Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

PackBitmapIndexWriterV1.java 5.4KB

Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Support creating pack bitmap indexes in PackWriter. Update the PackWriter to support writing out pack bitmap indexes, a parallel ".bitmap" file to the ".pack" file. Bitmaps are selected at commits every 1 to 5,000 commits for each unique path from the start. The most recent 100 commits are all bitmapped. The next 19,000 commits have a bitmaps every 100 commits. The remaining commits have a bitmap every 5,000 commits. Commits with more than 1 parent are prefered over ones with 1 or less. Furthermore, previously computed bitmaps are reused, if the previous entry had the reuse flag set, which is set when the bitmap was placed at the max allowed distance. Bitmaps are used to speed up the counting phase when packing, for requests that are not shallow. The PackWriterBitmapWalker uses a RevFilter to proactively mark commits with RevFlag.SEEN, when they appear in a bitmap. The walker produces the full closure of reachable ObjectIds, given the collection of starting ObjectIds. For fetch request, two ObjectWalks are executed to compute the ObjectIds reachable from the haves and from the wants. The ObjectIds needed to be written are determined by taking all the resulting wants AND NOT the haves. For clone requests, we get cached pack support for "free" since it is possible to determine if all of the ObjectIds in a pack file are included in the resulting list of ObjectIds to write. On my machine, the best times for clones and fetches of the linux kernel repository (with about 2.6M objects and 300K commits) are tabulated below: Operation Index V2 Index VE003 Clone 37530ms (524.06 MiB) 82ms (524.06 MiB) Fetch (1 commit back) 75ms 107ms Fetch (10 commits back) 456ms (269.51 KiB) 341ms (265.19 KiB) Fetch (100 commits back) 449ms (269.91 KiB) 337ms (267.28 KiB) Fetch (1000 commits back) 2229ms ( 14.75 MiB) 189ms ( 14.42 MiB) Fetch (10000 commits back) 2177ms ( 16.30 MiB) 254ms ( 15.88 MiB) Fetch (100000 commits back) 14340ms (185.83 MiB) 1655ms (189.39 MiB) Change-Id: Icdb0cdd66ff168917fb9ef17b96093990cc6a98d
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Support creating pack bitmap indexes in PackWriter. Update the PackWriter to support writing out pack bitmap indexes, a parallel ".bitmap" file to the ".pack" file. Bitmaps are selected at commits every 1 to 5,000 commits for each unique path from the start. The most recent 100 commits are all bitmapped. The next 19,000 commits have a bitmaps every 100 commits. The remaining commits have a bitmap every 5,000 commits. Commits with more than 1 parent are prefered over ones with 1 or less. Furthermore, previously computed bitmaps are reused, if the previous entry had the reuse flag set, which is set when the bitmap was placed at the max allowed distance. Bitmaps are used to speed up the counting phase when packing, for requests that are not shallow. The PackWriterBitmapWalker uses a RevFilter to proactively mark commits with RevFlag.SEEN, when they appear in a bitmap. The walker produces the full closure of reachable ObjectIds, given the collection of starting ObjectIds. For fetch request, two ObjectWalks are executed to compute the ObjectIds reachable from the haves and from the wants. The ObjectIds needed to be written are determined by taking all the resulting wants AND NOT the haves. For clone requests, we get cached pack support for "free" since it is possible to determine if all of the ObjectIds in a pack file are included in the resulting list of ObjectIds to write. On my machine, the best times for clones and fetches of the linux kernel repository (with about 2.6M objects and 300K commits) are tabulated below: Operation Index V2 Index VE003 Clone 37530ms (524.06 MiB) 82ms (524.06 MiB) Fetch (1 commit back) 75ms 107ms Fetch (10 commits back) 456ms (269.51 KiB) 341ms (265.19 KiB) Fetch (100 commits back) 449ms (269.91 KiB) 337ms (267.28 KiB) Fetch (1000 commits back) 2229ms ( 14.75 MiB) 189ms ( 14.42 MiB) Fetch (10000 commits back) 2177ms ( 16.30 MiB) 254ms ( 15.88 MiB) Fetch (100000 commits back) 14340ms (185.83 MiB) 1655ms (189.39 MiB) Change-Id: Icdb0cdd66ff168917fb9ef17b96093990cc6a98d
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
