackDescription newPack(PackSource source)
  334. throws IOException;
  335. /**
  336. * Generate a new unique name for a pack file.
  337. *
  338. * <p>
  339. * Default implementation of this method would be equivalent to
  340. * {@code newPack(source).setEstimatedPackSize(estimatedPackSize)}. But the
  341. * clients can override this method to use the given
  342. * {@code estomatedPackSize} value more efficiently in the process of
  343. * creating a new
  344. * {@link org.eclipse.jgit.internal.storage.dfs.DfsPackDescription} object.
  345. *
  346. * @param source
  347. * where the pack stream is created.
  348. * @param estimatedPackSize
  349. * the estimated size of the pack.
  350. * @return a unique name for the pack file. Must not collide with any other
  351. * pack file name in the same DFS.
  352. * @throws java.io.IOException
  353. * a new unique pack description cannot be generated.
  354. */
  355. protected DfsPackDescription newPack(PackSource source,
  356. long estimatedPackSize) throws IOException {
  357. DfsPackDescription pack = newPack(source);
  358. pack.setEstimatedPackSize(estimatedPackSize);
  359. return pack;
  360. }
  361. /**
  362. * Commit a pack and index pair that was written to the DFS.
  363. * <p>
  364. * Committing the pack/index pair makes them visible to readers. The JGit
  365. * DFS code always writes the pack, then the index. This allows a simple
  366. * commit process to do nothing if readers always look for both files to
  367. * exist and the DFS performs atomic creation of the file (e.g. stream to a
  368. * temporary file and rename to target on close).
  369. * <p>
  370. * During pack compaction or GC the new pack file may be replacing other
  371. * older files. Implementations should remove those older files (if any) as
  372. * part of the commit of the new file.
  373. * <p>
  374. * This method is a trivial wrapper around
  375. * {@link #commitPackImpl(Collection, Collection)} that calls the
  376. * implementation and fires events.
  377. *
  378. * @param desc
  379. * description of the new packs.
  380. * @param replaces
  381. * if not null, list of packs to remove.
  382. * @throws java.io.IOException
  383. * the packs cannot be committed. On failure a rollback must
  384. * also be attempted by the caller.
  385. */
  386. protected void commitPack(Collection<DfsPackDescription> desc,
  387. Collection<DfsPackDescription> replaces) throws IOException {
  388. commitPackImpl(desc, replaces);
  389. getRepository().fireEvent(new DfsPacksChangedEvent());
  390. }
  391. /**
  392. * Implementation of pack commit.
  393. *
  394. * @see #commitPack(Collection, Collection)
  395. * @param desc
  396. * description of the new packs.
  397. * @param replaces
  398. * if not null, list of packs to remove.
  399. * @throws java.io.IOException
  400. * the packs cannot be committed.
  401. */
  402. protected abstract void commitPackImpl(Collection<DfsPackDescription> desc,
  403. Collection<DfsPackDescription> replaces) throws IOException;
  404. /**
  405. * Try to rollback a pack creation.
  406. * <p>
  407. * JGit DFS always writes the pack first, then the index. If the pack does
  408. * not yet exist, then neither does the index. A safe DFS implementation
  409. * would try to remove both files to ensure they are really gone.
  410. * <p>
  411. * A rollback does not support failures, as it only occurs when there is
  412. * already a failure in progress. A DFS implementor may wish to log
  413. * warnings/error messages when a rollback fails, but should not send new
  414. * exceptions up the Java callstack.
  415. *
  416. * @param desc
  417. * pack to delete.
  418. */
  419. protected abstract void rollbackPack(Collection<DfsPackDescription> desc);
  420. /**
  421. * List the available pack files.
  422. * <p>
  423. * The returned list must support random access and must be mutable by the
  424. * caller. It is sorted in place using the natural sorting of the returned
  425. * DfsPackDescription objects.
  426. *
  427. * @return available packs. May be empty if there are no packs.
  428. * @throws java.io.IOException
  429. * the packs cannot be listed and the object database is not
  430. * functional to the caller.
  431. */
  432. protected abstract List<DfsPackDescription> listPacks() throws IOException;
  433. /**
  434. * Open a pack, pack index, or other related file for reading.
  435. *
  436. * @param desc
  437. * description of pack related to the data that will be read.
  438. * This is an instance previously obtained from
  439. * {@link #listPacks()}, but not necessarily from the same
  440. * DfsObjDatabase instance.
