Browse Source

* Update URL normalizer (partially taken from GNU wget)

tags/0.2.7
Vsevolod Stakhov 16 years ago
parent
commit
bacc295862
1 changed files with 382 additions and 3 deletions
  1. 382
    3
      url.c

+ 382
- 3
url.c View File

@@ -54,6 +54,89 @@ static const struct _proto protocol_backends[] = {
{ NULL, 0, NULL, 0, 0, 1, 0 },
};

/*
Table of "reserved" and "unsafe" characters. Those terms are
rfc1738-speak, as such largely obsoleted by rfc2396 and later
specs, but the general idea remains.

A reserved character is the one that you can't decode without
changing the meaning of the URL. For example, you can't decode
"/foo/%2f/bar" into "/foo///bar" because the number and contents of
path components is different. Non-reserved characters can be
changed, so "/foo/%78/bar" is safe to change to "/foo/x/bar". The
unsafe characters are loosely based on rfc1738, plus "$" and ",",
as recommended by rfc2396, and minus "~", which is very frequently
used (and sometimes unrecognized as %7E by broken servers).

An unsafe character is the one that should be encoded when URLs are
placed in foreign environments. E.g. space and newline are unsafe
in HTTP contexts because HTTP uses them as separator and line
terminator, so they must be encoded to %20 and %0A respectively.
"*" is unsafe in shell context, etc.

We determine whether a character is unsafe through static table
lookup. This code assumes ASCII character set and 8-bit chars. */

enum {
/* rfc1738 reserved chars + "$" and ",". */
urlchr_reserved = 1,

/* rfc1738 unsafe chars, plus non-printables. */
urlchr_unsafe = 2
};

#define urlchr_test(c, mask) (urlchr_table[(unsigned char)(c)] & (mask))
#define URL_RESERVED_CHAR(c) urlchr_test(c, urlchr_reserved)
#define URL_UNSAFE_CHAR(c) urlchr_test(c, urlchr_unsafe)
/* Convert an ASCII hex digit to the corresponding number between 0
and 15. H should be a hexadecimal digit that satisfies isxdigit;
otherwise, the result is undefined. */
#define XDIGIT_TO_NUM(h) ((h) < 'A' ? (h) - '0' : toupper (h) - 'A' + 10)
#define X2DIGITS_TO_NUM(h1, h2) ((XDIGIT_TO_NUM (h1) << 4) + XDIGIT_TO_NUM (h2))
/* The reverse of the above: convert a number in the [0, 16) range to
the ASCII representation of the corresponding hexadecimal digit.
`+ 0' is there so you can't accidentally use it as an lvalue. */
#define XNUM_TO_DIGIT(x) ("0123456789ABCDEF"[x] + 0)
#define XNUM_TO_digit(x) ("0123456789abcdef"[x] + 0)

/* Shorthands for the table: */
#define R urlchr_reserved
#define U urlchr_unsafe
#define RU R|U

static const unsigned char urlchr_table[256] =
{
U, U, U, U, U, U, U, U, /* NUL SOH STX ETX EOT ENQ ACK BEL */
U, U, U, U, U, U, U, U, /* BS HT LF VT FF CR SO SI */
U, U, U, U, U, U, U, U, /* DLE DC1 DC2 DC3 DC4 NAK SYN ETB */
U, U, U, U, U, U, U, U, /* CAN EM SUB ESC FS GS RS US */
U, 0, U, RU, R, U, R, 0, /* SP ! " # $ % & ' */
0, 0, 0, R, R, 0, 0, R, /* ( ) * + , - . / */
0, 0, 0, 0, 0, 0, 0, 0, /* 0 1 2 3 4 5 6 7 */
0, 0, RU, R, U, R, U, R, /* 8 9 : ; < = > ? */
RU, 0, 0, 0, 0, 0, 0, 0, /* @ A B C D E F G */
0, 0, 0, 0, 0, 0, 0, 0, /* H I J K L M N O */
0, 0, 0, 0, 0, 0, 0, 0, /* P Q R S T U V W */
0, 0, 0, RU, U, RU, U, 0, /* X Y Z [ \ ] ^ _ */
U, 0, 0, 0, 0, 0, 0, 0, /* ` a b c d e f g */
0, 0, 0, 0, 0, 0, 0, 0, /* h i j k l m n o */
0, 0, 0, 0, 0, 0, 0, 0, /* p q r s t u v w */
0, 0, 0, U, U, U, 0, U, /* x y z { | } ~ DEL */

U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,

U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U,
};
#undef R
#undef U
#undef RU

static inline int
end_of_dir(unsigned char c)
{
@@ -189,6 +272,292 @@ get_protocol_length(const unsigned char *url)
return (*end == ':' || isdigit(*end)) ? end - url : 0;
}

/* URL-unescape the string S.

