You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668
  1. /*
  2. * Copyright 2024 Vsevolod Stakhov
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "config.h"
  17. #include <stdlib.h>
  18. #include <assert.h>
  19. #include <stdarg.h>
  20. #include <string.h>
  21. #include <float.h>
  22. #include <math.h>
  23. #include "kautodiff.h"
  24. #include "blas-config.h"
  25. typedef struct {
  26. uint64_t s[2];
  27. double n_gset;
  28. int n_iset;
  29. volatile int lock;
  30. } kad_rng_t;
  31. /**********************
  32. * Graph construction *
  33. **********************/
  34. static inline kad_node_t *kad_new_core(int n_d, int op, int n_child)
  35. {
  36. kad_node_t *s;
  37. if (n_d >= KAD_MAX_DIM) return 0;
  38. s = (kad_node_t *) g_malloc0_n(1, sizeof(kad_node_t));
  39. s->n_d = n_d, s->op = op, s->n_child = n_child;
  40. if (s->n_child) s->child = (kad_node_t **) g_malloc0_n(s->n_child, sizeof(kad_node_t *));
  41. return s;
  42. }
  43. static inline kad_node_t *kad_vleaf(uint8_t flag, float *x, float *g, int n_d, va_list ap)
  44. {
  45. int i;
  46. kad_node_t *p;
  47. if (n_d > KAD_MAX_DIM) return 0;
  48. p = (kad_node_t *) g_malloc0_n(1, sizeof(kad_node_t));
  49. p->n_d = n_d;
  50. for (i = 0; i < n_d; ++i)
  51. p->d[i] = va_arg(ap, int32_t);
  52. p->x = x, p->g = g, p->flag = flag;
  53. return p;
  54. }
  55. kad_node_t *kad_const(float *x, int n_d, ...)
  56. {
  57. kad_node_t *p;
  58. va_list ap;
  59. va_start(ap, n_d);
  60. p = kad_vleaf(KAD_CONST, x, 0, n_d, ap);
  61. va_end(ap);
  62. return p;
  63. }
  64. kad_node_t *kad_feed(int n_d, ...)
  65. {
  66. kad_node_t *p;
  67. va_list ap;
  68. va_start(ap, n_d);
  69. p = kad_vleaf(0, 0, 0, n_d, ap);
  70. va_end(ap);
  71. return p;
  72. }
  73. kad_node_t *kad_var(float *x, float *g, int n_d, ...)
  74. {
  75. kad_node_t *p;
  76. va_list ap;
  77. va_start(ap, n_d);
  78. p = kad_vleaf(KAD_VAR, x, g, n_d, ap);
  79. va_end(ap);
  80. return p;
  81. }
  82. static inline kad_node_t *kad_finalize_node(kad_node_t *s) /* a helper function */
  83. {
  84. int i;
  85. if (kad_op_list[s->op](s, KAD_SYNC_DIM) < 0) { /* check dimension */
  86. if (s->ptr) g_free(s->ptr);
  87. g_free(s->child);
  88. g_free(s);
  89. return 0;
  90. }
  91. for (i = 0; i < s->n_child; ++i)
  92. if (kad_is_back(s->child[i]))
  93. break;
  94. if (i < s->n_child) s->flag |= KAD_VAR;
  95. return s;
  96. }
  97. /********** Simple arithmetic **********/
  98. static inline kad_node_t *kad_op2_core(int op, kad_node_t *x, kad_node_t *y)
  99. {
  100. kad_node_t *s;
  101. s = kad_new_core(0, op, 2);
  102. s->child[0] = x, s->child[1] = y;
  103. return kad_finalize_node(s);
  104. }
  105. static inline kad_node_t *kad_op1_core(int op, kad_node_t *x)
  106. {
  107. kad_node_t *s;
  108. s = kad_new_core(0, op, 1);
  109. s->child[0] = x;
  110. return kad_finalize_node(s);
  111. }
  112. #define KAD_FUNC_OP2(fname, op) \
  113. kad_node_t *fname(kad_node_t *x, kad_node_t *y) \
  114. { \
  115. return kad_op2_core((op), x, y); \
  116. }
  117. KAD_FUNC_OP2(kad_add, 1)
  118. KAD_FUNC_OP2(kad_sub, 23)
  119. KAD_FUNC_OP2(kad_mul, 2)
  120. KAD_FUNC_OP2(kad_cmul, 3)
  121. KAD_FUNC_OP2(kad_matmul, 9)
  122. KAD_FUNC_OP2(kad_ce_multi, 13)
  123. KAD_FUNC_OP2(kad_ce_bin, 22)
  124. KAD_FUNC_OP2(kad_ce_bin_neg, 4)
  125. KAD_FUNC_OP2(kad_mse, 29)
  126. #define KAD_FUNC_OP1(fname, op) \
  127. kad_node_t *fname(kad_node_t *x) \
  128. { \
  129. return kad_op1_core((op), x); \
  130. }
  131. KAD_FUNC_OP1(kad_log, 27)
  132. KAD_FUNC_OP1(kad_exp, 33)
  133. KAD_FUNC_OP1(kad_sin, 34)
  134. KAD_FUNC_OP1(kad_square, 5)
  135. KAD_FUNC_OP1(kad_sigm, 6)
  136. KAD_FUNC_OP1(kad_tanh, 7)
  137. KAD_FUNC_OP1(kad_relu, 8)
  138. KAD_FUNC_OP1(kad_1minus, 11)
  139. KAD_FUNC_OP1(kad_softmax, 14)
  140. KAD_FUNC_OP1(kad_stdnorm, 32)
  141. kad_node_t *kad_ce_multi_weighted(kad_node_t *pred, kad_node_t *truth, kad_node_t *weight)
  142. {
  143. kad_node_t *s;
  144. s = kad_new_core(0, 13, 3);
  145. s->child[0] = pred, s->child[1] = truth, s->child[2] = weight;
  146. return kad_finalize_node(s);
  147. }
  148. /********** Convolution **********/
  149. /* compute output dimension and padding sizes on both sides */
  150. static inline int conv_find_par(int in_size, int kernel_size, int stride, int pad0, int *new_pad0, int *new_pad1)
  151. {
  152. int out_size, pad_both;
  153. /* key equation: out_size = (in_size - kernel_size + pad_both) / stride + 1 */
  154. if (pad0 == KAD_PAD_SAME && stride == 1) out_size = in_size;
  155. else
  156. out_size = (in_size - kernel_size + (pad0 > 0 ? pad0 : 0) + stride - 1) / stride + 1;
  157. pad_both = (out_size - 1) * stride + kernel_size - in_size;
  158. *new_pad0 = pad_both / 2;
  159. *new_pad1 = pad_both - *new_pad0;
  160. return out_size;
  161. }
  162. typedef struct {
  163. int kernel_size, stride, pad[2];
  164. } conv_conf_t;
  165. static inline conv_conf_t *conv2d_gen_aux(int in_row, int in_col, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  166. {
  167. conv_conf_t *cnn;
  168. cnn = (conv_conf_t *) g_malloc0_n(2, sizeof(conv_conf_t));
  169. cnn[0].kernel_size = kernel_r, cnn[0].stride = stride_r;
  170. cnn[1].kernel_size = kernel_c, cnn[1].stride = stride_c;
  171. conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]);
  172. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn[1].pad[0], &cnn[1].pad[1]);
  173. return cnn;
  174. }
  175. kad_node_t *kad_conv2d(kad_node_t *x, kad_node_t *w, int stride_r, int stride_c, int top_pad, int left_pad)
  176. {
  177. kad_node_t *s;
  178. if (x->n_d != 4 || w->n_d != 4) return 0;
  179. s = kad_new_core(0, 16, 2);
  180. s->child[0] = x, s->child[1] = w;
  181. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], w->d[2], w->d[3], stride_r, stride_c, top_pad, left_pad);
  182. s->ptr_size = sizeof(conv_conf_t) * 2;
  183. return kad_finalize_node(s);
  184. }
  185. kad_node_t *kad_max2d(kad_node_t *x, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  186. {
  187. kad_node_t *s;
  188. if (x->n_d != 4) return 0;
  189. s = kad_new_core(0, 17, 1);
  190. s->child[0] = x;
  191. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], kernel_r, kernel_c, stride_r, stride_c, top_pad, left_pad);
  192. s->ptr_size = sizeof(conv_conf_t) * 2;
  193. return kad_finalize_node(s);
  194. }
  195. static inline conv_conf_t *conv1d_gen_aux(int in_col, int kernel_c, int stride_c, int left_pad)