Support creating pack bitmap indexes in PackWriter. Update the PackWriter to support writing out pack bitmap indexes, a parallel ".bitmap" file to the ".pack" file. Bitmaps are selected at commits every 1 to 5,000 commits for each unique path from the start. The most recent 100 commits are all bitmapped. The next 19,000 commits have a bitmaps every 100 commits. The remaining commits have a bitmap every 5,000 commits. Commits with more than 1 parent are prefered over ones with 1 or less. Furthermore, previously computed bitmaps are reused, if the previous entry had the reuse flag set, which is set when the bitmap was placed at the max allowed distance. Bitmaps are used to speed up the counting phase when packing, for requests that are not shallow. The PackWriterBitmapWalker uses a RevFilter to proactively mark commits with RevFlag.SEEN, when they appear in a bitmap. The walker produces the full closure of reachable ObjectIds, given the collection of starting ObjectIds. For fetch request, two ObjectWalks are executed to compute the ObjectIds reachable from the haves and from the wants. The ObjectIds needed to be written are determined by taking all the resulting wants AND NOT the haves. For clone requests, we get cached pack support for "free" since it is possible to determine if all of the ObjectIds in a pack file are included in the resulting list of ObjectIds to write. On my machine, the best times for clones and fetches of the linux kernel repository (with about 2.6M objects and 300K commits) are tabulated below: Operation Index V2 Index VE003 Clone 37530ms (524.06 MiB) 82ms (524.06 MiB) Fetch (1 commit back) 75ms 107ms Fetch (10 commits back) 456ms (269.51 KiB) 341ms (265.19 KiB) Fetch (100 commits back) 449ms (269.91 KiB) 337ms (267.28 KiB) Fetch (1000 commits back) 2229ms ( 14.75 MiB) 189ms ( 14.42 MiB) Fetch (10000 commits back) 2177ms ( 16.30 MiB) 254ms ( 15.88 MiB) Fetch (100000 commits back) 14340ms (185.83 MiB) 1655ms (189.39 MiB) Change-Id: Icdb0cdd66ff168917fb9ef17b96093990cc6a98d
12 år sedan
Added read/write support for pack bitmap index. A pack bitmap index is an additional index of compressed bitmaps of the object graph. Furthermore, a logical API of the index functionality is included, as it is expected to be used by the PackWriter. Compressed bitmaps are created using the javaewah library, which is a word-aligned compressed variant of the Java bitset class based on run-length encoding. The library only works with positive integer values. Thus, the maximum number of ObjectIds in a pack file that this index can currently support is limited to Integer.MAX_VALUE. Every ObjectId is given an integer mapping. The integer is the position of the ObjectId in the complete ObjectId list, sorted by offset, for the pack file. That integer is what the bitmaps use to reference the ObjectId. Currently, the new index format can only be used with pack files that contain a complete closure of the object graph e.g. the result of a garbage collection. The index file includes four bitmaps for the Git object types i.e. commits, trees, blobs, and tags. In addition, a collection of bitmaps keyed by an ObjectId is also included. The bitmap for each entry in the collection represents the full closure of ObjectIds reachable from the keyed ObjectId (including the keyed ObjectId itself). The bitmaps are further compressed by XORing the current bitmaps against prior bitmaps in the index, and selecting the smallest representation. The XOR'd bitmap and offset from the current entry to the position of the bitmap to XOR against is the actual representation of the entry in the index file. Each entry contains one byte, which is currently used to note whether the bitmap should be blindly reused. Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
12 år sedan
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. /*
  2. * Copyright (C) 2012, Google Inc.
  3. * and other copyright owners as documented in the project's IP log.
  4. *
  5. * This program and the accompanying materials are made available
  6. * under the terms of the Eclipse Distribution License v1.0 which
  7. * accompanies this distribution, is reproduced below, and is
  8. * available at http://www.eclipse.org/org/documents/edl-v10.php
  9. *
  10. * All rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above copyright
  17. * notice, this list of conditions and the following disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials provided
  22. * with the distribution.
  23. *
  24. * - Neither the name of the Eclipse Foundation, Inc. nor the
  25. * names of its contributors may be used to endorse or promote
  26. * products derived from this software without specific prior
  27. * written permission.