  441. * @param ext
  442. * file extension that will be read i.e "pack" or "idx".
  443. * @return channel to read the file.
  444. * @throws java.io.FileNotFoundException
  445. * the file does not exist.
  446. * @throws java.io.IOException
  447. * the file cannot be opened.
  448. */
  449. protected abstract ReadableChannel openFile(
  450. DfsPackDescription desc, PackExt ext)
  451. throws FileNotFoundException, IOException;
  452. /**
  453. * Open a pack, pack index, or other related file for writing.
  454. *
  455. * @param desc
  456. * description of pack related to the data that will be written.
  457. * This is an instance previously obtained from
  458. * {@link #newPack(PackSource)}.
  459. * @param ext
  460. * file extension that will be written i.e "pack" or "idx".
  461. * @return channel to write the file.
  462. * @throws java.io.IOException
  463. * the file cannot be opened.
  464. */
  465. protected abstract DfsOutputStream writeFile(
  466. DfsPackDescription desc, PackExt ext) throws IOException;
  467. void addPack(DfsPackFile newPack) throws IOException {
  468. PackList o, n;
  469. do {
  470. o = packList.get();
  471. if (o == NO_PACKS) {
  472. // The repository may not have needed any existing objects to
  473. // complete the current task of creating a pack (e.g. push of a
  474. // pack with no external deltas). Because we don't scan for
  475. // newly added packs on missed object lookups, scan now to
  476. // make sure all older packs are available in the packList.
  477. o = scanPacks(o);
  478. // Its possible the scan identified the pack we were asked to
  479. // add, as the pack was already committed via commitPack().
  480. // If this is the case return without changing the list.
  481. for (DfsPackFile p : o.packs) {
  482. if (p.key.equals(newPack.key)) {
  483. return;
  484. }
  485. }
  486. }
  487. DfsPackFile[] packs = new DfsPackFile[1 + o.packs.length];
  488. packs[0] = newPack;
  489. System.arraycopy(o.packs, 0, packs, 1, o.packs.length);
  490. n = new PackListImpl(packs, o.reftables);
  491. } while (!packList.compareAndSet(o, n));
  492. }
  493. void addReftable(DfsPackDescription add, Set<DfsPackDescription> remove)
  494. throws IOException {
  495. PackList o, n;
  496. do {
  497. o = packList.get();
  498. if (o == NO_PACKS) {
  499. o = scanPacks(o);
  500. for (DfsReftable t : o.reftables) {
  501. if (t.getPackDescription().equals(add)) {
  502. return;
  503. }
  504. }
  505. }
  506. List<DfsReftable> tables = new ArrayList<>(1 + o.reftables.length);
  507. for (DfsReftable t : o.reftables) {
  508. if (!remove.contains(t.getPackDescription())) {
  509. tables.add(t);
  510. }
  511. }
  512. tables.add(new DfsReftable(add));
  513. n = new PackListImpl(o.packs, tables.toArray(new DfsReftable[0]));
  514. } while (!packList.compareAndSet(o, n));
  515. }
  516. PackList scanPacks(PackList original) throws IOException {
  517. PackList o, n;
  518. synchronized (packList) {
  519. do {
  520. o = packList.get();
  521. if (o != original) {
  522. // Another thread did the scan for us, while we
  523. // were blocked on the monitor above.
