[Minor] Backport unaligned access fixes from t1ha

Issue: #2222
This commit is contained in:
Vsevolod Stakhov 2018-05-14 16:14:58 +01:00
parent 1a21511cf9
commit 974d1dbcab
3 changed files with 620 additions and 379 deletions

View File

@ -58,81 +58,89 @@ static __inline uint64_t final_weak_avalanche(uint64_t a, uint64_t b) {
return mux64(rot64(a + b, 17), prime_4) + mix64(a ^ b, prime_0);
}
/* TODO C++ template in the next version */
#define T1HA1_BODY(ENDIANNES, ALIGNESS, DOCOPY) \
if (unlikely(len > 32)) { \
uint64_t c = rot64(len, 17) + seed; \
uint64_t d = len ^ rot64(seed, 17); \
const void *detent = (const uint8_t *)data + len - 31; \
do { \
const uint64_t *v = (const uint64_t *)data; \
if (DOCOPY) \
memcpy((void *)(v = align), data, 32); \
\
const uint64_t w0 = fetch64_##ENDIANNES##_##ALIGNESS(v + 0); \
const uint64_t w1 = fetch64_##ENDIANNES##_##ALIGNESS(v + 1); \
const uint64_t w2 = fetch64_##ENDIANNES##_##ALIGNESS(v + 2); \
const uint64_t w3 = fetch64_##ENDIANNES##_##ALIGNESS(v + 3); \
\
const uint64_t d02 = w0 ^ rot64(w2 + d, 17); \
const uint64_t c13 = w1 ^ rot64(w3 + c, 17); \
c += a ^ rot64(w0, 41); \
d -= b ^ rot64(w1, 31); \
a ^= prime_1 * (d02 + w3); \
b ^= prime_0 * (c13 + w2); \
data = (const uint64_t *)data + 4; \
} while (likely(data < detent)); \
\
a ^= prime_6 * (rot64(c, 17) + d); \
b ^= prime_5 * (c + rot64(d, 17)); \
len &= 31; \
} \
\
const uint64_t *v = (const uint64_t *)data; \
if (unlikely(need_copy4align) && len > 8) \
memcpy((void *)(v = align), data, len); \
\
switch (len) { \
default: \
b += mux64(fetch64_##ENDIANNES##_##ALIGNESS(v++), prime_4); \
/* fall through */ \
case 24: \
case 23: \
case 22: \
case 21: \
case 20: \
case 19: \
case 18: \
case 17: \
a += mux64(fetch64_##ENDIANNES##_##ALIGNESS(v++), prime_3); \
/* fall through */ \
case 16: \
case 15: \
case 14: \
case 13: \
case 12: \
case 11: \
case 10: \
case 9: \
b += mux64(fetch64_##ENDIANNES##_##ALIGNESS(v++), prime_2); \
/* fall through */ \
case 8: \
case 7: \
case 6: \
case 5: \
case 4: \
case 3: \
case 2: \
case 1: \
a += mux64(tail64_##ENDIANNES##_##ALIGNESS(v, len), prime_1); \
/* fall through */ \
case 0: \
return final_weak_avalanche(a, b); \
}
uint64_t t1ha1_le(const void *data, size_t len, uint64_t seed) {
uint64_t a = seed;
uint64_t b = len;
const int need_align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
const bool need_copy4align =
(((uintptr_t)data) & (ALIGMENT_64 - 1)) != 0 && !UNALIGNED_OK;
uint64_t align[4];
if (unlikely(len > 32)) {
uint64_t c = rot64(len, 17) + seed;
uint64_t d = len ^ rot64(seed, 17);
const void *detent = (const uint8_t *)data + len - 31;
do {
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align))
v = (const uint64_t *)memcpy(&align, unaligned(v), 32);
uint64_t w0 = fetch64_le(v + 0);
uint64_t w1 = fetch64_le(v + 1);
uint64_t w2 = fetch64_le(v + 2);
uint64_t w3 = fetch64_le(v + 3);
uint64_t d02 = w0 ^ rot64(w2 + d, 17);
uint64_t c13 = w1 ^ rot64(w3 + c, 17);
c += a ^ rot64(w0, 41);
d -= b ^ rot64(w1, 31);
a ^= prime_1 * (d02 + w3);
b ^= prime_0 * (c13 + w2);
data = (const uint64_t *)data + 4;
} while (likely(data < detent));
a ^= prime_6 * (rot64(c, 17) + d);
b ^= prime_5 * (c + rot64(d, 17));
len &= 31;
}
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align) && len > 8)
v = (const uint64_t *)memcpy(&align, unaligned(v), len);
switch (len) {
default:
b += mux64(fetch64_le(v++), prime_4);
/* fall through */
case 24:
case 23:
case 22:
case 21:
case 20:
case 19:
case 18:
case 17:
a += mux64(fetch64_le(v++), prime_3);
/* fall through */
case 16:
case 15:
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
b += mux64(fetch64_le(v++), prime_2);
/* fall through */
case 8:
case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
a += mux64(tail64_le(v, len), prime_1);
/* fall through */
case 0:
return final_weak_avalanche(a, b);
if (need_copy4align) {
T1HA1_BODY(le, aligned, true);
} else {
T1HA1_BODY(le, unaligned, false);
}
}
@ -140,76 +148,12 @@ uint64_t t1ha1_be(const void *data, size_t len, uint64_t seed) {
uint64_t a = seed;
uint64_t b = len;