  196. {
  197. conv_conf_t *cnn;
  198. cnn = (conv_conf_t *) g_malloc0_n(1, sizeof(conv_conf_t));
  199. cnn->kernel_size = kernel_c, cnn->stride = stride_c;
  200. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn->pad[0], &cnn->pad[1]);
  201. return cnn;
  202. }
  203. kad_node_t *kad_conv1d(kad_node_t *x, kad_node_t *w, int stride, int left_pad)
  204. {
  205. kad_node_t *s;
  206. if (x->n_d != 3 || w->n_d != 3) return 0;
  207. s = kad_new_core(0, 18, 2);
  208. s->child[0] = x, s->child[1] = w;
  209. s->ptr = conv1d_gen_aux(x->d[2], w->d[2], stride, left_pad);
  210. s->ptr_size = sizeof(conv_conf_t);
  211. return kad_finalize_node(s);
  212. }
  213. kad_node_t *kad_max1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  214. {
  215. kad_node_t *s;
  216. if (x->n_d != 3) return 0;
  217. s = kad_new_core(0, 19, 1);
  218. s->child[0] = x;
  219. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  220. s->ptr_size = sizeof(conv_conf_t);
  221. return kad_finalize_node(s);
  222. }
  223. kad_node_t *kad_avg1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  224. {
  225. kad_node_t *s;
  226. if (x->n_d != 3) return 0;
  227. s = kad_new_core(0, 28, 1);
  228. s->child[0] = x;
  229. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  230. s->ptr_size = sizeof(conv_conf_t);
  231. return kad_finalize_node(s);
  232. }
  233. /********** Multi-node pooling **********/
  234. static kad_node_t *kad_pooling_general(int op, int n, kad_node_t **x)
  235. {
  236. int i;
  237. kad_node_t *s;
  238. s = kad_new_core(0, op, n);
  239. s->flag |= KAD_POOL;
  240. for (i = 0; i < n; ++i)
  241. s->child[i] = x[i];
  242. return kad_finalize_node(s);
  243. }
  244. kad_node_t *kad_avg(int n, kad_node_t **x)
  245. {
  246. return kad_pooling_general(10, n, x);
  247. }
  248. kad_node_t *kad_max(int n, kad_node_t **x)
  249. {
  250. return kad_pooling_general(21, n, x);
  251. }
  252. kad_node_t *kad_stack(int n, kad_node_t **x)
  253. {
  254. return kad_pooling_general(35, n, x);
  255. }
  256. kad_node_t *kad_select(int n, kad_node_t **x, int which)
  257. {
  258. kad_node_t *s;
  259. int32_t i, *aux;
  260. aux = (int32_t *) g_malloc0_n(1, 4);
  261. *aux = which;
  262. s = kad_new_core(0, 12, n);
  263. for (i = 0; i < n; ++i) s->child[i] = x[i];
  264. s->flag |= KAD_POOL, s->ptr = aux, s->ptr_size = 4;
  265. return kad_finalize_node(s);
  266. }
  267. /********** Dimension reduction **********/
  268. static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis)
  269. {
  270. kad_node_t *s;
  271. int32_t *aux;
  272. aux = (int32_t *) g_malloc(4);
  273. aux[0] = axis;
  274. s = kad_new_core(0, op, 1);
  275. s->child[0] = x;
  276. s->ptr = aux, s->ptr_size = 4;
  277. return kad_finalize_node(s);
  278. }
  279. kad_node_t *kad_reduce_sum(kad_node_t *x, int axis)
  280. {
  281. return kad_reduce_general(25, x, axis);
  282. }
  283. kad_node_t *kad_reduce_mean(kad_node_t *x, int axis)
  284. {
  285. return kad_reduce_general(26, x, axis);
  286. }
  287. /********** Sampling related **********/
  288. kad_node_t *kad_dropout(kad_node_t *x, kad_node_t *y)
  289. {
  290. kad_node_t *z;
  291. z = kad_op2_core(15, x, y);
  292. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  293. return z;
  294. }
  295. kad_node_t *kad_sample_normal(kad_node_t *x)
  296. {
  297. kad_node_t *z;
  298. z = kad_op1_core(24, x);
  299. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  300. return z;
  301. }
  302. /********** Miscellaneous **********/
  303. kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end)
  304. {
  305. kad_node_t *s;
  306. int32_t *aux;
  307. if (end < start || start < 0) return 0;
  308. aux = (int32_t *) g_malloc(3 * 4);
  309. aux[0] = axis, aux[1] = start, aux[2] = end;
  310. s = kad_new_core(0, 20, 1);
  311. s->child[0] = x;
  312. s->ptr = aux, s->ptr_size = 3 * 4;
  313. return kad_finalize_node(s);
  314. }
  315. kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p)
  316. {
  317. kad_node_t *s;
  318. int32_t i, *aux;
  319. aux = (int32_t *) g_malloc(4);
  320. aux[0] = axis;
  321. s = kad_new_core(0, 31, n);
  322. for (i = 0; i < n; ++i)
  323. s->child[i] = p[i];
  324. s->ptr = aux, s->ptr_size = 4;
  325. return kad_finalize_node(s);
  326. }
  327. kad_node_t *kad_concat(int axis, int n, ...)
  328. {
  329. int i;
  330. kad_node_t **p, *s;
  331. va_list ap;
  332. p = (kad_node_t **) g_malloc(n * sizeof(kad_node_t *));
  333. va_start(ap, n);
  334. for (i = 0; i < n; ++i) p[i] = va_arg(ap, kad_node_p);
  335. va_end(ap);
  336. s = kad_concat_array(axis, n, p);
  337. g_free(p);
  338. return s;
  339. }
  340. kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d)
  341. {
  342. kad_node_t *s;
  343. int32_t i, *aux = 0;
  344. if (n_d > 0) {
  345. aux = (int32_t *) g_malloc(n_d * 4);
  346. for (i = 0; i < n_d; ++i) aux[i] = d ? d[i] : -1;
  347. }
  348. s = kad_new_core(0, 30, 1);
  349. s->child[0] = x, s->ptr = aux, s->ptr_size = n_d * 4;
  350. return kad_finalize_node(s);
  351. }
  352. kad_node_t *kad_reverse(kad_node_t *x, int axis)
  353. {
  354. kad_node_t *s;
  355. int32_t *aux;
  356. aux = (int32_t *) g_malloc(4);
  357. *aux = axis;
  358. s = kad_new_core(0, 36, 1);
  359. s->child[0] = x, s->ptr = aux, s->ptr_size = 4;
  360. return kad_finalize_node(s);
  361. }
  362. kad_node_t *kad_switch(int n, kad_node_t **p)
  363. {
  364. kad_node_t *s;
  365. int32_t i, *aux;
  366. aux = (int32_t *) g_malloc0_n(1, 4);
  367. s = kad_new_core(0, 12, n);
  368. for (i = 0; i < n; ++i)
  369. s->child[i] = p[i];
  370. s->ptr = aux, s->ptr_size = 4;
  371. return kad_finalize_node(s);
  372. }
  373. /***********************
  374. * Graph linearization *
  375. ***********************/
  376. static void kad_mark_back(int n, kad_node_t **v)
  377. {
  378. int i, j;
  379. for (i = 0; i < n; ++i) {
  380. if (v[i]->n_child == 0) continue;
  381. for (j = 0; j < v[i]->n_child; ++j)
  382. if (kad_is_back(v[i]->child[j]))
  383. break;
  384. if (j < v[i]->n_child) v[i]->flag |= KAD_VAR;
  385. else
  386. v[i]->flag &= ~KAD_VAR;
  387. }
  388. }
  389. static void kad_allocate_internal(int n, kad_node_t **v)
  390. {
  391. int i;
  392. kad_mark_back(n, v);
  393. for (i = 0; i < n; ++i) {
  394. kad_node_t *p = v[i];
  395. if (p->n_child == 0) continue;
  396. p->x = (float *) g_realloc(p->x, kad_len(p) * sizeof(float));
