Browse Source

[Minor] Update bundled xxhash

tags/3.2
Vsevolod Stakhov 2 years ago
parent
commit
23889da9ae

+ 1
- 1
contrib/DEPENDENCY_INFO.md View File

@@ -24,7 +24,7 @@
| snowball | ? | BSD-3-Clause | NO | |
| t1ha | ? | Zlib | NO | |
| uthash | 1.9.8 | BSD | YES | |
| xxhash | ? | BSD | NO | |
| xxhash | 0.8.1 | BSD | NO | |
| zstd | 1.4.5 | BSD | NO | |
| google-ced | 37529e6 | Apache 2 | YES | build fixes |
| kann | ? | MIT | YES | blas/lapack changes|

+ 1
- 1
contrib/xxhash/CMakeLists.txt View File

@@ -1,4 +1,4 @@
SET(XXHASHSRC xxhash.c)
SET(XXHASHSRC xxhash.c xxh_x86dispatch.c)

ADD_LIBRARY(xxhash STATIC ${XXHASHSRC})


+ 55
- 0
contrib/xxhash/xxh3.h View File

@@ -0,0 +1,55 @@
/*
* xxHash - Extremely Fast Hash algorithm
* Development source file for `xxh3`
* Copyright (C) 2019-2020 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/

/*
* Note: This file used to host the source code of XXH3_* variants.
* during the development period.
* The source code is now properly integrated within xxhash.h.
*
* xxh3.h is no longer useful,
* but it is still provided for compatibility with source code
* which used to include it directly.
*
* Programs are now highly discouraged to include xxh3.h.
* Include `xxhash.h` instead, which is the officially supported interface.
*
* In the future, xxh3.h will start to generate warnings, then errors,
* then it will be removed from source package and from include directory.
*/

/* Simulate the same impact as including the old xxh3.h source file */

#define XXH_INLINE_ALL
#include "xxhash.h"

+ 770
- 0
contrib/xxhash/xxh_x86dispatch.c View File

@@ -0,0 +1,770 @@
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2020 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/


/*!
* @file xxh_x86dispatch.c
*
* Automatic dispatcher code for the @ref xxh3_family on x86-based targets.
*
* Optional add-on.
*
* **Compile this file with the default flags for your target.** Do not compile
* with flags like `-mavx*`, `-march=native`, or `/arch:AVX*`, there will be
* an error. See @ref XXH_X86DISPATCH_ALLOW_AVX for details.
*
* @defgroup dispatch x86 Dispatcher
* @{
*/

#if defined (__cplusplus)
extern "C" {
#endif

#if !(defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64))
# error "Dispatching is currently only supported on x86 and x86_64."
#endif

/*!
* @def XXH_X86DISPATCH_ALLOW_AVX
* @brief Disables the AVX sanity check.
*
* Don't compile xxh_x86dispatch.c with options like `-mavx*`, `-march=native`,
* or `/arch:AVX*`. It is intended to be compiled for the minimum target, and
* it selectively enables SSE2, AVX2, and AVX512 when it is needed.
*
* Using this option _globally_ allows this feature, and therefore makes it
* undefined behavior to execute on any CPU without said feature.
*
* Even if the source code isn't directly using AVX intrinsics in a function,
* the compiler can still generate AVX code from autovectorization and by
* "upgrading" SSE2 intrinsics to use the VEX prefixes (a.k.a. AVX128).
*
* Use the same flags that you use to compile the rest of the program; this
* file will safely generate SSE2, AVX2, and AVX512 without these flags.
*
* Define XXH_X86DISPATCH_ALLOW_AVX to ignore this check, and feel free to open
* an issue if there is a target in the future where AVX is a default feature.
*/
#ifdef XXH_DOXYGEN
# define XXH_X86DISPATCH_ALLOW_AVX
#endif

#if defined(__AVX__) && !defined(XXH_X86DISPATCH_ALLOW_AVX)
# error "Do not compile xxh_x86dispatch.c with AVX enabled! See the comment above."
#endif

#ifdef __has_include
# define XXH_HAS_INCLUDE(header) __has_include(header)
#else
# define XXH_HAS_INCLUDE(header) 0
#endif

/*!
* @def XXH_DISPATCH_SCALAR
* @brief Enables/dispatching the scalar code path.
*
* If this is defined to 0, SSE2 support is assumed. This reduces code size
* when the scalar path is not needed.
*
* This is automatically defined to 0 when...
* - SSE2 support is enabled in the compiler
* - Targeting x86_64
* - Targeting Android x86
* - Targeting macOS
*/
#ifndef XXH_DISPATCH_SCALAR
# if defined(__SSE2__) || (defined(_M_IX86_FP) && _M_IX86_FP >= 2) /* SSE2 on by default */ \
|| defined(__x86_64__) || defined(_M_X64) /* x86_64 */ \
|| defined(__ANDROID__) || defined(__APPLEv__) /* Android or macOS */
# define XXH_DISPATCH_SCALAR 0 /* disable */
# else
# define XXH_DISPATCH_SCALAR 1
# endif
#endif
/*!
* @def XXH_DISPATCH_AVX2
* @brief Enables/disables dispatching for AVX2.
*
* This is automatically detected if it is not defined.
* - GCC 4.7 and later are known to support AVX2, but >4.9 is required for
* to get the AVX2 intrinsics and typedefs without -mavx -mavx2.
* - Visual Studio 2013 Update 2 and later are known to support AVX2.
* - The GCC/Clang internal header `<avx2intrin.h>` is detected. While this is
* not allowed to be included directly, it still appears in the builtin
* include path and is detectable with `__has_include`.
*
* @see XXH_AVX2
*/
#ifndef XXH_DISPATCH_AVX2
# if (defined(__GNUC__) && (__GNUC__ > 4)) /* GCC 5.0+ */ \
|| (defined(_MSC_VER) && _MSC_VER >= 1900) /* VS 2015+ */ \
|| (defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 180030501) /* VS 2013 Update 2 */ \
|| XXH_HAS_INCLUDE(<avx2intrin.h>) /* GCC/Clang internal header */
# define XXH_DISPATCH_AVX2 1 /* enable dispatch towards AVX2 */
# else
# define XXH_DISPATCH_AVX2 0
# endif
#endif /* XXH_DISPATCH_AVX2 */