const int need_align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
const bool need_copy4align =
(((uintptr_t)data) & (ALIGMENT_64 - 1)) != 0 && !UNALIGNED_OK;
uint64_t align[4];
if (unlikely(len > 32)) {
uint64_t c = rot64(len, 17) + seed;
uint64_t d = len ^ rot64(seed, 17);
const void *detent = (const uint8_t *)data + len - 31;
do {
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align))
v = (const uint64_t *)memcpy(&align, unaligned(v), 32);
uint64_t w0 = fetch64_be(v + 0);
uint64_t w1 = fetch64_be(v + 1);
uint64_t w2 = fetch64_be(v + 2);
uint64_t w3 = fetch64_be(v + 3);
uint64_t d02 = w0 ^ rot64(w2 + d, 17);
uint64_t c13 = w1 ^ rot64(w3 + c, 17);
c += a ^ rot64(w0, 41);
d -= b ^ rot64(w1, 31);
a ^= prime_1 * (d02 + w3);
b ^= prime_0 * (c13 + w2);
data = (const uint64_t *)data + 4;
} while (likely(data < detent));
a ^= prime_6 * (rot64(c, 17) + d);
b ^= prime_5 * (c + rot64(d, 17));
len &= 31;
if (need_copy4align) {
T1HA1_BODY(be, aligned, true);
} else {
T1HA1_BODY(be, unaligned, false);
}
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align) && len > 8)
v = (const uint64_t *)memcpy(&align, unaligned(v), len);
switch (len) {
default:
b += mux64(fetch64_be(v++), prime_4);
/* fall through */
case 24:
case 23:
case 22:
case 21:
case 20:
case 19:
case 18:
case 17:
a += mux64(fetch64_be(v++), prime_3);
/* fall through */
case 16:
case 15:
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
b += mux64(fetch64_be(v++), prime_2);
/* fall through */
case 8:
case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
a += mux64(tail64_be(v, len), prime_1);
/* fall through */
case 0:
return final_weak_avalanche(a, b);
}
}
}

View File

@ -56,128 +56,140 @@ static __always_inline void init_cd(t1ha_state256_t *s, uint64_t x,
s->n.d = ~y + rot64(x, 19);
}
static __always_inline void update(t1ha_state256_t *__restrict s,
const uint64_t *__restrict v) {
uint64_t w0 = fetch64_le(v + 0);
uint64_t w1 = fetch64_le(v + 1);
uint64_t w2 = fetch64_le(v + 2);
uint64_t w3 = fetch64_le(v + 3);
uint64_t d02 = w0 + rot64(w2 + s->n.d, 56);
uint64_t c13 = w1 + rot64(w3 + s->n.c, 19);
#ifdef __e2k__
/* FIXME: temporary workaround for lcc's ELBRUS scheduling bug (LY) */
s->n.c ^= s->n.a + rot64(w0, 57);
s->n.d ^= s->n.b + rot64(w1, 38);
#else
s->n.d ^= s->n.b + rot64(w1, 38);
s->n.c ^= s->n.a + rot64(w0, 57);
#endif
s->n.b ^= prime_6 * (c13 + w2);
s->n.a ^= prime_5 * (d02 + w3);
}
/* TODO C++ template in the next version */
#define T1HA2_UPDATE(ENDIANNES, ALIGNESS, state, v) \
do { \
t1ha_state256_t *const s = state; \
const uint64_t w0 = fetch64_##ENDIANNES##_##ALIGNESS(v + 0); \
const uint64_t w1 = fetch64_##ENDIANNES##_##ALIGNESS(v + 1); \
const uint64_t w2 = fetch64_##ENDIANNES##_##ALIGNESS(v + 2); \
const uint64_t w3 = fetch64_##ENDIANNES##_##ALIGNESS(v + 3); \
\
const uint64_t d02 = w0 + rot64(w2 + s->n.d, 56); \
const uint64_t c13 = w1 + rot64(w3 + s->n.c, 19); \
s->n.d ^= s->n.b + rot64(w1, 38); \
s->n.c ^= s->n.a + rot64(w0, 57); \
s->n.b ^= prime_6 * (c13 + w2); \
s->n.a ^= prime_5 * (d02 + w3); \
} while (0)
static __always_inline void squash(t1ha_state256_t *s) {
s->n.a ^= prime_6 * (s->n.c + rot64(s->n.d, 23));
s->n.b ^= prime_5 * (rot64(s->n.c, 19) + s->n.d);
}
static __always_inline const void *
loop(bool need_copy4align, uint64_t *__restrict buffer4align,
t1ha_state256_t *__restrict s, const void *__restrict data, size_t len) {
const void *detent = (const uint8_t *)data + len - 31;
do {
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_copy4align))
v = (const uint64_t *)memcpy(buffer4align, unaligned(v), 32);
update(s, v);
data = (const uint64_t *)data + 4;
} while (likely(data < detent));
return data;
}
/* TODO C++ template in the next version */
#define T1HA2_LOOP(ENDIANNES, ALIGNESS, BUFFER4COPY, state, data, len) \
do { \
const void *detent = (const uint8_t *)data + len - 31; \
do { \
const uint64_t *v = (const uint64_t *)data; \
if (BUFFER4COPY != NULL) \
memcpy((void *)(v = BUFFER4COPY), data, 32); \
T1HA2_UPDATE(le, unaligned, state, v); \
data = (const uint64_t *)data + 4; \
} while (likely(data < detent)); \