  28. *
  29. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
  30. * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  31. * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  32. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  33. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  34. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  35. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  36. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  37. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  38. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  39. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  40. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
  41. * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  42. */
  43. package org.eclipse.jgit.internal.storage.file;
  44. import java.io.BufferedOutputStream;
  45. import java.io.DataOutput;
  46. import java.io.IOException;
  47. import java.io.OutputStream;
  48. import java.security.DigestOutputStream;
  49. import java.text.MessageFormat;
  50. import org.eclipse.jgit.internal.JGitText;
  51. import org.eclipse.jgit.internal.storage.file.PackBitmapIndexBuilder.StoredEntry;
  52. import org.eclipse.jgit.lib.Constants;
  53. import org.eclipse.jgit.util.io.SafeBufferedOutputStream;
  54. import com.googlecode.javaewah.EWAHCompressedBitmap;
  55. /**
  56. * Creates the version 1 pack bitmap index files.
  57. *
  58. * @see PackBitmapIndexV1
  59. */
  60. public class PackBitmapIndexWriterV1 {
  61. private final DigestOutputStream out;
  62. private final DataOutput dataOutput;
  63. /**
  64. * Creates the version 1 pack bitmap index files.
  65. *
  66. * @param dst
  67. * the output stream to which the index will be written.
  68. */
  69. public PackBitmapIndexWriterV1(final OutputStream dst) {
  70. out = new DigestOutputStream(dst instanceof BufferedOutputStream ? dst
  71. : new SafeBufferedOutputStream(dst),
  72. Constants.newMessageDigest());
  73. dataOutput = new SimpleDataOutput(out);
  74. }
  75. /**
  76. * Write all object entries to the index stream.
  77. * <p>
  78. * After writing the stream passed to the factory is flushed but remains
  79. * open. Callers are always responsible for closing the output stream.
  80. *
  81. * @param bitmaps
  82. * the index data for the bitmaps
  83. * @param packDataChecksum
  84. * checksum signature of the entire pack data content. This is
  85. * traditionally the last 20 bytes of the pack file's own stream.
  86. * @throws IOException
  87. * an error occurred while writing to the output stream, or this
  88. * index format cannot store the object data supplied.
  89. */
  90. public void write(PackBitmapIndexBuilder bitmaps, byte[] packDataChecksum)
  91. throws IOException {
  92. if (bitmaps == null || packDataChecksum.length != 20)
  93. throw new IllegalStateException();
  94. writeHeader(bitmaps.getOptions(), bitmaps.getBitmapCount(),
  95. packDataChecksum);
  96. writeBody(bitmaps);
  97. writeFooter();
  98. out.flush();
  99. }
  100. private void writeHeader(
  101. int options, int bitmapCount, byte[] packDataChecksum)
  102. throws IOException {
  103. out.write(PackBitmapIndexV1.MAGIC);
  104. dataOutput.writeShort(1);
  105. dataOutput.writeShort(options);
  106. dataOutput.writeInt(bitmapCount);
  107. out.write(packDataChecksum);
  108. }
  109. private void writeBody(PackBitmapIndexBuilder bitmaps) throws IOException {
  110. writeBitmap(bitmaps.getCommits());
  111. writeBitmap(bitmaps.getTrees());
  112. writeBitmap(bitmaps.getBlobs());
  113. writeBitmap(bitmaps.getTags());
  114. writeBitmaps(bitmaps);
  115. }
  116. private void writeBitmap(EWAHCompressedBitmap bitmap) throws IOException {
  117. bitmap.serialize(dataOutput);
  118. }
  119. private void writeBitmaps(PackBitmapIndexBuilder bitmaps)
  120. throws IOException {
  121. int bitmapCount = 0;
  122. for (StoredEntry entry : bitmaps.getCompressedBitmaps()) {
  123. writeBitmapEntry(entry);
  124. bitmapCount++;
  125. }
  126. int expectedBitmapCount = bitmaps.getBitmapCount();
  127. if (expectedBitmapCount != bitmapCount)
  128. throw new IOException(MessageFormat.format(
  129. JGitText.get().expectedGot,
  130. String.valueOf(expectedBitmapCount),
  131. String.valueOf(bitmapCount)));
  132. }
  133. private void writeBitmapEntry(StoredEntry entry) throws IOException {
  134. // Write object, XOR offset, and bitmap
  135. dataOutput.writeInt((int) entry.getObjectId());
  136. out.write(entry.getXorOffset());
  137. out.write(entry.getFlags());
  138. writeBitmap(entry.getBitmap());
  139. }
  140. private void writeFooter() throws IOException {
  141. out.on(false);
  142. out.write(out.getMessageDigest().digest());
  143. }
  144. }