  397. if (kad_is_back(p)) {
  398. p->g = (float *) g_realloc(p->g, kad_len(p) * sizeof(float));
  399. kad_op_list[p->op](p, KAD_ALLOC);
  400. }
  401. }
  402. }
  403. int kad_sync_dim(int n, kad_node_t **v, int batch_size)
  404. {
  405. int i, req_alloc = 0, req_sync = 0, old_size = 0;
  406. for (i = 0; i < n; ++i) {
  407. if (kad_is_feed(v[i])) {
  408. old_size = v[i]->d[0]; /* TODO: check if all feeds have the same batch size */
  409. if (batch_size > 0 && v[i]->d[0] != batch_size)
  410. v[i]->d[0] = batch_size, req_sync = 1;
  411. }
  412. else if (v[i]->n_child > 0 && req_sync)
  413. kad_op_list[v[i]->op](v[i], KAD_SYNC_DIM);
  414. }
  415. if (old_size < batch_size) req_alloc = 1;
  416. for (i = 0; i < n; ++i)
  417. if (v[i]->n_child > 0 && v[i]->x == 0) req_alloc = 1;
  418. if (req_alloc) kad_allocate_internal(n, v);
  419. return batch_size > 0 ? batch_size : old_size;
  420. }
  421. #define kvec_t(type) \
  422. struct { \
  423. size_t n, m; \
  424. type *a; \
  425. }
  426. #define kv_pop(v) ((v).a[--(v).n])
  427. #define kv_push(type, v, x) \
  428. do { \
  429. if ((v).n == (v).m) { \
  430. (v).m = (v).m ? (v).m << 1 : 2; \
  431. (v).a = (type *) g_realloc((v).a, sizeof(type) * (v).m); \
  432. } \
  433. (v).a[(v).n++] = (x); \
  434. } while (0)
  435. /* IMPORTANT: kad_node_t::tmp MUST BE set to zero before calling this function */
  436. kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots)
  437. {
  438. int i;
  439. kvec_t(kad_node_p) stack = {0, 0, 0}, a = {0, 0, 0};
  440. /* generate kad_node_t::tmp, the count of the parent nodes; shifted by 1; lowest bit to detect fake roots */
  441. for (i = 0; i < n_roots; ++i) {
  442. roots[i]->tmp = 1; /* mark the root */
  443. kv_push(kad_node_p, stack, roots[i]);
  444. }
  445. while (stack.n) {
  446. kad_node_t *p = kv_pop(stack);
  447. for (i = 0; i < p->n_child; ++i) {
  448. kad_node_t *q = p->child[i];
  449. if (q->tmp == 0) kv_push(kad_node_p, stack, q);
  450. q->tmp += 1 << 1;
  451. }
  452. }
  453. /* topological sorting (Kahn's algorithm) */
  454. for (i = 0; i < n_roots; ++i)
  455. if (roots[i]->tmp >> 1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */
  456. kv_push(kad_node_p, stack, roots[i]);
  457. while (stack.n) {
  458. kad_node_t *p = kv_pop(stack);
  459. kv_push(kad_node_p, a, p);
  460. for (i = 0; i < p->n_child; ++i) {
  461. p->child[i]->tmp -= 1 << 1;
  462. if (p->child[i]->tmp >> 1 == 0)
  463. kv_push(kad_node_p, stack, p->child[i]);
  464. }
  465. }
  466. g_free(stack.a);
  467. for (i = 0; i < (int) a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */
  468. assert(a.a[i]->tmp >> 1 == 0);
  469. a.a[i]->tmp = 0;
  470. }
  471. /* reverse */
  472. for (i = 0; i < (int) a.n >> 1; ++i) { /* reverse a.a[] */
  473. kad_node_p t;
  474. t = a.a[i], a.a[i] = a.a[a.n - 1 - i], a.a[a.n - 1 - i] = t;
  475. }
  476. kad_allocate_internal(a.n, a.a);
  477. *n_node = a.n;
  478. return a.a;
  479. }
  480. kad_node_t **kad_compile(int *n_node, int n_roots, ...)
  481. {
  482. int i;
  483. kad_node_t **roots, **ret;
  484. va_list ap;
  485. roots = (kad_node_t **) g_malloc(n_roots * sizeof(kad_node_t *));
  486. va_start(ap, n_roots);
  487. for (i = 0; i < n_roots; ++i) roots[i] = va_arg(ap, kad_node_p);
  488. va_end(ap);
  489. ret = kad_compile_array(n_node, n_roots, roots);
  490. g_free(roots);
  491. return ret;
  492. }
  493. /************************************
  494. * Miscellaneous on compiled graphs *
  495. ************************************/
  496. void kad_delete(int n, kad_node_t **a)
  497. {
  498. int i;
  499. for (i = 0; i < n; ++i) {
  500. kad_node_t *p = a[i];
  501. if (p->n_child) {
  502. g_free(p->x);
  503. g_free(p->g);
  504. }
  505. g_free(p->child);
  506. g_free(p->ptr);
  507. g_free(p->gtmp);
  508. g_free(p);
  509. }
  510. g_free(a);
  511. }
  512. int kad_size_var(int n, kad_node_t *const *v)
  513. {
  514. int c, i;
  515. for (i = c = 0; i < n; ++i)
  516. if (kad_is_var(v[i]))
  517. c += kad_len(v[i]);
  518. return c;
  519. }
  520. int kad_size_const(int n, kad_node_t *const *v)
  521. {
  522. int c, i;
  523. for (i = c = 0; i < n; ++i)
  524. if (kad_is_const(v[i]))
  525. c += kad_len(v[i]);
  526. return c;
  527. }
  528. /**********************************
  529. * Computate values and gradients *
  530. **********************************/
  531. static void kad_propagate_marks(int n, kad_node_t **a)
  532. {
  533. int i, j;
  534. for (i = n - 1; i >= 0; --i) {
  535. kad_node_t *p = a[i];
  536. if (p->tmp > 0) {
  537. if (kad_is_switch(p)) {
  538. int32_t *aux = (int32_t *) p->ptr;
  539. if (p->child[*aux]->tmp == 0)
  540. p->child[*aux]->tmp = 1;
  541. }
  542. else {
  543. for (j = 0; j < p->n_child; ++j)
  544. if (p->child[j]->tmp == 0)
  545. p->child[j]->tmp = 1;
  546. }
  547. }
  548. }
  549. }
  550. void kad_eval_marked(int n, kad_node_t **a)
  551. {
  552. int i;
  553. kad_propagate_marks(n, a);
  554. for (i = 0; i < n; ++i)
  555. if (a[i]->n_child && a[i]->tmp > 0)
  556. kad_op_list[a[i]->op](a[i], KAD_FORWARD);
  557. for (i = 0; i < n; ++i) a[i]->tmp = 0;
  558. }
  559. const float *kad_eval_at(int n, kad_node_t **a, int from)
  560. {
  561. int i;
  562. if (from < 0 || from >= n) from = n - 1;
  563. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  564. kad_eval_marked(n, a);
  565. return a[from]->x;
  566. }
  567. void kad_grad(int n, kad_node_t **a, int from)
  568. {
  569. int i;
  570. if (from < 0 || from >= n) from = n - 1;
  571. assert(a[from]->n_d == 0);
  572. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  573. kad_propagate_marks(n, a);
  574. for (i = 0; i <= from; ++i) /* set all grandients to zero */
  575. if (a[i]->g && a[i]->tmp > 0)
  576. memset(a[i]->g, 0, kad_len(a[i]) * sizeof(float));
  577. for (i = from, a[i]->g[0] = 1.0f; i >= 0; --i) /* backprop */
  578. if (a[i]->n_child && a[i]->tmp > 0)
  579. kad_op_list[a[i]->op](a[i], KAD_BACKWARD);
  580. for (i = 0; i <= from; ++i) a[i]->tmp = 0;
  581. }
  582. /***********************
  583. * Load and save graph *
  584. ***********************/
  585. static void kad_save1(FILE *fp, const kad_node_t *p)
  586. {
  587. fwrite(&p->ext_label, 4, 1, fp);
  588. fwrite(&p->ext_flag, 4, 1, fp);
  589. fwrite(&p->flag, 1, 1, fp);
  590. fwrite(&p->n_child, 4, 1, fp);
  591. if (p->n_child) {
  592. int32_t j, pre = p->pre ? p->pre->tmp : -1;