} while (0)
static __always_inline void tail_ab(t1ha_state256_t *__restrict s,
const uint64_t *__restrict v, size_t len) {
switch (len) {
default:
mixup64(&s->n.a, &s->n.b, fetch64_le(v++), prime_4);
/* fall through */
case 24:
case 23:
case 22:
case 21:
case 20:
case 19:
case 18:
case 17:
mixup64(&s->n.b, &s->n.a, fetch64_le(v++), prime_3);
/* fall through */
case 16:
case 15:
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
mixup64(&s->n.a, &s->n.b, fetch64_le(v++), prime_2);
/* fall through */
case 8:
case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
mixup64(&s->n.b, &s->n.a, tail64_le(v, len), prime_1);
/* fall through */
case 0:
return;
}
}
/* TODO C++ template in the next version */
#define T1HA2_TAIL_AB(ENDIANNES, ALIGNESS, BUFFER4COPY, state, data, len) \
do { \
t1ha_state256_t *const s = state; \
const uint64_t *v = (const uint64_t *)data; \
if (BUFFER4COPY != NULL) \
memcpy((void *)(v = BUFFER4COPY), data, len); \
switch (len) { \
default: \
mixup64(&s->n.a, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_4); \
/* fall through */ \
case 24: \
case 23: \
case 22: \
case 21: \
case 20: \
case 19: \
case 18: \
case 17: \
mixup64(&s->n.b, &s->n.a, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_3); \
/* fall through */ \
case 16: \
case 15: \
case 14: \
case 13: \
case 12: \
case 11: \
case 10: \
case 9: \
mixup64(&s->n.a, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_2); \
/* fall through */ \
case 8: \
case 7: \
case 6: \
case 5: \
case 4: \
case 3: \
case 2: \
case 1: \
mixup64(&s->n.b, &s->n.a, tail64_##ENDIANNES##_##ALIGNESS(v, len), \
prime_1); \
/* fall through */ \
case 0: \
return final64(s->n.a, s->n.b); \
} \
} while (0)
static __always_inline void tail_abcd(t1ha_state256_t *__restrict s,
const uint64_t *__restrict v,
size_t len) {
switch (len) {
default:
mixup64(&s->n.a, &s->n.d, fetch64_le(v++), prime_4);
/* fall through */
case 24:
case 23:
case 22:
case 21:
case 20:
case 19:
case 18:
case 17:
mixup64(&s->n.b, &s->n.a, fetch64_le(v++), prime_3);
/* fall through */
case 16:
case 15:
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
mixup64(&s->n.c, &s->n.b, fetch64_le(v++), prime_2);
/* fall through */
case 8:
case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
mixup64(&s->n.d, &s->n.c, tail64_le(v, len), prime_1);
/* fall through */
case 0:
return;
}
}
/* TODO C++ template in the next version */
#define T1HA2_TAIL_ABCD(ENDIANNES, ALIGNESS, BUFFER4COPY, state, data, len) \
do { \
t1ha_state256_t *const s = state; \
const uint64_t *v = (const uint64_t *)data; \
if (BUFFER4COPY != NULL) \
memcpy((void *)(v = BUFFER4COPY), data, len); \
switch (len) { \
default: \
mixup64(&s->n.a, &s->n.d, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_4); \
/* fall through */ \
case 24: \
case 23: \
case 22: \
case 21: \
case 20: \
case 19: \
case 18: \
case 17: \
mixup64(&s->n.b, &s->n.a, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_3); \
/* fall through */ \
case 16: \
case 15: \
case 14: \
case 13: \
case 12: \
case 11: \
case 10: \
case 9: \
mixup64(&s->n.c, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \
prime_2); \
/* fall through */ \
case 8: \
case 7: \
case 6: \
case 5: \
case 4: \
case 3: \
case 2: \
case 1: \
mixup64(&s->n.d, &s->n.c, tail64_##ENDIANNES##_##ALIGNESS(v, len), \
prime_1); \
/* fall through */ \
case 0: \
return final128(s->n.a, s->n.b, s->n.c, s->n.d, extra_result); \
} \
} while (0)
static __always_inline uint64_t final128(uint64_t a, uint64_t b, uint64_t c,
uint64_t d, uint64_t *h) {
@ -195,22 +207,26 @@ uint64_t t1ha2_atonce(const void *data, size_t length, uint64_t seed) {
t1ha_state256_t state;
init_ab(&state, seed, length);
const int need_copy4align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
uint64_t buffer4align[4];
if (unlikely(length > 32)) {
init_cd(&state, seed, length);
data = loop(need_copy4align, buffer4align, &state, data, length);
squash(&state);
length &= 31;
const bool need_copy4align =
(((uintptr_t)data) & (ALIGMENT_64 - 1)) != 0 && !UNALIGNED_OK;
if (need_copy4align) {
uint64_t buffer4align[4];