This is done by transforming the sequences "%HH" to the character
represented by the hexadecimal digits HH. If % is not followed by
two hexadecimal digits, it is inserted literally.

The transformation is done in place. If you need the original
string intact, make a copy before calling this function. */

static void
url_unescape (char *s)
{
char *t = s; /* t - tortoise */
char *h = s; /* h - hare */
for (; *h; h++, t++) {
if (*h != '%') {
copychar:
*t = *h;
}
else {
char c;
/* Do nothing if '%' is not followed by two hex digits. */
if (!h[1] || !h[2] || !(isxdigit (h[1]) && isxdigit (h[2])))
goto copychar;
c = X2DIGITS_TO_NUM (h[1], h[2]);
/* Don't unescape %00 because there is no way to insert it
* into a C string without effectively truncating it. */
if (c == '\0')
goto copychar;
*t = c;
h += 2;
}
}
*t = '\0';
}

/* The core of url_escape_* functions. Escapes the characters that
match the provided mask in urlchr_table.

If ALLOW_PASSTHROUGH is non-zero, a string with no unsafe chars
will be returned unchanged. If ALLOW_PASSTHROUGH is zero, a
freshly allocated string will be returned in all cases. */

static char *
url_escape_1 (const char *s, unsigned char mask, int allow_passthrough)
{
const char *p1;
char *p2, *newstr;
int newlen;
int addition = 0;

for (p1 = s; *p1; p1++)
if (urlchr_test (*p1, mask))
addition += 2; /* Two more characters (hex digits) */

if (!addition)
return allow_passthrough ? (char *)s : strdup (s);

newlen = (p1 - s) + addition;
newstr = (char *) g_malloc (newlen + 1);

p1 = s;
p2 = newstr;
while (*p1) {
/* Quote the characters that match the test mask. */
if (urlchr_test (*p1, mask)) {
unsigned char c = *p1++;
*p2++ = '%';
*p2++ = XNUM_TO_DIGIT (c >> 4);
*p2++ = XNUM_TO_DIGIT (c & 0xf);
}
else
*p2++ = *p1++;
}
*p2 = '\0';

return newstr;
}

/* URL-escape the unsafe characters (see urlchr_table) in a given
string, returning a freshly allocated string. */

char *
url_escape (const char *s)
{
return url_escape_1 (s, urlchr_unsafe, 0);
}

/* URL-escape the unsafe characters (see urlchr_table) in a given
string. If no characters are unsafe, S is returned. */

static char *
url_escape_allow_passthrough (const char *s)
{
return url_escape_1 (s, urlchr_unsafe, 1);
}

/* Decide whether the char at position P needs to be encoded. (It is
not enough to pass a single char *P because the function may need
to inspect the surrounding context.)

Return 1 if the char should be escaped as %XX, 0 otherwise. */

static inline int
char_needs_escaping (const char *p)
{
if (*p == '%') {
if (isxdigit (*(p + 1)) && isxdigit (*(p + 2)))
return 0;
else
/* Garbled %.. sequence: encode `%'. */
return 1;
}
else if (URL_UNSAFE_CHAR (*p) && !URL_RESERVED_CHAR (*p))
return 1;
else
return 0;
}

/* Translate a %-escaped (but possibly non-conformant) input string S
into a %-escaped (and conformant) output string. If no characters
are encoded or decoded, return the same string S; otherwise, return
a freshly allocated string with the new contents.

After a URL has been run through this function, the protocols that
use `%' as the quote character can use the resulting string as-is,
while those that don't can use url_unescape to get to the intended
data. This function is stable: once the input is transformed,
further transformations of the result yield the same output.
*/

static char *
reencode_escapes (const char *s)
{
const char *p1;
char *newstr, *p2;
int oldlen, newlen;

int encode_count = 0;

/* First pass: inspect the string to see if there's anything to do,
and to calculate the new length. */
for (p1 = s; *p1; p1++)
if (char_needs_escaping (p1))
++encode_count;

if (!encode_count)
/* The string is good as it is. */
return (char *) s; /* C const model sucks. */

oldlen = p1 - s;
/* Each encoding adds two characters (hex digits). */
newlen = oldlen + 2 * encode_count;
newstr = g_malloc (newlen + 1);

/* Second pass: copy the string to the destination address, encoding
chars when needed. */
p1 = s;
p2 = newstr;

while (*p1)
if (char_needs_escaping (p1)) {
unsigned char c = *p1++;
*p2++ = '%';
*p2++ = XNUM_TO_DIGIT (c >> 4);
*p2++ = XNUM_TO_DIGIT (c & 0xf);
}
else {
*p2++ = *p1++;
}