  593. fwrite(&p->op, 2, 1, fp);
  594. for (j = 0; j < p->n_child; ++j)
  595. fwrite(&p->child[j]->tmp, 4, 1, fp);
  596. fwrite(&pre, 4, 1, fp);
  597. fwrite(&p->ptr_size, 4, 1, fp);
  598. if (p->ptr_size > 0 && p->ptr)
  599. fwrite(p->ptr, p->ptr_size, 1, fp);
  600. }
  601. else {
  602. fwrite(&p->n_d, 1, 1, fp);
  603. if (p->n_d) fwrite(p->d, 4, p->n_d, fp);
  604. }
  605. }
  606. static kad_node_t *kad_load1(FILE *fp, kad_node_t **node)
  607. {
  608. kad_node_t *p;
  609. p = (kad_node_t *) g_new0(kad_node_t, 1);
  610. (void) !fread(&p->ext_label, 4, 1, fp);
  611. (void) !fread(&p->ext_flag, 4, 1, fp);
  612. (void) !fread(&p->flag, 1, 1, fp);
  613. (void) !fread(&p->n_child, 4, 1, fp);
  614. if (p->n_child) {
  615. int32_t j, k;
  616. p->child = (kad_node_t **) g_new0(kad_node_t *, p->n_child);
  617. (void) !fread(&p->op, 2, 1, fp);
  618. for (j = 0; j < p->n_child; ++j) {
  619. (void) !fread(&k, 4, 1, fp);
  620. p->child[j] = node ? node[k] : 0;
  621. }
  622. (void) !fread(&k, 4, 1, fp);
  623. if (k >= 0) p->pre = node[k];
  624. (void) !fread(&p->ptr_size, 4, 1, fp);
  625. if (p->ptr_size > 0) {
  626. p->ptr = g_malloc(p->ptr_size);
  627. (void) !fread(p->ptr, p->ptr_size, 1, fp);
  628. }
  629. }
  630. else {
  631. (void) !fread(&p->n_d, 1, 1, fp);
  632. if (p->n_d) (void) !fread(p->d, 4, p->n_d, fp);
  633. }
  634. return p;
  635. }
  636. int kad_save(FILE *fp, int n_node, kad_node_t **node)
  637. {
  638. int32_t i, k = n_node;
  639. fwrite(&k, 4, 1, fp);
  640. for (i = 0; i < n_node; ++i) node[i]->tmp = i;
  641. for (i = 0; i < n_node; ++i) kad_save1(fp, node[i]);
  642. for (i = 0; i < n_node; ++i) node[i]->tmp = 0;
  643. return 0;
  644. }
  645. kad_node_t **kad_load(FILE *fp, int *_n_node)
  646. {
  647. int32_t i, n_node;
  648. kad_node_t **node;
  649. (void) !fread(&n_node, 4, 1, fp);
  650. node = (kad_node_t **) g_malloc(n_node * sizeof(kad_node_t *));
  651. for (i = 0; i < n_node; ++i) {
  652. kad_node_t *p;
  653. p = node[i] = kad_load1(fp, node);
  654. if (p->n_child) {
  655. kad_op_list[p->op](p, KAD_ALLOC);
  656. kad_op_list[p->op](p, KAD_SYNC_DIM);
  657. }
  658. }
  659. *_n_node = n_node;
  660. kad_mark_back(n_node, node);
  661. return node;
  662. }
  663. /***************
  664. * Graph clone *
  665. ***************/
  666. static inline kad_node_t *kad_dup1(const kad_node_t *p)
  667. {
  668. kad_node_t *q;
  669. q = (kad_node_t *) g_malloc(sizeof(kad_node_t));
  670. memcpy(q, p, sizeof(kad_node_t));
  671. q->pre = 0, q->tmp = 0, q->gtmp = 0;
  672. if (p->ptr && p->ptr_size > 0) {
  673. if (kad_use_rng(p) && !(p->flag & KAD_SHARE_RNG) && p->ptr_size == sizeof(kad_rng_t)) {
  674. q->ptr = kad_rng(); /* each time step uses a different RNG */
  675. }
  676. else {
  677. q->ptr = g_malloc(p->ptr_size);
  678. memcpy(q->ptr, p->ptr, p->ptr_size);
  679. }
  680. }
  681. if (q->n_child) {
  682. q->x = q->g = 0;
  683. q->child = (kad_node_t **) g_new0(kad_node_t *, q->n_child);
  684. }
  685. return q;
  686. }
  687. kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)
  688. {
  689. int i, j;
  690. kad_node_t **u;
  691. u = (kad_node_t **) g_new0(kad_node_t *, n);
  692. for (i = 0; i < n; ++i) v[i]->tmp = i;
  693. for (i = 0; i < n; ++i) {
  694. kad_node_t *p = v[i], *q;
  695. q = u[i] = kad_dup1(p);
  696. if (p->pre) q->pre = u[p->pre->tmp];
  697. if (p->n_child) {
  698. for (j = 0; j < p->n_child; ++j)
  699. q->child[j] = u[p->child[j]->tmp];
  700. }
  701. else if (!kad_is_feed(p)) {
  702. q->x = (float *) g_malloc(kad_len(p) * sizeof(float));
  703. memcpy(q->x, p->x, kad_len(p) * sizeof(float));
  704. q->g = 0;
  705. }
  706. }
  707. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  708. kad_sync_dim(n, u, batch_size); /* this will allocate x[] and g[] at internal nodes */
  709. return u;
  710. }
  711. /**************
  712. * Unroll RNN *
  713. **************/
  714. typedef struct {
  715. int32_t n, m;
  716. kad_node_t **v;
  717. } nodes_t;
  718. static inline void push_nodes(nodes_t *w, kad_node_t *p)
  719. {
  720. if (w->n == w->m) {
  721. w->m = w->m ? w->m << 1 : 16;
  722. w->v = (kad_node_t **) g_realloc(w->v, w->m * sizeof(kad_node_t *));
  723. }
  724. w->v[w->n++] = p;
  725. }
  726. static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t **t, int len, nodes_t *w)
  727. {
  728. int i, j, l;
  729. uint8_t *flag;
  730. kad_node_t **aux;
  731. assert(kad_is_pivot(v[i_pivot]) && t[i_pivot] == 0);
  732. t[i_pivot] = kad_dup1(v[i_pivot]);
  733. t[i_pivot]->n_child = len;
  734. t[i_pivot]->child = (kad_node_t **) g_realloc(t[i_pivot]->child, len * sizeof(kad_node_t *));
  735. flag = (uint8_t *) g_malloc0_n(n_v, 1);
  736. for (i = i_pivot, flag[i] = 16; i >= 0; --i) {
  737. if (i < i_pivot && kad_is_pivot(v[i])) continue; /* don't trespass other pivots */
  738. if (flag[i] & 16) /* flag 16: nodes to unroll */
  739. for (j = 0; j < v[i]->n_child; ++j)
  740. flag[v[i]->child[j]->tmp] = 16;
  741. }
  742. for (i = 0; i < i_pivot; ++i) {
  743. if (!(flag[i] & 16)) continue;
  744. if (kad_is_var(v[i]) || kad_is_const(v[i]) || kad_is_pivot(v[i])) flag[i] |= 1; /* external nodes that should not be duplicated */
  745. if (v[i]->pre) flag[v[i]->pre->tmp] |= 2;
  746. }
  747. flag[v[i_pivot]->child[0]->tmp] |= 4;
  748. aux = (kad_node_t **) g_malloc0_n(n_v, sizeof(kad_node_t *));
  749. for (l = 0; l < len; ++l) {
  750. for (i = 0; i < i_pivot; ++i) {
  751. if (!(flag[i] & 16) || ((flag[i] & 3) && t[i])) continue;
  752. t[i] = kad_dup1(v[i]);
  753. if (v[i]->n_child)
  754. for (j = 0; j < v[i]->n_child; ++j)
  755. t[i]->child[j] = t[v[i]->child[j]->tmp];
  756. if (flag[i] & 4) t[i_pivot]->child[l] = t[i];
  757. if (l == 0 && (flag[i] & 2)) aux[i] = t[i];
  758. if (v[i]->pre) {
  759. t[v[i]->pre->tmp] = t[i];
  760. if (l == len - 1) t[i]->pre = aux[v[i]->pre->tmp]; /* this forms a cycle! */
  761. }
  762. push_nodes(w, t[i]);
  763. }
  764. }
  765. push_nodes(w, t[i_pivot]);
  766. g_free(aux);
  767. g_free(flag);
  768. }
  769. int kad_n_pivots(int n_v, kad_node_t **v)
  770. {
  771. int i, n_pivots = 0;
  772. for (i = 0; i < n_v; ++i)
  773. if (kad_is_pivot(v[i])) ++n_pivots;
  774. return n_pivots;
  775. }
  776. kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
  777. {
  778. int i, j, n_pivots = 0;
  779. kad_node_t **t;
  780. nodes_t w = {0, 0, 0};