if (unlikely(length > 32)) {
init_cd(&state, seed, length);
T1HA2_LOOP(le, aligned, buffer4align, &state, data, length);
squash(&state);
length &= 31;
}
T1HA2_TAIL_AB(le, aligned, buffer4align, &state, data, length);
} else {
if (unlikely(length > 32)) {
init_cd(&state, seed, length);
T1HA2_LOOP(le, unaligned, NULL, &state, data, length);
squash(&state);
length &= 31;
}
T1HA2_TAIL_AB(le, unaligned, NULL, &state, data, length);
}
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_copy4align) && length > 8)
v = (const uint64_t *)memcpy(&buffer4align, unaligned(v), length);
tail_ab(&state, v, length);
return final64(state.n.a, state.n.b);
}
uint64_t t1ha2_atonce128(uint64_t *__restrict extra_result,
@ -220,20 +236,22 @@ uint64_t t1ha2_atonce128(uint64_t *__restrict extra_result,
init_ab(&state, seed, length);
init_cd(&state, seed, length);
const int need_copy4align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
uint64_t buffer4align[4];
if (unlikely(length > 32)) {
data = loop(need_copy4align, buffer4align, &state, data, length);
length &= 31;
const bool need_copy4align =
(((uintptr_t)data) & (ALIGMENT_64 - 1)) != 0 && !UNALIGNED_OK;
if (need_copy4align) {
uint64_t buffer4align[4];
if (unlikely(length > 32)) {
T1HA2_LOOP(le, aligned, buffer4align, &state, data, length);
length &= 31;
}
T1HA2_TAIL_ABCD(le, aligned, buffer4align, &state, data, length);
} else {
if (unlikely(length > 32)) {
T1HA2_LOOP(le, unaligned, NULL, &state, data, length);
length &= 31;
}
T1HA2_TAIL_ABCD(le, unaligned, NULL, &state, data, length);
}
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_copy4align) && length > 8)
v = (const uint64_t *)memcpy(&buffer4align, unaligned(v), length);
tail_abcd(&state, v, length);
return final128(state.n.a, state.n.b, state.n.c, state.n.d, extra_result);
}
//------------------------------------------------------------------------------
@ -252,7 +270,7 @@ void t1ha2_update(t1ha_context_t *__restrict ctx, const void *__restrict data,
if (ctx->partial) {
const size_t left = 32 - ctx->partial;
const size_t chunk = (length >= left) ? left : length;
memcpy(ctx->buffer.bytes + ctx->partial, unaligned(data), chunk);
memcpy(ctx->buffer.bytes + ctx->partial, data, chunk);
ctx->partial += chunk;
if (ctx->partial < 32) {
assert(left >= length);
@ -261,37 +279,41 @@ void t1ha2_update(t1ha_context_t *__restrict ctx, const void *__restrict data,
ctx->partial = 0;
data = (const uint8_t *)data + chunk;
length -= chunk;
update(&ctx->state, ctx->buffer.u64);
T1HA2_UPDATE(le, aligned, &ctx->state, ctx->buffer.u64);
}
if (length >= 32) {
const bool need_copy4align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
if (need_copy4align)
data = loop(true, ctx->buffer.u64, &ctx->state, data, length);
else
data = loop(false, NULL, &ctx->state, data, length);
const bool need_copy4align =
(((uintptr_t)data) & (ALIGMENT_64 - 1)) != 0 && !UNALIGNED_OK;
if (need_copy4align) {
T1HA2_LOOP(le, aligned, ctx->buffer.u64, &ctx->state, data, length);
} else {
T1HA2_LOOP(le, unaligned, NULL, &ctx->state, data, length);
}
length &= 31;
}
if (length)
memcpy(ctx->buffer.bytes, unaligned(data), ctx->partial = length);
memcpy(ctx->buffer.bytes, data, ctx->partial = length);
}
uint64_t t1ha2_final(t1ha_context_t *__restrict ctx,
uint64_t *__restrict extra_result) {
uint64_t bytes = (ctx->total << 3) ^ (UINT64_C(1) << 63);
uint64_t bits = (ctx->total << 3) ^ (UINT64_C(1) << 63);
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
bytes = bswap64(bytes);
bits = bswap64(bits);
#endif
t1ha2_update(ctx, &bytes, 8);
t1ha2_update(ctx, &bits, 8);
if (likely(!extra_result)) {
squash(&ctx->state);
tail_ab(&ctx->state, ctx->buffer.u64, ctx->partial);
T1HA2_TAIL_AB(le, aligned, NULL, &ctx->state, ctx->buffer.u64,
ctx->partial);
return final64(ctx->state.n.a, ctx->state.n.b);
}
tail_abcd(&ctx->state, ctx->buffer.u64, ctx->partial);
T1HA2_TAIL_ABCD(le, aligned, NULL, &ctx->state, ctx->buffer.u64,
ctx->partial);
return final128(ctx->state.n.a, ctx->state.n.b, ctx->state.n.c,
ctx->state.n.d, extra_result);
}
}

View File

@ -86,6 +86,14 @@