/*!
* @def XXH_DISPATCH_AVX512
* @brief Enables/disables dispatching for AVX512.
*
* Automatically detected if one of the following conditions is met:
* - GCC 4.9 and later are known to support AVX512.
* - Visual Studio 2017 and later are known to support AVX2.
* - The GCC/Clang internal header `<avx512fintrin.h>` is detected. While this
* is not allowed to be included directly, it still appears in the builtin
* include path and is detectable with `__has_include`.
*
* @see XXH_AVX512
*/
#ifndef XXH_DISPATCH_AVX512
# if (defined(__GNUC__) \
&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9))) /* GCC 4.9+ */ \
|| (defined(_MSC_VER) && _MSC_VER >= 1910) /* VS 2017+ */ \
|| XXH_HAS_INCLUDE(<avx512fintrin.h>) /* GCC/Clang internal header */
# define XXH_DISPATCH_AVX512 1 /* enable dispatch towards AVX512 */
# else
# define XXH_DISPATCH_AVX512 0
# endif
#endif /* XXH_DISPATCH_AVX512 */

/*!
* @def XXH_TARGET_SSE2
* @brief Allows a function to be compiled with SSE2 intrinsics.
*
* Uses `__attribute__((__target__("sse2")))` on GCC to allow SSE2 to be used
* even with `-mno-sse2`.
*
* @def XXH_TARGET_AVX2
* @brief Like @ref XXH_TARGET_SSE2, but for AVX2.
*
* @def XXH_TARGET_AVX512
* @brief Like @ref XXH_TARGET_SSE2, but for AVX512.
*/
#if defined(__GNUC__)
# include <emmintrin.h> /* SSE2 */
# if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512
# include <immintrin.h> /* AVX2, AVX512F */
# endif
# define XXH_TARGET_SSE2 __attribute__((__target__("sse2")))
# define XXH_TARGET_AVX2 __attribute__((__target__("avx2")))
# define XXH_TARGET_AVX512 __attribute__((__target__("avx512f")))
#elif defined(_MSC_VER)
# include <intrin.h>
# define XXH_TARGET_SSE2
# define XXH_TARGET_AVX2
# define XXH_TARGET_AVX512
#else
# error "Dispatching is currently not supported for your compiler."
#endif

#ifdef XXH_DISPATCH_DEBUG
/* debug logging */
# include <stdio.h>
# define XXH_debugPrint(str) { fprintf(stderr, "DEBUG: xxHash dispatch: %s \n", str); fflush(NULL); }
#else
# define XXH_debugPrint(str) ((void)0)
# undef NDEBUG /* avoid redefinition */
# define NDEBUG
#endif
#include <assert.h>

#define XXH_INLINE_ALL
#define XXH_X86DISPATCH
#include "xxhash.h"

/*
* Support both AT&T and Intel dialects
*
* GCC doesn't convert AT&T syntax to Intel syntax, and will error out if
* compiled with -masm=intel. Instead, it supports dialect switching with
* curly braces: { AT&T syntax | Intel syntax }
*
* Clang's integrated assembler automatically converts AT&T syntax to Intel if
* needed, making the dialect switching useless (it isn't even supported).
*
* Note: Comments are written in the inline assembly itself.
*/
#ifdef __clang__
# define XXH_I_ATT(intel, att) att "\n\t"
#else
# define XXH_I_ATT(intel, att) "{" att "|" intel "}\n\t"
#endif

/*!
* @internal
* @brief Runs CPUID.
*
* @param eax , ecx The parameters to pass to CPUID, %eax and %ecx respectively.
* @param abcd The array to store the result in, `{ eax, ebx, ecx, edx }`
*/
static void XXH_cpuid(xxh_u32 eax, xxh_u32 ecx, xxh_u32* abcd)
{
#if defined(_MSC_VER)
__cpuidex(abcd, eax, ecx);
#else
xxh_u32 ebx, edx;
# if defined(__i386__) && defined(__PIC__)
__asm__(
"# Call CPUID\n\t"
"#\n\t"
"# On 32-bit x86 with PIC enabled, we are not allowed to overwrite\n\t"
"# EBX, so we use EDI instead.\n\t"
XXH_I_ATT("mov edi, ebx", "movl %%ebx, %%edi")
XXH_I_ATT("cpuid", "cpuid" )
XXH_I_ATT("xchg edi, ebx", "xchgl %%ebx, %%edi")
: "=D" (ebx),
# else
__asm__(
"# Call CPUID\n\t"
XXH_I_ATT("cpuid", "cpuid")
: "=b" (ebx),
# endif
"+a" (eax), "+c" (ecx), "=d" (edx));
abcd[0] = eax;
abcd[1] = ebx;
abcd[2] = ecx;
abcd[3] = edx;
#endif
}

/*
* Modified version of Intel's guide
* https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family
*/