  781. t = (kad_node_t **) g_new0(kad_node_t *, n_v);
  782. n_pivots = kad_n_pivots(n_v, v);
  783. for (i = 0; i < n_v; ++i) v[i]->tmp = i;
  784. if (n_pivots) {
  785. int k, *i_pivots;
  786. i_pivots = (int *) g_malloc0_n(n_pivots, sizeof(int));
  787. for (i = k = 0; i < n_v; ++i) /* collect pivots */
  788. if (kad_is_pivot(v[i])) i_pivots[k++] = i;
  789. for (i = 0; i < n_pivots; ++i) /* unroll each pivot, from the lowest to the highest */
  790. kad_unroll_helper(n_v, v, i_pivots[i], t, len[i], &w);
  791. g_free(i_pivots);
  792. }
  793. for (i = 0; i < n_v; ++i) { /* copy over the rest of nodes */
  794. if (t[i]) continue;
  795. t[i] = kad_dup1(v[i]);
  796. if (v[i]->n_child)
  797. for (j = 0; j < v[i]->n_child; ++j)
  798. t[i]->child[j] = t[v[i]->child[j]->tmp];
  799. push_nodes(&w, t[i]);
  800. }
  801. g_free(t);
  802. for (i = 0; i < n_v; ++i) v[i]->tmp = 0;
  803. for (i = 0; i < w.n; ++i) /* stack may change the output dimension */
  804. if (w.v[i]->n_child > 0)
  805. kad_op_list[w.v[i]->op](w.v[i], KAD_SYNC_DIM);
  806. kad_allocate_internal(w.n, w.v);
  807. *new_n = w.n;
  808. return w.v;
  809. }
  810. /********************************
  811. * Vector and matrix operations *
  812. ********************************/
  813. #ifdef __SSE__
  814. #include <xmmintrin.h>
  815. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot using SSE */
  816. {
  817. int i, n8 = n >> 3 << 3;
  818. __m128 vs1, vs2;
  819. float s, t[4];
  820. vs1 = _mm_setzero_ps();
  821. vs2 = _mm_setzero_ps();
  822. for (i = 0; i < n8; i += 8) {
  823. __m128 vx1, vx2, vy1, vy2;
  824. vx1 = _mm_loadu_ps(&x[i]);
  825. vx2 = _mm_loadu_ps(&x[i + 4]);
  826. vy1 = _mm_loadu_ps(&y[i]);
  827. vy2 = _mm_loadu_ps(&y[i + 4]);
  828. vs1 = _mm_add_ps(vs1, _mm_mul_ps(vx1, vy1));
  829. vs2 = _mm_add_ps(vs2, _mm_mul_ps(vx2, vy2));
  830. }
  831. for (s = 0.; i < n; ++i) s += x[i] * y[i];
  832. _mm_storeu_ps(t, vs1);
  833. s += t[0] + t[1] + t[2] + t[3];
  834. _mm_storeu_ps(t, vs2);
  835. s += t[0] + t[1] + t[2] + t[3];
  836. return s;
  837. }
  838. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) /* BLAS saxpy using SSE */
  839. {
  840. int i, n8 = n >> 3 << 3;
  841. __m128 va;
  842. va = _mm_set1_ps(a);
  843. for (i = 0; i < n8; i += 8) {
  844. __m128 vx1, vx2, vy1, vy2, vt1, vt2;
  845. vx1 = _mm_loadu_ps(&x[i]);
  846. vx2 = _mm_loadu_ps(&x[i + 4]);
  847. vy1 = _mm_loadu_ps(&y[i]);
  848. vy2 = _mm_loadu_ps(&y[i + 4]);
  849. vt1 = _mm_add_ps(_mm_mul_ps(va, vx1), vy1);
  850. vt2 = _mm_add_ps(_mm_mul_ps(va, vx2), vy2);
  851. _mm_storeu_ps(&y[i], vt1);
  852. _mm_storeu_ps(&y[i + 4], vt2);
  853. }
  854. for (; i < n; ++i) y[i] += a * x[i];
  855. }
  856. #else
  857. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot */
  858. {
  859. int i;
  860. float s = 0.;
  861. for (i = 0; i < n; ++i) s += x[i] * y[i];
  862. return s;
  863. }
  864. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y)// BLAS saxpy
  865. {
  866. int i;
  867. for (i = 0; i < n; ++i) y[i] += a * x[i];
  868. }
  869. #endif
  870. void kad_vec_mul_sum(int n, float *a, const float *b, const float *c)
  871. {
  872. int i;
  873. for (i = 0; i < n; ++i) a[i] += b[i] * c[i];
  874. }
  875. /* This is actually lapack not cblas, but this definition is used */
  876. #ifdef HAVE_CBLAS
  877. #ifndef __APPLE__
  878. /* As gfortran mangles names */
  879. #define ssyev ssyev_
  880. #endif
  881. extern void ssyev(const char *jobz, const char *uplo, int *n, float *a, int *lda, float *w, float *work, int *lwork, int *info);
  882. #endif
  883. #ifdef HAVE_CBLAS_SGEMM
  884. #ifdef HAVE_CBLAS_H
  885. #include "cblas.h"
  886. #else
  887. /* Poor man approach, thanks for that Apple */
  888. enum CBLAS_ORDER { CblasRowMajor = 101,
  889. CblasColMajor = 102 };
  890. enum CBLAS_TRANSPOSE { CblasNoTrans = 111,
  891. CblasTrans = 112 };
  892. extern void cblas_sgemm(const enum CBLAS_ORDER Order,
  893. const enum CBLAS_TRANSPOSE TA,
  894. const enum CBLAS_TRANSPOSE TB,
  895. const int M, const int N, const int K,
  896. const float alpha, const float *A, const int lda,
  897. const float *B, const int ldb, const float beta,
  898. float *C, const int ldc);
  899. #endif
  900. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)
  901. {
  902. cblas_sgemm(CblasRowMajor, trans_A ? CblasTrans : CblasNoTrans, trans_B ? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A ? M : K, B, trans_B ? K : N, 1.0f, C, N);
  903. }
  904. #else
  905. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) /* simplified BLAS sgemm */
  906. {
  907. static const int x = 16;
  908. int i, j, k;
  909. if (!trans_A && trans_B) {
  910. for (i = 0; i < M; i += x)
  911. for (j = 0; j < N; j += x) {
  912. int ii, ie = M < i + x ? M : i + x;
  913. int jj, je = N < j + x ? N : j + x;
  914. for (ii = i; ii < ie; ++ii) { /* loop tiling */
  915. const float *aii = A + ii * K, *bjj;
  916. float *cii = C + ii * N;
  917. for (jj = j, bjj = B + j * K; jj < je; ++jj, bjj += K)
  918. cii[jj] += kad_sdot(K, aii, bjj);
  919. }
  920. }
  921. }
  922. else if (!trans_A && !trans_B) {
  923. for (i = 0; i < M; ++i)
  924. for (k = 0; k < K; ++k)
  925. kad_saxpy_inlined(N, A[i * K + k], &B[k * N], &C[i * N]);
  926. }
  927. else if (trans_A && !trans_B) {
  928. for (k = 0; k < K; ++k)
  929. for (i = 0; i < M; ++i)
  930. kad_saxpy_inlined(N, A[k * M + i], &B[k * N], &C[i * N]);
  931. }
  932. else
  933. abort(); /* not implemented for (trans_A && trans_B) */
  934. }
  935. #endif
  936. #ifdef HAVE_CBLAS_SAXPY
  937. #ifndef HAVE_CBLAS_H
  938. extern void cblas_saxpy(const int __N,
  939. const float __alpha, const float *__X, const int __incX, float *__Y, const int __incY);
  940. #endif
  941. void kad_saxpy(int n, float a, const float *x, float *y)
  942. {
  943. cblas_saxpy(n, a, x, 1, y, 1);
  944. }
  945. #else
  946. void kad_saxpy(int n, float a, const float *x, float *y)
  947. {
  948. kad_saxpy_inlined(n, a, x, y);
  949. }
  950. #endif
  951. bool kad_ssyev_simple(int N, float *A, float *eigenvals)
  952. {
  953. #ifndef HAVE_CBLAS
  954. return false;
  955. #else
  956. int n = N, lda = N, info, lwork;
  957. float wkopt;
  958. float *work;
  959. /* Query and allocate the optimal workspace */
  960. lwork = -1;
  961. ssyev("Vectors", "Upper", &n, A, &lda, eigenvals, &wkopt, &lwork, &info);
  962. lwork = wkopt;