#define PAGESIZE 4096
#endif /* PAGESIZE */
#define ALIGMENT_16 2
#define ALIGMENT_32 4
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
#define ALIGMENT_64 8
#else
#define ALIGMENT_64 4
#endif
/***************************************************************************/
#ifndef __has_builtin
@ -160,10 +168,8 @@ static __maybe_unused __always_inline void e2k_add64carry_last(unsigned carry,
e2k_add64carry_last(carry, base, addend, sum)
#endif /* __iset__ >= 5 */
#if 0 /* LY: unreasonable, because alignment is required :( */
#define fetch64_be(ptr) ((uint64_t)__builtin_e2k_ld_64s_be(ptr))
#define fetch32_be(ptr) ((uint32_t)__builtin_e2k_ld_32u_be(ptr))
#endif
#define fetch64_be_aligned(ptr) ((uint64_t)__builtin_e2k_ld_64s_be(ptr))
#define fetch32_be_aligned(ptr) ((uint32_t)__builtin_e2k_ld_32u_be(ptr))
#endif /* __e2k__ Elbrus */
@ -337,86 +343,174 @@ static __always_inline uint16_t bswap16(uint16_t v) { return v << 8 | v >> 8; }
#endif
#endif /* bswap16 */
#ifndef unaligned
#if defined(__LCC__)
#pragma diag_suppress wrong_entity_for_attribute
#define unaligned(ptr) ((const char __attribute__((packed, aligned(1))) *)(ptr))
#elif defined(__clang__)
#pragma clang diagnostic ignored "-Wignored-attributes"
#define unaligned(ptr) ((const char __attribute__((packed, aligned(1))) *)(ptr))
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wpacked"
#define unaligned(ptr) ((const char __attribute__((packed, aligned(1))) *)(ptr))
#if defined(__GNUC__) || (__has_attribute(packed) && __has_attribute(aligned))
typedef struct {
uint8_t unaligned_8;
uint16_t unaligned_16;
uint32_t unaligned_32;
uint64_t unaligned_64;
} __attribute__((packed, aligned(1))) t1ha_unaligned_proxy;
#define read_unaligned(ptr, bits) \
(((const t1ha_unaligned_proxy *)((const uint8_t *)(ptr)-offsetof( \
t1ha_unaligned_proxy, unaligned_##bits))) \
->unaligned_##bits)
#define read_aligned(ptr, bits) \
(*(const __attribute__((aligned(ALIGMENT_##bits))) uint##bits##_t *)(ptr))
#elif defined(_MSC_VER)
#pragma warning( \
disable : 4235) /* nonstandard extension used: '__unaligned' \
* keyword not supported on this architecture */
#define unaligned(ptr) ((const char __unaligned *)(ptr))
#define read_unaligned(ptr, bits) (*(const __unaligned uint##bits##_t *)(ptr))
#define read_aligned(ptr, bits) \
(*(const __declspec(align(ALIGMENT_##bits)) uint##bits##_t *)(ptr))
#else
#define unaligned(ptr) ((const char *)(ptr))
#error FIXME
#define read_unaligned(ptr, bits) \
(*(const uint##bits##_ *)((const char *)(ptr)))
#define read_aligned(ptr, bits) (*(const uint##bits##_t *)(ptr))
#endif /* read_unaligned */
#if 0
#ifndef DECLARE_UNALIGNED_PTR
#if defined(__LCC__)
#pragma diag_suppress wrong_entity_for_attribute
#define DECLARE_UNALIGNED_PTR(ptr) char __attribute__((packed)) * ptr
#elif defined(__clang__)
#pragma clang diagnostic ignored "-Wignored-attributes"
#define DECLARE_UNALIGNED_PTR(ptr) char __attribute__((packed)) * ptr
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wpacked"
#define DECLARE_UNALIGNED_PTR(ptr) char __attribute__((packed)) * ptr
#elif defined(_MSC_VER)
#pragma warning( \
disable : 4235) /* nonstandard extension used: '__unaligned' \
* keyword not supported on this architecture */
#define DECLARE_UNALIGNED_PTR(ptr) char __unaligned *ptr
#else
#define DECLARE_UNALIGNED_PTR(ptr) char *ptr
#endif
#endif /* unaligned */
#endif /* cast_unaligned */
#ifndef cast_unaligned
#if defined(__LCC__)
#pragma diag_suppress wrong_entity_for_attribute
#define cast_unaligned(ptr) ((const char __attribute__((packed)) *)(ptr))
#elif defined(__clang__)
#pragma clang diagnostic ignored "-Wignored-attributes"
#define cast_unaligned(ptr) ((const char __attribute__((packed)) *)(ptr))
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wpacked"
#define cast_unaligned(ptr) ((const char __attribute__((packed)) *)(ptr))
#elif defined(_MSC_VER)
#pragma warning( \
disable : 4235) /* nonstandard extension used: '__unaligned' \
* keyword not supported on this architecture */
#define cast_unaligned(ptr) ((const char __unaligned *)(ptr))
#else