#if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512
/*!
* @internal
* @brief Runs `XGETBV`.
*
* While the CPU may support AVX2, the operating system might not properly save
* the full YMM/ZMM registers.
*
* xgetbv is used for detecting this: Any compliant operating system will define
* a set of flags in the xcr0 register indicating how it saves the AVX registers.
*
* You can manually disable this flag on Windows by running, as admin:
*
* bcdedit.exe /set xsavedisable 1
*
* and rebooting. Run the same command with 0 to re-enable it.
*/
static xxh_u64 XXH_xgetbv(void)
{
#if defined(_MSC_VER)
return _xgetbv(0); /* min VS2010 SP1 compiler is required */
#else
xxh_u32 xcr0_lo, xcr0_hi;
__asm__(
"# Call XGETBV\n\t"
"#\n\t"
"# Older assemblers (e.g. macOS's ancient GAS version) don't support\n\t"
"# the XGETBV opcode, so we encode it by hand instead.\n\t"
"# See <https://github.com/asmjit/asmjit/issues/78> for details.\n\t"
".byte 0x0f, 0x01, 0xd0\n\t"
: "=a" (xcr0_lo), "=d" (xcr0_hi) : "c" (0));
return xcr0_lo | ((xxh_u64)xcr0_hi << 32);
#endif
}
#endif

#define XXH_SSE2_CPUID_MASK (1 << 26)
#define XXH_OSXSAVE_CPUID_MASK ((1 << 26) | (1 << 27))
#define XXH_AVX2_CPUID_MASK (1 << 5)
#define XXH_AVX2_XGETBV_MASK ((1 << 2) | (1 << 1))
#define XXH_AVX512F_CPUID_MASK (1 << 16)
#define XXH_AVX512F_XGETBV_MASK ((7 << 5) | (1 << 2) | (1 << 1))

/*!
* @internal
* @brief Returns the best XXH3 implementation.
*
* Runs various CPUID/XGETBV tests to try and determine the best implementation.
*
* @ret The best @ref XXH_VECTOR implementation.
* @see XXH_VECTOR_TYPES
*/
static int XXH_featureTest(void)
{
xxh_u32 abcd[4];
xxh_u32 max_leaves;
int best = XXH_SCALAR;
#if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512
xxh_u64 xgetbv_val;
#endif
#if defined(__GNUC__) && defined(__i386__)
xxh_u32 cpuid_supported;
__asm__(
"# For the sake of ruthless backwards compatibility, check if CPUID\n\t"
"# is supported in the EFLAGS on i386.\n\t"
"# This is not necessary on x86_64 - CPUID is mandatory.\n\t"
"# The ID flag (bit 21) in the EFLAGS register indicates support\n\t"
"# for the CPUID instruction. If a software procedure can set and\n\t"
"# clear this flag, the processor executing the procedure supports\n\t"
"# the CPUID instruction.\n\t"
"# <https://c9x.me/x86/html/file_module_x86_id_45.html>\n\t"
"#\n\t"
"# Routine is from <https://wiki.osdev.org/CPUID>.\n\t"

"# Save EFLAGS\n\t"
XXH_I_ATT("pushfd", "pushfl" )
"# Store EFLAGS\n\t"
XXH_I_ATT("pushfd", "pushfl" )
"# Invert the ID bit in stored EFLAGS\n\t"
XXH_I_ATT("xor dword ptr[esp], 0x200000", "xorl $0x200000, (%%esp)")
"# Load stored EFLAGS (with ID bit inverted)\n\t"
XXH_I_ATT("popfd", "popfl" )
"# Store EFLAGS again (ID bit may or not be inverted)\n\t"
XXH_I_ATT("pushfd", "pushfl" )
"# eax = modified EFLAGS (ID bit may or may not be inverted)\n\t"
XXH_I_ATT("pop eax", "popl %%eax" )
"# eax = whichever bits were changed\n\t"
XXH_I_ATT("xor eax, dword ptr[esp]", "xorl (%%esp), %%eax" )
"# Restore original EFLAGS\n\t"
XXH_I_ATT("popfd", "popfl" )
"# eax = zero if ID bit can't be changed, else non-zero\n\t"
XXH_I_ATT("and eax, 0x200000", "andl $0x200000, %%eax" )
: "=a" (cpuid_supported) :: "cc");

if (XXH_unlikely(!cpuid_supported)) {
XXH_debugPrint("CPUID support is not detected!");
return best;
}

#endif
/* Check how many CPUID pages we have */
XXH_cpuid(0, 0, abcd);
max_leaves = abcd[0];

/* Shouldn't happen on hardware, but happens on some QEMU configs. */
if (XXH_unlikely(max_leaves == 0)) {
XXH_debugPrint("Max CPUID leaves == 0!");
return best;
}

/* Check for SSE2, OSXSAVE and xgetbv */
XXH_cpuid(1, 0, abcd);

/*
* Test for SSE2. The check is redundant on x86_64, but it doesn't hurt.
*/
if (XXH_unlikely((abcd[3] & XXH_SSE2_CPUID_MASK) != XXH_SSE2_CPUID_MASK))
return best;

XXH_debugPrint("SSE2 support detected.");

best = XXH_SSE2;
#if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512
/* Make sure we have enough leaves */
if (XXH_unlikely(max_leaves < 7))
return best;

/* Test for OSXSAVE and XGETBV */
if ((abcd[2] & XXH_OSXSAVE_CPUID_MASK) != XXH_OSXSAVE_CPUID_MASK)
return best;

/* CPUID check for AVX features */
XXH_cpuid(7, 0, abcd);

xgetbv_val = XXH_xgetbv();
#if XXH_DISPATCH_AVX2
/* Validate that AVX2 is supported by the CPU */
if ((abcd[1] & XXH_AVX2_CPUID_MASK) != XXH_AVX2_CPUID_MASK)
return best;