  963. work = (float *) g_malloc(lwork * sizeof(double));
  964. ssyev("Vectors", "Upper", &n, A, &lda, eigenvals, work, &lwork, &info);
  965. /* Check for convergence */
  966. if (info > 0) {
  967. g_g_free(work);
  968. return false;
  969. }
  970. g_g_free(work);
  971. return true;
  972. #endif
  973. }
  974. /***************************
  975. * Random number generator *
  976. ***************************/
  977. static kad_rng_t kad_rng_dat = {{0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0};
  978. static inline uint64_t kad_splitmix64(uint64_t x)
  979. {
  980. uint64_t z = (x += 0x9E3779B97F4A7C15ULL);
  981. z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ULL;
  982. z = (z ^ (z >> 27)) * 0x94D049BB133111EBULL;
  983. return z ^ (z >> 31);
  984. }
  985. static inline uint64_t kad_xoroshiro128plus_next(kad_rng_t *r)
  986. {
  987. const uint64_t s0 = r->s[0];
  988. uint64_t s1 = r->s[1];
  989. const uint64_t result = s0 + s1;
  990. s1 ^= s0;
  991. r->s[0] = (s0 << 55 | s0 >> 9) ^ s1 ^ (s1 << 14);
  992. r->s[1] = s0 << 36 | s0 >> 28;
  993. return result;
  994. }
  995. static inline void kad_xoroshiro128plus_jump(kad_rng_t *r)
  996. {
  997. static const uint64_t JUMP[] = {0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL};
  998. uint64_t s0 = 0, s1 = 0;
  999. int i, b;
  1000. for (i = 0; i < 2; ++i)
  1001. for (b = 0; b < 64; b++) {
  1002. if (JUMP[i] & 1ULL << b)
  1003. s0 ^= r->s[0], s1 ^= r->s[1];
  1004. kad_xoroshiro128plus_next(r);
  1005. }
  1006. r->s[0] = s0, r->s[1] = s1;
  1007. }
  1008. void kad_srand(void *d, uint64_t seed)
  1009. {
  1010. kad_rng_t *r = d ? (kad_rng_t *) d : &kad_rng_dat;
  1011. r->n_gset = 0.0, r->n_iset = 0;
  1012. r->s[0] = kad_splitmix64(seed);
  1013. r->s[1] = kad_splitmix64(r->s[0]);
  1014. }
  1015. void *kad_rng(void)
  1016. {
  1017. kad_rng_t *r;
  1018. r = (kad_rng_t *) g_malloc0_n(1, sizeof(kad_rng_t));
  1019. kad_xoroshiro128plus_jump(&kad_rng_dat);
  1020. r->s[0] = kad_rng_dat.s[0], r->s[1] = kad_rng_dat.s[1];
  1021. return r;
  1022. }
  1023. uint64_t kad_rand(void *d)
  1024. {
  1025. return kad_xoroshiro128plus_next(d ? (kad_rng_t *) d : &kad_rng_dat);
  1026. }
  1027. double kad_drand(void *d)
  1028. {
  1029. union {
  1030. uint64_t i;
  1031. double d;
  1032. } u;
  1033. u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d ? (kad_rng_t *) d : &kad_rng_dat) >> 12;
  1034. return u.d - 1.0;
  1035. }
  1036. double kad_drand_normal(void *d)
  1037. {
  1038. kad_rng_t *r = d ? (kad_rng_t *) d : &kad_rng_dat;
  1039. if (r->n_iset == 0) {
  1040. double fac, rsq, v1, v2;
  1041. do {
  1042. v1 = 2.0 * kad_drand(d) - 1.0;
  1043. v2 = 2.0 * kad_drand(d) - 1.0;
  1044. rsq = v1 * v1 + v2 * v2;
  1045. } while (rsq >= 1.0 || rsq == 0.0);
  1046. fac = sqrt(-2.0 * log(rsq) / rsq);
  1047. r->n_gset = v1 * fac;
  1048. r->n_iset = 1;
  1049. return v2 * fac;
  1050. }
  1051. else {
  1052. r->n_iset = 0;
  1053. return r->n_gset;
  1054. }
  1055. }
  1056. /*************
  1057. * Operators *
  1058. *************/
  1059. static inline void kad_copy_dim1(kad_node_t *dst, const kad_node_t *src) /* set the dimension/shape of dst to src */
  1060. {
  1061. dst->n_d = src->n_d;
  1062. if (src->n_d) memcpy(dst->d, src->d, src->n_d * sizeof(int));
  1063. }
  1064. /********** Arithmetic operations **********/
  1065. int kad_op_add(kad_node_t *p, int action)
  1066. {
  1067. int i, n0, n1;
  1068. kad_node_t *q[2];
  1069. q[0] = p->child[0], n0 = kad_len(q[0]);
  1070. q[1] = p->child[1], n1 = kad_len(q[1]);
  1071. if (action == KAD_SYNC_DIM) {
  1072. if (n0 % n1 != 0) return -1;
  1073. kad_copy_dim1(p, q[0]);
  1074. }
  1075. else if (action == KAD_FORWARD) {
  1076. assert(n0 >= n1);
  1077. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  1078. for (i = 0; i < n0; i += n1)
  1079. kad_saxpy(n1, 1.0f, q[1]->x, p->x + i);
  1080. }
  1081. else if (action == KAD_BACKWARD) {
  1082. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  1083. if (kad_is_back(q[1]))
  1084. for (i = 0; i < n0; i += n1)
  1085. kad_saxpy(n1, 1.0f, p->g + i, q[1]->g);
  1086. }
  1087. return 0;
  1088. }
  1089. int kad_op_sub(kad_node_t *p, int action)
  1090. {
  1091. int i, n0, n1;
  1092. kad_node_t *q[2];
  1093. q[0] = p->child[0], n0 = kad_len(q[0]);
  1094. q[1] = p->child[1], n1 = kad_len(q[1]);
  1095. if (action == KAD_SYNC_DIM) {
  1096. if (n0 % n1 != 0) return -1;
  1097. kad_copy_dim1(p, q[0]);
  1098. }
  1099. else if (action == KAD_FORWARD) {
  1100. assert(n0 >= n1);
  1101. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  1102. for (i = 0; i < n0; i += n1)
  1103. kad_saxpy(n1, -1.0f, q[1]->x, p->x + i);
  1104. }
  1105. else if (action == KAD_BACKWARD) {
  1106. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  1107. if (kad_is_back(q[1]))
  1108. for (i = 0; i < n0; i += n1)
  1109. kad_saxpy(n1, -1.0f, p->g + i, q[1]->g);
  1110. }
  1111. return 0;
  1112. }
  1113. int kad_op_mul(kad_node_t *p, int action)
  1114. {
  1115. int i, n0, n1;
  1116. kad_node_t *q[2];
  1117. q[0] = p->child[0], n0 = kad_len(q[0]);
  1118. q[1] = p->child[1], n1 = kad_len(q[1]);
  1119. if (action == KAD_SYNC_DIM) {
  1120. if (n0 % n1 != 0) return -1;
  1121. kad_copy_dim1(p, q[0]);
  1122. }
  1123. else if (action == KAD_FORWARD) {
  1124. assert(n0 >= n1);
  1125. memset(p->x, 0, n0 * sizeof(float));
  1126. if (q[0]->x != 0 && q[1]->x != 0)
  1127. for (i = 0; i < n0; i += n1) /* TODO: optimize when n1==1 */
  1128. kad_vec_mul_sum(n1, p->x + i, q[0]->x + i, q[1]->x);
  1129. }
  1130. else if (action == KAD_BACKWARD) {
  1131. if (kad_is_back(q[0]) && q[1]->x)
  1132. for (i = 0; i < n0; i += n1)
  1133. kad_vec_mul_sum(n1, q[0]->g + i, p->g + i, q[1]->x);
  1134. if (kad_is_back(q[1]) && q[0]->x)
  1135. for (i = 0; i < n0; i += n1)
  1136. kad_vec_mul_sum(n1, q[1]->g, p->g + i, q[0]->x + i);
  1137. }
  1138. return 0;
  1139. }
  1140. int kad_op_cmul(kad_node_t *p, int action)
  1141. {
  1142. int i, n_a_row, n_b_row, n_col, n_a_col = 1, n_b_col = 1;
  1143. kad_node_t *q[2];
  1144. q[0] = p->child[0], q[1] = p->child[1];
  1145. n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1] ? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1];
  1146. for (i = q[0]->n_d - 1; i >= 0; --i)
  1147. if (n_a_col < n_col) n_a_col *= q[0]->d[i];
  1148. for (i = q[1]->n_d - 1; i >= 0; --i)
  1149. if (n_b_col < n_col) n_b_col *= q[1]->d[i];