#define cast_unaligned(ptr) ((const char *)(ptr))
#endif
#endif /* cast_unaligned */
#ifndef cast_aligned
#if defined(__LCC__)
#pragma diag_suppress wrong_entity_for_attribute
#define cast_aligned(type, ptr) \
((const type __attribute__((aligned(sizeof(type)))) *)(ptr))
#elif defined(__clang__)
#pragma clang diagnostic ignored "-Wignored-attributes"
#define cast_aligned(type, ptr) \
((const type __attribute__((aligned(sizeof(type)))) *)(ptr))
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wpacked"
#define cast_aligned(type, ptr) \
((const type __attribute__((aligned(sizeof(type)))) *)(ptr))
#elif defined(_MSC_VER)
#define cast_aligned(type, ptr) \
((const type __declspec((align(sizeof(type)))) *)(ptr))
#else
#define cast_aligned(type, ptr) ((const type *)(ptr))
#endif
#endif /* cast_aligned */
#endif /* 0 */
/***************************************************************************/
#ifndef fetch64_le
static __always_inline uint64_t fetch64_le(const void *v) {
/*---------------------------------------------------------- Little Endian */
#ifndef fetch64_le_aligned
static __always_inline uint64_t fetch64_le_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint64_t *)v;
return read_aligned(v, 64);
#else
return bswap64(*(const uint64_t *)v);
return bswap64(read_aligned(v, 64));
#endif
}
#endif /* fetch64_le */
#endif /* fetch64_le_aligned */
#ifndef fetch32_le
static __always_inline uint32_t fetch32_le(const void *v) {
#ifndef fetch64_le_unaligned
static __always_inline uint64_t fetch64_le_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint32_t *)v;
return read_unaligned(v, 64);
#else
return bswap32(*(const uint32_t *)v);
return bswap64(read_unaligned(v, 64));
#endif
}
#endif /* fetch32_le */
#endif /* fetch64_le_unaligned */
#ifndef fetch16_le
static __always_inline uint16_t fetch16_le(const void *v) {
#ifndef fetch32_le_aligned
static __always_inline uint32_t fetch32_le_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint16_t *)v;
return read_aligned(v, 32);
#else
return bswap16(*(const uint16_t *)v);
return bswap32(read_aligned(v, 32));
#endif
}
#endif /* fetch16_le */
#endif /* fetch32_le_aligned */
#if T1HA_USE_FAST_ONESHOT_READ && UNALIGNED_OK && defined(PAGESIZE) && \
!defined(__SANITIZE_ADDRESS__) && !defined(__sun)
#define can_read_underside(ptr, size) \
((size) <= sizeof(uintptr_t) && ((PAGESIZE - (size)) & (uintptr_t)(ptr)) != 0)
#endif /* can_fast_read */
#ifndef fetch32_le_unaligned
static __always_inline uint32_t fetch32_le_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return read_unaligned(v, 32);
#else
return bswap32(read_unaligned(v, 32));
#endif
}
#endif /* fetch32_le_unaligned */
static __always_inline uint64_t tail64_le(const void *v, size_t tail) {
const uint8_t *p = (const uint8_t *)v;
#ifdef can_read_underside
/* On some systems (e.g. x86) we can perform a 'oneshot' read, which
* is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
* for the reminder. */
const unsigned offset = (8 - tail) & 7;
const unsigned shift = offset << 3;
if (likely(can_read_underside(p, 8))) {
p -= offset;
return fetch64_le(p) >> shift;
}
return fetch64_le(p) & ((~UINT64_C(0)) >> shift);
#ifndef fetch16_le_aligned
static __always_inline uint16_t fetch16_le_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return read_aligned(v, 16);
#else
return bswap16(read_aligned(v, 16));
#endif
}
#endif /* fetch16_le_aligned */
#ifndef fetch16_le_unaligned
static __always_inline uint16_t fetch16_le_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return read_unaligned(v, 16);
#else
return bswap16(read_unaligned(v, 16));
#endif
}
#endif /* fetch16_le_unaligned */
static __always_inline uint64_t tail64_le_aligned(const void *v, size_t tail) {
const uint8_t *const p = (const uint8_t *)v;
#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
/* We can perform a 'oneshot' read, which is little bit faster. */
const unsigned shift = ((8 - tail) & 7) << 3;
return fetch64_le_aligned(p) & ((~UINT64_C(0)) >> shift);
#endif /* 'oneshot' read */
uint64_t r = 0;