/* Validate that the OS supports YMM registers */
if ((xgetbv_val & XXH_AVX2_XGETBV_MASK) != XXH_AVX2_XGETBV_MASK) {
XXH_debugPrint("AVX2 supported by the CPU, but not the OS.");
return best;
}

/* AVX2 supported */
XXH_debugPrint("AVX2 support detected.");
best = XXH_AVX2;
#endif
#if XXH_DISPATCH_AVX512
/* Check if AVX512F is supported by the CPU */
if ((abcd[1] & XXH_AVX512F_CPUID_MASK) != XXH_AVX512F_CPUID_MASK) {
XXH_debugPrint("AVX512F not supported by CPU");
return best;
}

/* Validate that the OS supports ZMM registers */
if ((xgetbv_val & XXH_AVX512F_XGETBV_MASK) != XXH_AVX512F_XGETBV_MASK) {
XXH_debugPrint("AVX512F supported by the CPU, but not the OS.");
return best;
}

/* AVX512F supported */
XXH_debugPrint("AVX512F support detected.");
best = XXH_AVX512;
#endif
#endif
return best;
}


/* === Vector implementations === */

/*!
* @internal
* @brief Defines the various dispatch functions.
*
* TODO: Consolidate?
*
* @param suffix The suffix for the functions, e.g. sse2 or scalar
* @param target XXH_TARGET_* or empty.
*/
#define XXH_DEFINE_DISPATCH_FUNCS(suffix, target) \
\
/* === XXH3, default variants === */ \
\
XXH_NO_INLINE target XXH64_hash_t \
XXHL64_default_##suffix(const void* XXH_RESTRICT input, size_t len) \
{ \
return XXH3_hashLong_64b_internal( \
input, len, XXH3_kSecret, sizeof(XXH3_kSecret), \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \
); \
} \
\
/* === XXH3, Seeded variants === */ \
\
XXH_NO_INLINE target XXH64_hash_t \
XXHL64_seed_##suffix(const void* XXH_RESTRICT input, size_t len, \
XXH64_hash_t seed) \
{ \
return XXH3_hashLong_64b_withSeed_internal( \
input, len, seed, XXH3_accumulate_512_##suffix, \
XXH3_scrambleAcc_##suffix, XXH3_initCustomSecret_##suffix \
); \
} \
\
/* === XXH3, Secret variants === */ \
\
XXH_NO_INLINE target XXH64_hash_t \
XXHL64_secret_##suffix(const void* XXH_RESTRICT input, size_t len, \
const void* secret, size_t secretLen) \
{ \
return XXH3_hashLong_64b_internal( \
input, len, secret, secretLen, \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \
); \
} \
\
/* === XXH3 update variants === */ \
\
XXH_NO_INLINE target XXH_errorcode \
XXH3_update_##suffix(XXH3_state_t* state, const void* input, size_t len) \
{ \
return XXH3_update(state, (const xxh_u8*)input, len, \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix); \
} \
\
/* === XXH128 default variants === */ \
\
XXH_NO_INLINE target XXH128_hash_t \
XXHL128_default_##suffix(const void* XXH_RESTRICT input, size_t len) \
{ \
return XXH3_hashLong_128b_internal( \
input, len, XXH3_kSecret, sizeof(XXH3_kSecret), \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \
); \
} \
\
/* === XXH128 Secret variants === */ \
\
XXH_NO_INLINE target XXH128_hash_t \
XXHL128_secret_##suffix(const void* XXH_RESTRICT input, size_t len, \
const void* XXH_RESTRICT secret, size_t secretLen) \
{ \
return XXH3_hashLong_128b_internal( \
input, len, (const xxh_u8*)secret, secretLen, \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix); \
} \
\
/* === XXH128 Seeded variants === */ \
\
XXH_NO_INLINE target XXH128_hash_t \
XXHL128_seed_##suffix(const void* XXH_RESTRICT input, size_t len, \
XXH64_hash_t seed) \
{ \
return XXH3_hashLong_128b_withSeed_internal(input, len, seed, \
XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix, \
XXH3_initCustomSecret_##suffix); \
}

/* End XXH_DEFINE_DISPATCH_FUNCS */

#if XXH_DISPATCH_SCALAR
XXH_DEFINE_DISPATCH_FUNCS(scalar, /* nothing */)
#endif
XXH_DEFINE_DISPATCH_FUNCS(sse2, XXH_TARGET_SSE2)
#if XXH_DISPATCH_AVX2
XXH_DEFINE_DISPATCH_FUNCS(avx2, XXH_TARGET_AVX2)
#endif
#if XXH_DISPATCH_AVX512
XXH_DEFINE_DISPATCH_FUNCS(avx512, XXH_TARGET_AVX512)
#endif
#undef XXH_DEFINE_DISPATCH_FUNCS

/* ==== Dispatchers ==== */

typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_default)(const void* XXH_RESTRICT, size_t);

typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_withSeed)(const void* XXH_RESTRICT, size_t, XXH64_hash_t);

typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_withSecret)(const void* XXH_RESTRICT, size_t, const void* XXH_RESTRICT, size_t);

typedef XXH_errorcode (*XXH3_dispatchx86_update)(XXH3_state_t*, const void*, size_t);

typedef struct {
XXH3_dispatchx86_hashLong64_default hashLong64_default;
XXH3_dispatchx86_hashLong64_withSeed hashLong64_seed;
XXH3_dispatchx86_hashLong64_withSecret hashLong64_secret;
XXH3_dispatchx86_update update;
} XXH_dispatchFunctions_s;

