You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ObjectInfo.java 4.8KB

Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
Store Git on any DHT jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
13 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. /*
  2. * Copyright (C) 2011, Google Inc.
  3. * and other copyright owners as documented in the project's IP log.
  4. *
  5. * This program and the accompanying materials are made available
  6. * under the terms of the Eclipse Distribution License v1.0 which
  7. * accompanies this distribution, is reproduced below, and is
  8. * available at http://www.eclipse.org/org/documents/edl-v10.php
  9. *
  10. * All rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above copyright
  17. * notice, this list of conditions and the following disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials provided
  22. * with the distribution.
  23. *
  24. * - Neither the name of the Eclipse Foundation, Inc. nor the
  25. * names of its contributors may be used to endorse or promote
  26. * products derived from this software without specific prior
  27. * written permission.
  28. *
  29. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
  30. * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  31. * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  32. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  33. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  34. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  35. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  36. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  37. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  38. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  39. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  40. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
  41. * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  42. */
  43. package org.eclipse.jgit.storage.dht;
  44. import java.util.Collections;
  45. import java.util.Comparator;
  46. import java.util.Date;
  47. import java.util.List;
  48. import org.eclipse.jgit.generated.storage.dht.proto.GitStore;
  49. import org.eclipse.jgit.lib.ObjectId;
  50. /** Connects an object to the chunk it is stored in. */
  51. public class ObjectInfo {
  52. /** Orders ObjectInfo by their time member, oldest first. */
  53. public static final Comparator<ObjectInfo> BY_TIME = new Comparator<ObjectInfo>() {
  54. public int compare(ObjectInfo a, ObjectInfo b) {
  55. return Long.signum(a.getTime() - b.getTime());
  56. }
  57. };
  58. /**
  59. * Sort the info list according to time, oldest member first.
  60. *
  61. * @param toSort
  62. * list to sort.
  63. */
  64. public static void sort(List<ObjectInfo> toSort) {
  65. Collections.sort(toSort, BY_TIME);
  66. }
  67. private final ChunkKey chunk;
  68. private final long time;
  69. private final GitStore.ObjectInfo data;
  70. /**
  71. * Wrap an ObjectInfo from the storage system.
  72. *
  73. * @param chunkKey
  74. * the chunk the object points to.
  75. * @param data
  76. * the data of the ObjectInfo.
  77. */
  78. public ObjectInfo(ChunkKey chunkKey, GitStore.ObjectInfo data) {
  79. this.chunk = chunkKey;
  80. this.time = 0;
  81. this.data = data;
  82. }
  83. /**
  84. * Wrap an ObjectInfo from the storage system.
  85. *
  86. * @param chunkKey
  87. * the chunk the object points to.
  88. * @param time
  89. * timestamp of the ObjectInfo.
  90. * @param data
  91. * the data of the ObjectInfo.
  92. */
  93. public ObjectInfo(ChunkKey chunkKey, long time, GitStore.ObjectInfo data) {
  94. this.chunk = chunkKey;
  95. this.time = time < 0 ? 0 : time;
  96. this.data = data;
  97. }
  98. /** @return the chunk this link points to. */
  99. public ChunkKey getChunkKey() {
  100. return chunk;
  101. }
  102. /** @return approximate time the object was created, in milliseconds. */
  103. public long getTime() {
  104. return time;
  105. }
  106. /** @return GitStore.ObjectInfo to embed in the database. */
  107. public GitStore.ObjectInfo getData() {
  108. return data;
  109. }
  110. /** @return type of the object, in OBJ_* constants. */
  111. public int getType() {
  112. return data.getObjectType().getNumber();
  113. }
  114. /** @return size of the object when fully inflated. */
  115. public long getSize() {
  116. return data.getInflatedSize();
  117. }
  118. /** @return true if the object storage uses delta compression. */
  119. public boolean isDelta() {
  120. return data.hasDeltaBase();
  121. }
  122. /** @return true if the object has been fragmented across chunks. */
  123. public boolean isFragmented() {
  124. return data.getIsFragmented();
  125. }
  126. int getOffset() {
  127. return data.getOffset();
  128. }
  129. long getPackedSize() {
  130. return data.getPackedSize();
  131. }
  132. ObjectId getDeltaBase() {
  133. if (data.hasDeltaBase())
  134. return ObjectId.fromRaw(data.getDeltaBase().toByteArray(), 0);
  135. return null;
  136. }
  137. @Override
  138. public String toString() {
  139. StringBuilder b = new StringBuilder();
  140. b.append("ObjectInfo:");
  141. b.append(chunk);
  142. if (0 < time)
  143. b.append(" @ ").append(new Date(time));
  144. b.append("\n");
  145. b.append(data.toString());
  146. return b.toString();
  147. }
  148. }