  524. //
  525. return o;
  526. }
  527. n = scanPacksImpl(o);
  528. if (n == o)
  529. return n;
  530. } while (!packList.compareAndSet(o, n));
  531. }
  532. getRepository().fireEvent(new DfsPacksChangedEvent());
  533. return n;
  534. }
  535. private PackList scanPacksImpl(PackList old) throws IOException {
  536. DfsBlockCache cache = DfsBlockCache.getInstance();
  537. Map<DfsPackDescription, DfsPackFile> packs = packMap(old);
  538. Map<DfsPackDescription, DfsReftable> reftables = reftableMap(old);
  539. List<DfsPackDescription> scanned = listPacks();
  540. Collections.sort(scanned, packComparator);
  541. List<DfsPackFile> newPacks = new ArrayList<>(scanned.size());
  542. List<DfsReftable> newReftables = new ArrayList<>(scanned.size());
  543. boolean foundNew = false;
  544. for (DfsPackDescription dsc : scanned) {
  545. DfsPackFile oldPack = packs.remove(dsc);
  546. if (oldPack != null) {
  547. newPacks.add(oldPack);
  548. } else if (dsc.hasFileExt(PackExt.PACK)) {
  549. newPacks.add(new DfsPackFile(cache, dsc));
  550. foundNew = true;
  551. }
  552. DfsReftable oldReftable = reftables.remove(dsc);
  553. if (oldReftable != null) {
  554. newReftables.add(oldReftable);
  555. } else if (dsc.hasFileExt(PackExt.REFTABLE)) {
  556. newReftables.add(new DfsReftable(cache, dsc));
  557. foundNew = true;
  558. }
  559. }
  560. if (newPacks.isEmpty() && newReftables.isEmpty())
  561. return new PackListImpl(NO_PACKS.packs, NO_PACKS.reftables);
  562. if (!foundNew) {
  563. old.clearDirty();
  564. return old;
  565. }
  566. Collections.sort(newReftables, reftableComparator());
  567. return new PackListImpl(
  568. newPacks.toArray(new DfsPackFile[0]),
  569. newReftables.toArray(new DfsReftable[0]));
  570. }
  571. private static Map<DfsPackDescription, DfsPackFile> packMap(PackList old) {
  572. Map<DfsPackDescription, DfsPackFile> forReuse = new HashMap<>();
  573. for (DfsPackFile p : old.packs) {
  574. if (!p.invalid()) {
  575. forReuse.put(p.desc, p);
  576. }
  577. }
  578. return forReuse;
  579. }
  580. private static Map<DfsPackDescription, DfsReftable> reftableMap(PackList old) {
  581. Map<DfsPackDescription, DfsReftable> forReuse = new HashMap<>();
  582. for (DfsReftable p : old.reftables) {
  583. if (!p.invalid()) {
  584. forReuse.put(p.desc, p);
  585. }
  586. }
  587. return forReuse;
  588. }
  589. /**
  590. * Get comparator to sort {@link DfsReftable} by priority.
  591. *
  592. * @return comparator to sort {@link DfsReftable} by priority.
  593. */
  594. protected Comparator<DfsReftable> reftableComparator() {
  595. return Comparator.comparing(
  596. DfsReftable::getPackDescription,
  597. DfsPackDescription.reftableComparator());
  598. }
  599. /**
  600. * Clears the cached list of packs, forcing them to be scanned again.
  601. */
  602. protected void clearCache() {
  603. packList.set(NO_PACKS);
  604. }
  605. /** {@inheritDoc} */
  606. @Override
  607. public void close() {
  608. packList.set(NO_PACKS);
  609. }
  610. /** Snapshot of packs scanned in a single pass. */
  611. public abstract static class PackList {
  612. /** All known packs, sorted. */
  613. public final DfsPackFile[] packs;
  614. /** All known reftables, sorted. */
  615. public final DfsReftable[] reftables;
  616. private long lastModified = -1;
  617. PackList(DfsPackFile[] packs, DfsReftable[] reftables) {
  618. this.packs = packs;
  619. this.reftables = reftables;
  620. }
  621. /** @return last modified time of all packs, in milliseconds. */
  622. public long getLastModified() {
  623. if (lastModified < 0) {
  624. long max = 0;
  625. for (DfsPackFile pack : packs) {
  626. max = Math.max(max, pack.getPackDescription().getLastModified());
  627. }
  628. lastModified = max;
  629. }
  630. return lastModified;
  631. }
  632. abstract boolean dirty();
  633. abstract void clearDirty();
  634. /**
  635. * Mark pack list as dirty.
  636. * <p>
  637. * Used when the caller knows that new data might have been written to the
  638. * repository that could invalidate open readers depending on this pack list,
  639. * for example if refs are newly scanned.
  640. */
  641. public abstract void markDirty();
  642. }
  643. private static final class PackListImpl extends PackList {
  644. private volatile boolean dirty;
  645. PackListImpl(DfsPackFile[] packs, DfsReftable[] reftables) {
  646. super(packs, reftables);
  647. }
  648. @Override
  649. boolean dirty() {
  650. return dirty;
  651. }
  652. @Override
  653. void clearDirty() {
  654. dirty = false;
  655. }
  656. @Override
  657. public void markDirty() {
  658. dirty = true;
  659. }
  660. }
  661. }