#define XXH_NB_DISPATCHES 4

/*!
* @internal
* @brief Table of dispatchers for @ref XXH3_64bits().
*
* @pre The indices must match @ref XXH_VECTOR_TYPE.
*/
static const XXH_dispatchFunctions_s XXH_kDispatch[XXH_NB_DISPATCHES] = {
#if XXH_DISPATCH_SCALAR
/* Scalar */ { XXHL64_default_scalar, XXHL64_seed_scalar, XXHL64_secret_scalar, XXH3_update_scalar },
#else
/* Scalar */ { NULL, NULL, NULL, NULL },
#endif
/* SSE2 */ { XXHL64_default_sse2, XXHL64_seed_sse2, XXHL64_secret_sse2, XXH3_update_sse2 },
#if XXH_DISPATCH_AVX2
/* AVX2 */ { XXHL64_default_avx2, XXHL64_seed_avx2, XXHL64_secret_avx2, XXH3_update_avx2 },
#else
/* AVX2 */ { NULL, NULL, NULL, NULL },
#endif
#if XXH_DISPATCH_AVX512
/* AVX512 */ { XXHL64_default_avx512, XXHL64_seed_avx512, XXHL64_secret_avx512, XXH3_update_avx512 }
#else
/* AVX512 */ { NULL, NULL, NULL, NULL }
#endif
};
/*!
* @internal
* @brief The selected dispatch table for @ref XXH3_64bits().
*/
static XXH_dispatchFunctions_s XXH_g_dispatch = { NULL, NULL, NULL, NULL };


typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_default)(const void* XXH_RESTRICT, size_t);

typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_withSeed)(const void* XXH_RESTRICT, size_t, XXH64_hash_t);

typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_withSecret)(const void* XXH_RESTRICT, size_t, const void* XXH_RESTRICT, size_t);

typedef struct {
XXH3_dispatchx86_hashLong128_default hashLong128_default;
XXH3_dispatchx86_hashLong128_withSeed hashLong128_seed;
XXH3_dispatchx86_hashLong128_withSecret hashLong128_secret;
XXH3_dispatchx86_update update;
} XXH_dispatch128Functions_s;


/*!
* @internal
* @brief Table of dispatchers for @ref XXH3_128bits().
*
* @pre The indices must match @ref XXH_VECTOR_TYPE.
*/
static const XXH_dispatch128Functions_s XXH_kDispatch128[XXH_NB_DISPATCHES] = {
#if XXH_DISPATCH_SCALAR
/* Scalar */ { XXHL128_default_scalar, XXHL128_seed_scalar, XXHL128_secret_scalar, XXH3_update_scalar },
#else
/* Scalar */ { NULL, NULL, NULL, NULL },
#endif
/* SSE2 */ { XXHL128_default_sse2, XXHL128_seed_sse2, XXHL128_secret_sse2, XXH3_update_sse2 },
#if XXH_DISPATCH_AVX2
/* AVX2 */ { XXHL128_default_avx2, XXHL128_seed_avx2, XXHL128_secret_avx2, XXH3_update_avx2 },
#else
/* AVX2 */ { NULL, NULL, NULL, NULL },
#endif
#if XXH_DISPATCH_AVX512
/* AVX512 */ { XXHL128_default_avx512, XXHL128_seed_avx512, XXHL128_secret_avx512, XXH3_update_avx512 }
#else
/* AVX512 */ { NULL, NULL, NULL, NULL }
#endif
};

/*!
* @internal
* @brief The selected dispatch table for @ref XXH3_64bits().
*/
static XXH_dispatch128Functions_s XXH_g_dispatch128 = { NULL, NULL, NULL, NULL };

/*!
* @internal
* @brief Runs a CPUID check and sets the correct dispatch tables.
*/
static void XXH_setDispatch(void)
{
int vecID = XXH_featureTest();
XXH_STATIC_ASSERT(XXH_AVX512 == XXH_NB_DISPATCHES-1);
assert(XXH_SCALAR <= vecID && vecID <= XXH_AVX512);
#if !XXH_DISPATCH_SCALAR
assert(vecID != XXH_SCALAR);
#endif
#if !XXH_DISPATCH_AVX512
assert(vecID != XXH_AVX512);
#endif
#if !XXH_DISPATCH_AVX2
assert(vecID != XXH_AVX2);
#endif
XXH_g_dispatch = XXH_kDispatch[vecID];
XXH_g_dispatch128 = XXH_kDispatch128[vecID];
}


/* ==== XXH3 public functions ==== */

static XXH64_hash_t
XXH3_hashLong_64b_defaultSecret_selection(const void* input, size_t len,
XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
if (XXH_g_dispatch.hashLong64_default == NULL) XXH_setDispatch();
return XXH_g_dispatch.hashLong64_default(input, len);
}

XXH64_hash_t XXH3_64bits_dispatch(const void* input, size_t len)
{
return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_defaultSecret_selection);
}

static XXH64_hash_t
XXH3_hashLong_64b_withSeed_selection(const void* input, size_t len,
XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen)
{
(void)secret; (void)secretLen;
if (XXH_g_dispatch.hashLong64_seed == NULL) XXH_setDispatch();
return XXH_g_dispatch.hashLong64_seed(input, len, seed64);
}

XXH64_hash_t XXH3_64bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed_selection);
}

static XXH64_hash_t
XXH3_hashLong_64b_withSecret_selection(const void* input, size_t len,
XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen)
{
(void)seed64;
if (XXH_g_dispatch.hashLong64_secret == NULL) XXH_setDispatch();
return XXH_g_dispatch.hashLong64_secret(input, len, secret, secretLen);
}

XXH64_hash_t XXH3_64bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen)
{
return XXH3_64bits_internal(input, len, 0, secret, secretLen, XXH3_hashLong_64b_withSecret_selection);
}