  1150. n_a_row = kad_len(q[0]) / n_a_col, n_b_row = kad_len(q[1]) / n_b_col;
  1151. if (action == KAD_SYNC_DIM) {
  1152. if (n_a_col != n_b_col) return -1;
  1153. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_row;
  1154. }
  1155. else if (action == KAD_FORWARD) {
  1156. memset(p->x, 0, n_a_row * n_b_row * sizeof(float));
  1157. if (q[0]->x && q[1]->x)
  1158. kad_sgemm_simple(0, 1, n_a_row, n_b_row, n_col, q[0]->x, q[1]->x, p->x); /* Y = X * trans(W) */
  1159. }
  1160. else if (action == KAD_BACKWARD) {
  1161. if (kad_is_back(q[0]) && q[1]->x)
  1162. kad_sgemm_simple(0, 0, n_a_row, n_col, n_b_row, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * W */
  1163. if (kad_is_back(q[1]) && q[0]->x)
  1164. kad_sgemm_simple(1, 0, n_b_row, n_col, n_a_row, p->g, q[0]->x, q[1]->g); /* G_w <- trans(G_y) * X */
  1165. }
  1166. return 0;
  1167. }
  1168. int kad_op_matmul(kad_node_t *p, int action) /* TODO: matmul and cmul have different broadcasting rules */
  1169. {
  1170. int n_a_row, n_b_row, n_a_col, n_b_col;
  1171. kad_node_t *q[2];
  1172. q[0] = p->child[0];
  1173. q[1] = p->child[1];
  1174. n_a_row = q[0]->n_d == 1 ? 1 : q[0]->d[0];
  1175. n_b_row = q[1]->n_d == 1 ? 1 : q[1]->d[0];
  1176. n_a_col = kad_len(q[0]) / n_a_row;
  1177. n_b_col = kad_len(q[1]) / n_b_row;
  1178. if (action == KAD_SYNC_DIM) {
  1179. if (n_a_col != n_b_row) return -1;
  1180. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_col;
  1181. }
  1182. else if (action == KAD_FORWARD) {
  1183. memset(p->x, 0, n_a_row * n_b_col * sizeof(float));
  1184. if (q[0]->x && q[1]->x)
  1185. kad_sgemm_simple(0, 0, n_a_row, n_b_col, n_a_col, q[0]->x, q[1]->x, p->x); /* Y = X * W */
  1186. }
  1187. else if (action == KAD_BACKWARD) {
  1188. if (kad_is_back(q[0]) && q[1]->x)
  1189. kad_sgemm_simple(0, 1, n_a_row, n_a_col, n_b_col, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * trans(W) */
  1190. if (kad_is_back(q[1]) && q[0]->x)
  1191. kad_sgemm_simple(1, 0, n_b_row, n_b_col, n_a_row, q[0]->x, p->g, q[1]->g); /* G_y <- trans(A) * G_y */
  1192. }
  1193. return 0;
  1194. }
  1195. int kad_op_square(kad_node_t *p, int action)
  1196. {
  1197. int i, n;
  1198. kad_node_t *q = p->child[0];
  1199. n = kad_len(q);
  1200. if (action == KAD_SYNC_DIM) {
  1201. kad_copy_dim1(p, q);
  1202. }
  1203. else if (action == KAD_FORWARD) {
  1204. for (i = 0; i < n; ++i)
  1205. p->x[i] = q->x[i] * q->x[i];
  1206. }
  1207. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1208. for (i = 0; i < n; ++i)
  1209. q->g[i] += p->g[i] * (q->x[i] + q->x[i]);
  1210. }
  1211. return 0;
  1212. }
  1213. int kad_op_1minus(kad_node_t *p, int action)
  1214. {
  1215. int i, n;
  1216. kad_node_t *q = p->child[0];
  1217. n = kad_len(q);
  1218. if (action == KAD_SYNC_DIM) {
  1219. kad_copy_dim1(p, q);
  1220. }
  1221. else if (action == KAD_FORWARD) {
  1222. for (i = 0; i < n; ++i) p->x[i] = 1.0f - q->x[i];
  1223. }
  1224. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1225. kad_saxpy(n, -1.0f, p->g, q->g);
  1226. }
  1227. return 0;
  1228. }
  1229. int kad_op_exp(kad_node_t *p, int action)
  1230. {
  1231. int i, n;
  1232. kad_node_t *q = p->child[0];
  1233. n = kad_len(q);
  1234. if (action == KAD_SYNC_DIM) {
  1235. kad_copy_dim1(p, q);
  1236. }
  1237. else if (action == KAD_FORWARD) {
  1238. for (i = 0; i < n; ++i) p->x[i] = expf(q->x[i]);
  1239. }
  1240. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1241. for (i = 0; i < n; ++i)
  1242. q->g[i] += p->g[i] * p->x[i];
  1243. }
  1244. return 0;
  1245. }
  1246. int kad_op_log(kad_node_t *p, int action)
  1247. {
  1248. int i, n;
  1249. kad_node_t *q = p->child[0];
  1250. n = kad_len(q);
  1251. if (action == KAD_SYNC_DIM) {
  1252. kad_copy_dim1(p, q);
  1253. }
  1254. else if (action == KAD_FORWARD) {
  1255. for (i = 0; i < n; ++i) p->x[i] = logf(q->x[i]);
  1256. }
  1257. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1258. for (i = 0; i < n; ++i)
  1259. q->g[i] += p->g[i] / q->x[i];
  1260. }
  1261. return 0;
  1262. }
  1263. int kad_op_reduce_sum(kad_node_t *p, int action)
  1264. {
  1265. kad_node_t *q = p->child[0];
  1266. int i, j, k, axis, d0, d1;
  1267. assert(p->ptr);
  1268. axis = *(int32_t *) p->ptr;
  1269. if (axis < 0 || axis >= q->n_d) return -1;
  1270. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1271. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1272. if (action == KAD_SYNC_DIM) {
  1273. p->n_d = q->n_d - 1;
  1274. for (i = j = 0; i < q->n_d; ++i)
  1275. if (i != axis) p->d[j++] = q->d[i];
  1276. }
  1277. else if (action == KAD_FORWARD) {
  1278. memset(p->x, 0, kad_len(p) * sizeof(float));
  1279. for (i = 0; i < d0; ++i)
  1280. for (j = 0; j < q->d[axis]; ++j)
  1281. for (k = 0; k < d1; ++k)
  1282. p->x[i * d1 + k] += q->x[(i * q->d[axis] + j) * d1 + k];
  1283. }
  1284. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1285. for (i = 0; i < d0; ++i)
  1286. for (j = 0; j < q->d[axis]; ++j)
  1287. for (k = 0; k < d1; ++k)
  1288. q->g[(i * q->d[axis] + j) * d1 + k] += p->g[i * d1 + k];
  1289. }
  1290. return 0;
  1291. }
  1292. int kad_op_reduce_mean(kad_node_t *p, int action)
  1293. {
  1294. kad_node_t *q = p->child[0];
  1295. int i, j, k, axis, d0, d1;
  1296. assert(p->ptr);
  1297. axis = *(int32_t *) p->ptr;
  1298. if (axis < 0 || axis >= q->n_d) return -1;
  1299. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1300. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1301. if (action == KAD_SYNC_DIM) {
  1302. p->n_d = q->n_d - 1;
  1303. for (i = j = 0; i < q->n_d; ++i)
  1304. if (i != axis) p->d[j++] = q->d[i];
  1305. }
  1306. else if (action == KAD_FORWARD) {
  1307. float t = 1.0f / (float) q->d[axis];
  1308. memset(p->x, 0, kad_len(p) * sizeof(float));
  1309. for (i = 0; i < d0; ++i)
  1310. for (j = 0; j < q->d[axis]; ++j)
  1311. for (k = 0; k < d1; ++k)
  1312. p->x[i * d1 + k] += t * q->x[(i * q->d[axis] + j) * d1 + k];
  1313. }
  1314. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1315. float t = 1.0f / (float) q->d[axis];
  1316. for (i = 0; i < d0; ++i)
  1317. for (j = 0; j < q->d[axis]; ++j)
  1318. for (k = 0; k < d1; ++k)
  1319. q->g[(i * q->d[axis] + j) * d1 + k] += t * p->g[i * d1 + k];
  1320. }
  1321. return 0;
  1322. }
  1323. /********** Miscellaneous **********/
  1324. int kad_op_dropout(kad_node_t *p, int action)
  1325. {
  1326. int i, n;
  1327. kad_node_t *q = p->child[0];