switch (tail & 7) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* For most CPUs this code is better when not needed
* copying for alignment or byte reordering. */
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* For most CPUs this code is better when not needed byte reordering. */
case 0:
return fetch64_le(p);
return fetch64_le_aligned(p);
case 7:
r = (uint64_t)p[6] << 8;
/* fall through */
@ -429,12 +523,96 @@ static __always_inline uint64_t tail64_le(const void *v, size_t tail) {
r <<= 32;
/* fall through */
case 4:
return r + fetch32_le(p);
return r + fetch32_le_aligned(p);
case 3:
r = (uint64_t)p[2] << 16;
/* fall through */
case 2:
return r + fetch16_le(p);
return r + fetch16_le_aligned(p);
case 1:
return p[0];
#else
case 0:
r = p[7] << 8;
/* fall through */
case 7:
r += p[6];
r <<= 8;
/* fall through */
case 6:
r += p[5];
r <<= 8;
/* fall through */
case 5:
r += p[4];
r <<= 8;
/* fall through */
case 4:
r += p[3];
r <<= 8;
/* fall through */
case 3:
r += p[2];
r <<= 8;
/* fall through */
case 2:
r += p[1];
r <<= 8;
/* fall through */
case 1:
return r + p[0];
#endif
}
unreachable();
}
#if T1HA_USE_FAST_ONESHOT_READ && UNALIGNED_OK && defined(PAGESIZE) && \
!defined(__SANITIZE_ADDRESS__) && !defined(__sun)
#define can_read_underside(ptr, size) \
((size) <= sizeof(uintptr_t) && ((PAGESIZE - (size)) & (uintptr_t)(ptr)) != 0)
#endif /* can_fast_read */
static __always_inline uint64_t tail64_le_unaligned(const void *v,
size_t tail) {
const uint8_t *p = (const uint8_t *)v;
#ifdef can_read_underside
/* On some systems (e.g. x86) we can perform a 'oneshot' read, which
* is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
* for the reminder. */
const unsigned offset = (8 - tail) & 7;
const unsigned shift = offset << 3;
if (likely(can_read_underside(p, 8))) {
p -= offset;
return fetch64_le_unaligned(p) >> shift;
}
return fetch64_le_unaligned(p) & ((~UINT64_C(0)) >> shift);
#endif /* 'oneshot' read */
uint64_t r = 0;
switch (tail & 7) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* For most CPUs this code is better when not needed
* copying for alignment or byte reordering. */
case 0:
return fetch64_le_unaligned(p);
case 7:
r = (uint64_t)p[6] << 8;
/* fall through */
case 6:
r += p[5];
r <<= 8;
/* fall through */
case 5:
r += p[4];
r <<= 32;
/* fall through */
case 4:
return r + fetch32_le_unaligned(p);
case 3:
r = (uint64_t)p[2] << 16;
/* fall through */
case 2:
return r + fetch16_le_unaligned(p);
case 1:
return p[0];
#else
@ -474,38 +652,134 @@ static __always_inline uint64_t tail64_le(const void *v, size_t tail) {
unreachable();
}
#ifndef fetch64_be
static __maybe_unused __always_inline uint64_t fetch64_be(const void *v) {
/*------------------------------------------------------------- Big Endian */
#ifndef fetch64_be_aligned
static __maybe_unused __always_inline uint64_t
fetch64_be_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return *(const uint64_t *)v;
return read_aligned(v, 64);
#else
return bswap64(*(const uint64_t *)v);
return bswap64(read_aligned(v, 64));
#endif
}
#endif /* fetch64_be */
#endif /* fetch64_be_aligned */
#ifndef fetch32_be
static __maybe_unused __always_inline uint32_t fetch32_be(const void *v) {
#ifndef fetch64_be_unaligned
static __maybe_unused __always_inline uint64_t
fetch64_be_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return *(const uint32_t *)v;
return read_unaligned(v, 64);
#else
return bswap32(*(const uint32_t *)v);
return bswap64(read_unaligned(v, 64));
#endif
}
#endif /* fetch32_be */
#endif /* fetch64_be_unaligned */
#ifndef fetch16_be
static __maybe_unused __always_inline uint16_t fetch16_be(const void *v) {
#ifndef fetch32_be_aligned
static __maybe_unused __always_inline uint32_t
fetch32_be_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return *(const uint16_t *)v;
return read_aligned(v, 32);
#else
return bswap16(*(const uint16_t *)v);
return bswap32(read_aligned(v, 32));
#endif
}
#endif /* fetch16_be */
#endif /* fetch32_be_aligned */
static __maybe_unused __always_inline uint64_t tail64_be(const void *v,
size_t tail) {
#ifndef fetch32_be_unaligned
static __maybe_unused __always_inline uint32_t