XXH_errorcode
XXH3_64bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len)
{
if (XXH_g_dispatch.update == NULL) XXH_setDispatch();
return XXH_g_dispatch.update(state, (const xxh_u8*)input, len);
}


/* ==== XXH128 public functions ==== */

static XXH128_hash_t
XXH3_hashLong_128b_defaultSecret_selection(const void* input, size_t len,
XXH64_hash_t seed64, const void* secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
if (XXH_g_dispatch128.hashLong128_default == NULL) XXH_setDispatch();
return XXH_g_dispatch128.hashLong128_default(input, len);
}

XXH128_hash_t XXH3_128bits_dispatch(const void* input, size_t len)
{
return XXH3_128bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_defaultSecret_selection);
}

static XXH128_hash_t
XXH3_hashLong_128b_withSeed_selection(const void* input, size_t len,
XXH64_hash_t seed64, const void* secret, size_t secretLen)
{
(void)secret; (void)secretLen;
if (XXH_g_dispatch128.hashLong128_seed == NULL) XXH_setDispatch();
return XXH_g_dispatch128.hashLong128_seed(input, len, seed64);
}

XXH128_hash_t XXH3_128bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_withSeed_selection);
}

static XXH128_hash_t
XXH3_hashLong_128b_withSecret_selection(const void* input, size_t len,
XXH64_hash_t seed64, const void* secret, size_t secretLen)
{
(void)seed64;
if (XXH_g_dispatch128.hashLong128_secret == NULL) XXH_setDispatch();
return XXH_g_dispatch128.hashLong128_secret(input, len, secret, secretLen);
}

XXH128_hash_t XXH3_128bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen)
{
return XXH3_128bits_internal(input, len, 0, secret, secretLen, XXH3_hashLong_128b_withSecret_selection);
}

XXH_errorcode
XXH3_128bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len)
{
if (XXH_g_dispatch128.update == NULL) XXH_setDispatch();
return XXH_g_dispatch128.update(state, (const xxh_u8*)input, len);
}

#if defined (__cplusplus)
}
#endif
/*! @} */

+ 86
- 0
contrib/xxhash/xxh_x86dispatch.h View File

@@ -0,0 +1,86 @@
/*
* xxHash - XXH3 Dispatcher for x86-based targets
* Copyright (C) 2020 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/

#ifndef XXH_X86DISPATCH_H_13563687684
#define XXH_X86DISPATCH_H_13563687684

#include "xxhash.h" /* XXH64_hash_t, XXH3_state_t */

#if defined (__cplusplus)
extern "C" {
#endif

XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_dispatch(const void* input, size_t len);
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed);
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen);
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len);

XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_dispatch(const void* input, size_t len);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen);
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len);

#if defined (__cplusplus)
}
#endif


/* automatic replacement of XXH3 functions.
* can be disabled by setting XXH_DISPATCH_DISABLE_REPLACE */
#ifndef XXH_DISPATCH_DISABLE_REPLACE

# undef XXH3_64bits
# define XXH3_64bits XXH3_64bits_dispatch
# undef XXH3_64bits_withSeed
# define XXH3_64bits_withSeed XXH3_64bits_withSeed_dispatch
# undef XXH3_64bits_withSecret
# define XXH3_64bits_withSecret XXH3_64bits_withSecret_dispatch
# undef XXH3_64bits_update
# define XXH3_64bits_update XXH3_64bits_update_dispatch

# undef XXH128
# define XXH128 XXH3_128bits_withSeed_dispatch
# define XXH3_128bits XXH3_128bits_dispatch
# undef XXH3_128bits
# define XXH3_128bits XXH3_128bits_dispatch
# undef XXH3_128bits_withSeed
# define XXH3_128bits_withSeed XXH3_128bits_withSeed_dispatch
# undef XXH3_128bits_withSecret
# define XXH3_128bits_withSecret XXH3_128bits_withSecret_dispatch
# undef XXH3_128bits_update
# define XXH3_128bits_update XXH3_128bits_update_dispatch

#endif /* XXH_DISPATCH_DISABLE_REPLACE */

#endif /* XXH_X86DISPATCH_H_13563687684 */

+ 37
- 935
contrib/xxhash/xxhash.c View File

@@ -1,941 +1,43 @@
/*
xxHash - Fast Hash algorithm
Copyright (C) 2012-2014, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2020 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can contact the author at :
- xxHash source repository : http://code.google.com/p/xxhash/
- public discussion board : https://groups.google.com/forum/#!forum/lz4c
*/


//**************************************
// Tuning parameters
//**************************************
// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_USE_UNALIGNED_ACCESS 1
#endif

// XXH_ACCEPT_NULL_INPUT_POINTER :
// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
// This option has a very small performance cost (only measurable on small inputs).
// By default, this option is disabled. To enable it, uncomment below define :
// #define XXH_ACCEPT_NULL_INPUT_POINTER 1

// XXH_FORCE_NATIVE_FORMAT :
// By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
// Results are therefore identical for little-endian and big-endian CPU.
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
// Should endian-independence be of no importance for your application, you may set the #define below to 1.
// It will improve speed for Big-endian CPU.
// This option has no impact on Little_Endian CPU.
#define XXH_FORCE_NATIVE_FORMAT 0

//**************************************
// Compiler Specific Options
//**************************************
// Disable some Visual warning messages
#ifdef _MSC_VER // Visual Studio
# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
#endif
/*
* xxhash.c instantiates functions defined in xxhash.h
*/

#ifdef _MSC_VER // Visual Studio
# define FORCE_INLINE static __forceinline
#else
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
#define XXH_IMPLEMENTATION /* access definitions */