*p2 = '\0';
return newstr;
}
/* Unescape CHR in an otherwise escaped STR. Used to selectively
escaping of certain characters, such as "/" and ":". Returns a
count of unescaped chars. */

static void
unescape_single_char (char *str, char chr)
{
const char c1 = XNUM_TO_DIGIT (chr >> 4);
const char c2 = XNUM_TO_DIGIT (chr & 0xf);
char *h = str; /* hare */
char *t = str; /* tortoise */

for (; *h; h++, t++) {
if (h[0] == '%' && h[1] == c1 && h[2] == c2) {
*t = chr;
h += 2;
}
else {
*t = *h;
}
}
*t = '\0';
}

/* Escape unsafe and reserved characters, except for the slash
characters. */

static char *
url_escape_dir (const char *dir)
{
char *newdir = url_escape_1 (dir, urlchr_unsafe | urlchr_reserved, 1);
if (newdir == dir)
return (char *)dir;

unescape_single_char (newdir, '/');
return newdir;
}

/* Resolve "." and ".." elements of PATH by destructively modifying
PATH and return non-zero if PATH has been modified, zero otherwise.

The algorithm is in spirit similar to the one described in rfc1808,
although implemented differently, in one pass. To recap, path
elements containing only "." are removed, and ".." is taken to mean
"back up one element". Single leading and trailing slashes are
preserved.

For example, "a/b/c/./../d/.." will yield "a/b/". More exhaustive
test examples are provided below. If you change anything in this
function, run test_path_simplify to make sure you haven't broken a
test case. */

static int
path_simplify (char *path)
{
char *h = path; /* hare */
char *t = path; /* tortoise */
char *beg = path; /* boundary for backing the tortoise */
char *end = path + strlen (path);

while (h < end) {
/* Hare should be at the beginning of a path element. */
if (h[0] == '.' && (h[1] == '/' || h[1] == '\0')) {
/* Ignore "./". */
h += 2;
}
else if (h[0] == '.' && h[1] == '.' && (h[2] == '/' || h[2] == '\0')) {
/* Handle "../" by retreating the tortoise by one path
element -- but not past beggining. */
if (t > beg) {
/* Move backwards until T hits the beginning of the
previous path element or the beginning of path. */
for (--t; t > beg && t[-1] != '/'; t--);
}
else {
/* If we're at the beginning, copy the "../" literally
move the beginning so a later ".." doesn't remove
it. */
beg = t + 3;
goto regular;
}
h += 3;
}
else {
regular:
/* A regular path element. If H hasn't advanced past T,
simply skip to the next path element. Otherwise, copy
the path element until the next slash. */
if (t == h) {
/* Skip the path element, including the slash. */
while (h < end && *h != '/')
t++, h++;
if (h < end)
t++, h++;
}
else {
/* Copy the path element, including the final slash. */
while (h < end && *h != '/')
*t++ = *h++;
if (h < end)
*t++ = *h++;
}
}
}

if (t != h)
*t = '\0';

return t != h;
}

static enum uri_errno
parse_uri(struct uri *uri, unsigned char *uristring)
{
@@ -201,8 +570,8 @@ parse_uri(struct uri *uri, unsigned char *uristring)

/* Nothing to do for an empty url. */
if (!*uristring) return URI_ERRNO_EMPTY;
uri->string = uristring;
uri->string = reencode_escapes (uristring);
uri->protocollen = get_protocol_length (uristring);

/* Invalid */
@@ -211,7 +580,7 @@ parse_uri(struct uri *uri, unsigned char *uristring)
/* Figure out whether the protocol is known */
uri->protocol = get_protocol (struri(uri), uri->protocollen);

prefix_end = uristring + uri->protocollen; /* ':' */
prefix_end = struri (uri) + uri->protocollen; /* ':' */

/* Check if there's a digit after the protocol name. */
if (isdigit (*prefix_end)) {
@@ -379,6 +748,16 @@ parse_uri(struct uri *uri, unsigned char *uristring)
if (*prefix_end == POST_CHAR) {
uri->post = prefix_end + 1;
}
convert_to_lowercase (uri->host, strlen (uri->host));
/* Decode %HH sequences in host name. This is important not so much
to support %HH sequences in host names (which other browser
don't), but to support binary characters (which will have been
converted to %HH by reencode_escapes). */
if (strchr (uri->host, '%')) {
url_unescape (uri->host);
}
path_simplify (uri->data);

return URI_ERRNO_OK;
}

Loading…
Cancel
Save