fetch32_be_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return read_unaligned(v, 32);
#else
return bswap32(read_unaligned(v, 32));
#endif
}
#endif /* fetch32_be_unaligned */
#ifndef fetch16_be_aligned
static __maybe_unused __always_inline uint16_t
fetch16_be_aligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return read_aligned(v, 16);
#else
return bswap16(read_aligned(v, 16));
#endif
}
#endif /* fetch16_be_aligned */
#ifndef fetch16_be_unaligned
static __maybe_unused __always_inline uint16_t
fetch16_be_unaligned(const void *v) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return read_unaligned(v, 16);
#else
return bswap16(read_unaligned(v, 16));
#endif
}
#endif /* fetch16_be_unaligned */
static __maybe_unused __always_inline uint64_t tail64_be_aligned(const void *v,
size_t tail) {
const uint8_t *const p = (const uint8_t *)v;
#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
/* We can perform a 'oneshot' read, which is little bit faster. */
const unsigned shift = ((8 - tail) & 7) << 3;
return fetch64_be_aligned(p) >> shift;
#endif /* 'oneshot' read */
switch (tail & 7) {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* For most CPUs this code is better when not byte reordering. */
case 1:
return p[0];
case 2:
return fetch16_be_aligned(p);
case 3:
return (uint32_t)fetch16_be_aligned(p) << 8 | p[2];
case 4:
return fetch32_be_aligned(p);
case 5:
return (uint64_t)fetch32_be_aligned(p) << 8 | p[4];
case 6:
return (uint64_t)fetch32_be_aligned(p) << 16 | fetch16_be_aligned(p + 4);
case 7:
return (uint64_t)fetch32_be_aligned(p) << 24 |
(uint32_t)fetch16_be_aligned(p + 4) << 8 | p[6];
case 0:
return fetch64_be(p);
#else
case 1:
return p[0];
case 2:
return p[1] | (uint32_t)p[0] << 8;
case 3:
return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
case 4:
return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
(uint32_t)p[0] << 24;
case 5:
return p[4] | (uint32_t)p[3] << 8 | (uint32_t)p[2] << 16 |
(uint32_t)p[1] << 24 | (uint64_t)p[0] << 32;
case 6:
return p[5] | (uint32_t)p[4] << 8 | (uint32_t)p[3] << 16 |
(uint32_t)p[2] << 24 | (uint64_t)p[1] << 32 | (uint64_t)p[0] << 40;
case 7:
return p[6] | (uint32_t)p[5] << 8 | (uint32_t)p[4] << 16 |
(uint32_t)p[3] << 24 | (uint64_t)p[2] << 32 | (uint64_t)p[1] << 40 |
(uint64_t)p[0] << 48;
case 0:
return p[7] | (uint32_t)p[6] << 8 | (uint32_t)p[5] << 16 |
(uint32_t)p[4] << 24 | (uint64_t)p[3] << 32 | (uint64_t)p[2] << 40 |
(uint64_t)p[1] << 48 | (uint64_t)p[0] << 56;
#endif
}
unreachable();
}
static __maybe_unused __always_inline uint64_t
tail64_be_unaligned(const void *v, size_t tail) {
const uint8_t *p = (const uint8_t *)v;
#ifdef can_read_underside
/* On some systems we can perform a 'oneshot' read, which is little bit
@ -515,9 +789,9 @@ static __maybe_unused __always_inline uint64_t tail64_be(const void *v,
const unsigned shift = offset << 3;
if (likely(can_read_underside(p, 8))) {
p -= offset;
return fetch64_be(p) & ((~UINT64_C(0)) >> shift);
return fetch64_be_unaligned(p) & ((~UINT64_C(0)) >> shift);
}
return fetch64_be(p) >> shift;
return fetch64_be_unaligned(p) >> shift;
#endif /* 'oneshot' read */
switch (tail & 7) {
@ -527,20 +801,21 @@ static __maybe_unused __always_inline uint64_t tail64_be(const void *v,
case 1:
return p[0];
case 2:
return fetch16_be(p);
return fetch16_be_unaligned(p);
case 3:
return (uint32_t)fetch16_be(p) << 8 | p[2];
return (uint32_t)fetch16_be_unaligned(p) << 8 | p[2];
case 4:
return fetch32_be(p);
case 5:
return (uint64_t)fetch32_be(p) << 8 | p[4];
return (uint64_t)fetch32_be_unaligned(p) << 8 | p[4];
case 6:
return (uint64_t)fetch32_be(p) << 16 | fetch16_be(p + 4);
return (uint64_t)fetch32_be_unaligned(p) << 16 |
fetch16_be_unaligned(p + 4);
case 7:
return (uint64_t)fetch32_be(p) << 24 | (uint32_t)fetch16_be(p + 4) << 8 |
p[6];
return (uint64_t)fetch32_be_unaligned(p) << 24 |
(uint32_t)fetch16_be_unaligned(p + 4) << 8 | p[6];
case 0:
return fetch64_be(p);
return fetch64_be_unaligned(p);
#else
/* For most CPUs this code is better than a
* copying for alignment and/or byte reordering. */