//**************************************
// Includes & Memory related functions
//**************************************
#include "xxhash.h"
// Modify the local functions below should you wish to use some other memory routines
// for malloc(), free()
#include <stdlib.h>
static void* XXH_malloc(size_t s) { return malloc(s); }
static void XXH_free (void* p) { free(p); }
// for memcpy()
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size)
{
return memcpy(dest,src,size);
}


//**************************************
// Basic Types
//**************************************
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
#endif

#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
# define _PACKED __attribute__ ((packed))
#else
# define _PACKED
#endif

#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
# ifdef __IBMC__
# pragma pack(1)
# else
# pragma pack(push, 1)
# endif
#endif

typedef struct _U32_S
{
U32 v;
} _PACKED U32_S;
typedef struct _U64_S
{
U64 v;
} _PACKED U64_S;

#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
# pragma pack(pop)
#endif

#define A32(x) (((U32_S *)(x))->v)
#define A64(x) (((U64_S *)(x))->v)


//***************************************
// Compiler-specific Functions and Macros
//***************************************
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)

// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif

#if defined(_MSC_VER) // Visual Studio
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static inline U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static inline U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif


//**************************************
// Constants
//**************************************
#define PRIME32_1 2654435761U
#define PRIME32_2 2246822519U
#define PRIME32_3 3266489917U
#define PRIME32_4 668265263U
#define PRIME32_5 374761393U

#define PRIME64_1 11400714785074694791ULL
#define PRIME64_2 14029467366897019727ULL
#define PRIME64_3 1609587929392839161ULL
#define PRIME64_4 9650029242287828579ULL
#define PRIME64_5 2870177450012600261ULL

//**************************************
// Architecture Macros
//**************************************
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
static const int one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
#endif


//**************************************
// Macros
//**************************************
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations


//****************************
// Memory reads
//****************************
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;

FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
else
return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
}

FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}

FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
else
return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
}

FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}


//****************************
// Simple Hash Functions
//****************************
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)

#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL)
{
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif

if (len>=16)
{
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;

do
{
v1 += XXH_get32bits(p) * PRIME32_2;
v1 = XXH_rotl32(v1, 13);
v1 *= PRIME32_1;
p+=4;
v2 += XXH_get32bits(p) * PRIME32_2;
v2 = XXH_rotl32(v2, 13);
v2 *= PRIME32_1;
p+=4;
v3 += XXH_get32bits(p) * PRIME32_2;
v3 = XXH_rotl32(v3, 13);
v3 *= PRIME32_1;
p+=4;
v4 += XXH_get32bits(p) * PRIME32_2;
v4 = XXH_rotl32(v4, 13);
v4 *= PRIME32_1;
p+=4;
}
while (p<=limit);

h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
}
else
{
h32 = seed + PRIME32_5;
}

h32 += (U32) len;

while (p+4<=bEnd)
{
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}

while (p<bEnd)
{
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}

h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;

return h32;
}


unsigned int XXH32 (const void* input, size_t len, unsigned seed)
{
#if 0
// Simple version, good for code maintenance, but unfortunately slow for small inputs
XXH32_state_t state;
XXH32_reset(&state, seed);
XXH32_update(&state, input, len);
return XXH32_digest(&state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
}
# endif

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}

FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)

#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL)
{
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif

if (len>=32)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;

do
{
v1 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
v2 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
v3 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
v4 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
}
while (p<=limit);

h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);

v1 *= PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
h64 ^= v1;
h64 = h64 * PRIME64_1 + PRIME64_4;

v2 *= PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
h64 ^= v2;
h64 = h64 * PRIME64_1 + PRIME64_4;

v3 *= PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
h64 ^= v3;
h64 = h64 * PRIME64_1 + PRIME64_4;

v4 *= PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
h64 ^= v4;
h64 = h64 * PRIME64_1 + PRIME64_4;
}
else
{
h64 = seed + PRIME64_5;
}

h64 += (U64) len;

while (p+8<=bEnd)
{
U64 k1 = XXH_get64bits(p);
k1 *= PRIME64_2;
k1 = XXH_rotl64(k1,31);
k1 *= PRIME64_1;
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}

if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}

while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}

h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;

return h64;
}


unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
{
#if 0
// Simple version, good for code maintenance, but unfortunately slow for small inputs
XXH64_state_t state;
XXH64_reset(&state, seed);
XXH64_update(&state, input, len);
return XXH64_digest(&state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
}
# endif

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}

/****************************************************
* Advanced Hash Functions
****************************************************/

/*** Allocation ***/
typedef struct
{
U64 total_len;
U32 seed;
U32 v1;
U32 v2;
U32 v3;
U32 v4;
U32 mem32[4]; /* defined as U32 for alignment */
U32 memsize;
} XXH_istate32_t;

typedef struct
{
U64 total_len;
U64 seed;
U64 v1;
U64 v2;
U64 v3;
U64 v4;
U64 mem64[4]; /* defined as U64 for alignment */
U32 memsize;
} XXH_istate64_t;


XXH32_state_t* XXH32_createState(void)
{
XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}

void* XXH32_init (unsigned seed)
{
XXH32_state_t *st = XXH32_createState();
XXH32_reset(st, seed);

return st;
}

XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}

XXH64_state_t* XXH64_createState(void)
{
XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}


/*** Hash feed ***/

XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
{
XXH_istate32_t* state = (XXH_istate32_t*) state_in;
state->seed = seed;
state->v1 = seed + PRIME32_1 + PRIME32_2;
state->v2 = seed + PRIME32_2;
state->v3 = seed + 0;
state->v4 = seed - PRIME32_1;
state->total_len = 0;
state->memsize = 0;
return XXH_OK;
}

XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
{
XXH_istate64_t* state = (XXH_istate64_t*) state_in;
state->seed = seed;
state->v1 = seed + PRIME64_1 + PRIME64_2;
state->v2 = seed + PRIME64_2;
state->v3 = seed + 0;
state->v4 = seed - PRIME64_1;
state->total_len = 0;
state->memsize = 0;
return XXH_OK;
}


FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
{
XXH_istate32_t* state = (XXH_istate32_t *) state_in;
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;

#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif

state->total_len += len;

if (state->memsize + len < 16) // fill in tmp buffer
{
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}

if (state->memsize) // some data left from previous update
{
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{
const U32* p32 = state->mem32;
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v1 = XXH_rotl32(state->v1, 13);
state->v1 *= PRIME32_1;
p32++;
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v2 = XXH_rotl32(state->v2, 13);
state->v2 *= PRIME32_1;
p32++;
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v3 = XXH_rotl32(state->v3, 13);
state->v3 *= PRIME32_1;
p32++;
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v4 = XXH_rotl32(state->v4, 13);
state->v4 *= PRIME32_1;
p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}

if (p <= bEnd-16)
{
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;

do
{
v1 += XXH_readLE32(p, endian) * PRIME32_2;
v1 = XXH_rotl32(v1, 13);
v1 *= PRIME32_1;
p+=4;
v2 += XXH_readLE32(p, endian) * PRIME32_2;
v2 = XXH_rotl32(v2, 13);
v2 *= PRIME32_1;
p+=4;
v3 += XXH_readLE32(p, endian) * PRIME32_2;
v3 = XXH_rotl32(v3, 13);
v3 *= PRIME32_1;
p+=4;
v4 += XXH_readLE32(p, endian) * PRIME32_2;
v4 = XXH_rotl32(v4, 13);
v4 *= PRIME32_1;
p+=4;
}
while (p<=limit);

state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}

if (p < bEnd)
{
XXH_memcpy(state->mem32, p, bEnd-p);
state->memsize = (int)(bEnd-p);
}

return XXH_OK;
}

XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}



FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
{
XXH_istate32_t* state = (XXH_istate32_t*) state_in;
const BYTE * p = (const BYTE*)state->mem32;
BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
U32 h32;

if (state->total_len >= 16)
{
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
}
else
{
h32 = state->seed + PRIME32_5;
}

h32 += (U32) state->total_len;

while (p+4<=bEnd)
{
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}

while (p<bEnd)
{
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}

h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
#if 0
XXH32_freeState((XXH32_state_t *)state_in);
#endif
return h32;
}


U32 XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}


FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
{
XXH_istate64_t * state = (XXH_istate64_t *) state_in;
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;

#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif

state->total_len += len;

if (state->memsize + len < 32) // fill in tmp buffer
{
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}

if (state->memsize) // some data left from previous update
{
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
{
const U64* p64 = state->mem64;
state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v1 = XXH_rotl64(state->v1, 31);
state->v1 *= PRIME64_1;
p64++;
state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v2 = XXH_rotl64(state->v2, 31);
state->v2 *= PRIME64_1;
p64++;
state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v3 = XXH_rotl64(state->v3, 31);
state->v3 *= PRIME64_1;
p64++;
state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v4 = XXH_rotl64(state->v4, 31);
state->v4 *= PRIME64_1;
p64++;
}
p += 32-state->memsize;
state->memsize = 0;
}

if (p+32 <= bEnd)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;

do
{
v1 += XXH_readLE64(p, endian) * PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
p+=8;
v2 += XXH_readLE64(p, endian) * PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
p+=8;
v3 += XXH_readLE64(p, endian) * PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
p+=8;
v4 += XXH_readLE64(p, endian) * PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
p+=8;
}
while (p<=limit);

state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}

if (p < bEnd)
{
XXH_memcpy(state->mem64, p, bEnd-p);
state->memsize = (int)(bEnd-p);
}

return XXH_OK;
}

XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}



FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
{
XXH_istate64_t * state = (XXH_istate64_t *) state_in;
const BYTE * p = (const BYTE*)state->mem64;
BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
U64 h64;

if (state->total_len >= 32)
{
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;

h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);

v1 *= PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
h64 ^= v1;
h64 = h64*PRIME64_1 + PRIME64_4;

v2 *= PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
h64 ^= v2;
h64 = h64*PRIME64_1 + PRIME64_4;

v3 *= PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
h64 ^= v3;
h64 = h64*PRIME64_1 + PRIME64_4;

v4 *= PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
h64 ^= v4;
h64 = h64*PRIME64_1 + PRIME64_4;
}
else
{
h64 = state->seed + PRIME64_5;
}

h64 += (U64) state->total_len;

while (p+8<=bEnd)
{
U64 k1 = XXH_readLE64(p, endian);
k1 *= PRIME64_2;
k1 = XXH_rotl64(k1,31);
k1 *= PRIME64_1;
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}

if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}

while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}

h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
#if 0
XXH64_freeState((XXH64_state_t *)state_in);
#endif
return h64;
}


unsigned long long XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;

if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}



+ 5514
- 96
contrib/xxhash/xxhash.h
File diff suppressed because it is too large
View File


+ 0
- 2
src/libcryptobox/cryptobox.c View File

@@ -1480,8 +1480,6 @@ void rspamd_cryptobox_hash (guchar *out,

G_STATIC_ASSERT (sizeof (t1ha_context_t) <=
sizeof (((rspamd_cryptobox_fast_hash_state_t *)NULL)->opaque));
G_STATIC_ASSERT (sizeof (XXH64_state_t) <=
sizeof (((rspamd_cryptobox_fast_hash_state_t *)NULL)->opaque));


struct RSPAMD_ALIGNED(16) _mum_iuf {

Loading…
Cancel
Save