  1328. assert(p->child[1]->n_d == 0);
  1329. n = kad_len(q);
  1330. if (action == KAD_SYNC_DIM) {
  1331. kad_copy_dim1(p, q);
  1332. }
  1333. else if (action == KAD_ALLOC) {
  1334. if (kad_is_back(p->child[0]))
  1335. p->gtmp = g_realloc(p->gtmp, n);
  1336. }
  1337. else if (action == KAD_FORWARD) {
  1338. float r = kad_is_const(q) || kad_is_var(q) ? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1339. uint8_t *flag = (uint8_t *) p->gtmp;
  1340. for (i = 0; i < n; ++i) {
  1341. int kept = (kad_drand(p->ptr) >= r);
  1342. p->x[i] = kept ? q->x[i] * z : 0.0f;
  1343. if (flag) flag[i] = kept;
  1344. }
  1345. }
  1346. else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1347. float r = kad_is_const(q) || kad_is_var(q) ? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1348. uint8_t *flag = (uint8_t *) p->gtmp;
  1349. for (i = 0; i < n; ++i)
  1350. if (flag[i]) q->g[i] += z * p->g[i];
  1351. }
  1352. return 0;
  1353. }
  1354. int kad_op_sample_normal(kad_node_t *p, int action) /* not tested */
  1355. {
  1356. int i, n;
  1357. kad_node_t *q = p->child[0];
  1358. n = kad_len(q);
  1359. if (action == KAD_SYNC_DIM) {
  1360. kad_copy_dim1(p, q);
  1361. }
  1362. else if (action == KAD_ALLOC) {
  1363. if (kad_is_back(p->child[0]))
  1364. p->gtmp = g_realloc(p->gtmp, n * sizeof(float));
  1365. }
  1366. else if (action == KAD_FORWARD) {
  1367. float *r = (float *) p->gtmp;
  1368. for (i = 0; i < n; ++i) {
  1369. float z;
  1370. z = (float) kad_drand_normal(p->ptr);
  1371. p->x[i] = q->x[i] * z;
  1372. if (r) r[i] = z;
  1373. }
  1374. }
  1375. else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1376. float *r = (float *) p->gtmp;
  1377. for (i = 0; i < n; ++i)
  1378. q->g[i] += p->g[i] * r[i];
  1379. }
  1380. return 0;
  1381. }
  1382. int kad_op_slice(kad_node_t *p, int action)
  1383. {
  1384. kad_node_t *q = p->child[0];
  1385. int32_t *aux, *range;
  1386. int i, axis, d0, d1;
  1387. assert(p->ptr);
  1388. aux = (int32_t *) p->ptr, axis = aux[0], range = aux + 1;
  1389. if (axis < 0 || axis >= q->n_d) return -1;
  1390. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1391. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1392. if (action == KAD_SYNC_DIM) {
  1393. if (range[0] >= range[1] || range[0] < 0 || range[1] > q->d[axis]) return -1;
  1394. kad_copy_dim1(p, q);
  1395. p->d[axis] = range[1] - range[0];
  1396. }
  1397. else if (action == KAD_FORWARD) {
  1398. for (i = 0; i < d0; ++i)
  1399. memcpy(&p->x[i * p->d[axis] * d1], &q->x[(i * q->d[axis] + range[0]) * d1], (range[1] - range[0]) * d1 * sizeof(float));
  1400. }
  1401. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1402. for (i = 0; i < d0; ++i)
  1403. kad_saxpy((range[1] - range[0]) * d1, 1.0f, &p->g[i * p->d[axis] * d1], &q->g[(i * q->d[axis] + range[0]) * d1]);
  1404. }
  1405. return 0;
  1406. }
  1407. int kad_op_concat(kad_node_t *p, int action)
  1408. {
  1409. kad_node_t *q = p->child[0];
  1410. int32_t *aux;
  1411. int i, j, k, axis, d0, d1;
  1412. assert(p->ptr);
  1413. aux = (int32_t *) p->ptr, axis = aux[0];
  1414. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1415. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1416. if (action == KAD_SYNC_DIM) {
  1417. for (i = 1; i < p->n_child; ++i) {
  1418. if (p->child[i]->n_d != q->n_d) return -1;
  1419. for (j = 0; j < q->n_d; ++j)
  1420. if (j != axis && q->d[j] != p->child[i]->d[j]) return -1;
  1421. }
  1422. kad_copy_dim1(p, q);
  1423. for (i = 1; i < p->n_child; ++i)
  1424. p->d[axis] += p->child[i]->d[axis];
  1425. }
  1426. else if (action == KAD_FORWARD) {
  1427. for (i = 0; i < d0; ++i)
  1428. for (j = k = 0; j < p->n_child; ++j) {
  1429. q = p->child[j];
  1430. memcpy(&p->x[(i * p->d[axis] + k) * d1], &q->x[i * q->d[axis] * d1], q->d[axis] * d1 * sizeof(float));
  1431. k += q->d[axis];
  1432. }
  1433. }
  1434. else if (action == KAD_BACKWARD) {
  1435. for (i = 0; i < d0; ++i)
  1436. for (j = k = 0; j < p->n_child; ++j) {
  1437. q = p->child[j];
  1438. if (!kad_is_back(q)) continue;
  1439. kad_saxpy(q->d[axis] * d1, 1.0f, &p->g[(i * p->d[axis] + k) * d1], &q->g[i * q->d[axis] * d1]);
  1440. k += q->d[axis];
  1441. }
  1442. }
  1443. return 0;
  1444. }
  1445. int kad_op_reshape(kad_node_t *p, int action)
  1446. {
  1447. kad_node_t *q = p->child[0];
  1448. if (action == KAD_SYNC_DIM) {
  1449. if (p->ptr) {
  1450. int32_t *aux = (int32_t *) p->ptr;
  1451. int i, len = 1, n_missing = 0;
  1452. p->n_d = p->ptr_size / 4;
  1453. for (i = 0; i < p->n_d; ++i) p->d[i] = aux[i];
  1454. for (i = 0; i < p->n_d; ++i)
  1455. if (p->d[i] <= 0) ++n_missing;
  1456. else
  1457. len *= p->d[i];
  1458. if (n_missing == 0 && len != kad_len(q)) return -1;
  1459. if (n_missing > 1) { /* attempt to infer missing dimensions except the last one */
  1460. for (i = 0; i < p->n_d; ++i)
  1461. if (p->d[i] <= 0 && i < q->n_d) {
  1462. p->d[i] = q->d[i], len *= p->d[i];
  1463. if (--n_missing == 1) break;
  1464. }
  1465. if (n_missing > 1) return -1;
  1466. }
  1467. if (n_missing == 1) { /* infer the last missing dimension */
  1468. if (kad_len(q) % len != 0) return -1;
  1469. for (i = 0; i < p->n_d; ++i)
  1470. if (p->d[i] <= 0) p->d[i] = kad_len(q) / len;
  1471. }
  1472. }
  1473. else
  1474. kad_copy_dim1(p, q);
  1475. }
  1476. else if (action == KAD_FORWARD) {
  1477. memcpy(p->x, q->x, kad_len(p) * sizeof(float));
  1478. }
  1479. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1480. kad_saxpy(kad_len(p), 1.0f, p->g, q->g);
  1481. }
  1482. return 0;
  1483. }
  1484. int kad_op_reverse(kad_node_t *p, int action)
  1485. {
  1486. kad_node_t *q = p->child[0];
  1487. int axis, i, j, n, d0, d1;
  1488. axis = p->ptr ? *(int32_t *) p->ptr : 0;
  1489. if (axis < 0) axis += q->n_d;
  1490. assert(axis >= 0 && axis < q->n_d);
  1491. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1492. n = q->d[axis];
  1493. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1494. if (action == KAD_SYNC_DIM) {
  1495. kad_copy_dim1(p, q);
  1496. }
  1497. else if (action == KAD_FORWARD) {
  1498. for (i = 0; i < d0; ++i)
  1499. for (j = 0; j < n; ++j)
  1500. memcpy(&p->x[(i * n + n - 1 - j) * d1], &q->x[(i * n + j) * d1], d1 * sizeof(float));
  1501. }
  1502. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1503. for (i = 0; i < d0; ++i)
  1504. for (j = 0; j < n; ++j)
  1505. kad_saxpy(d1, 1.0f, &p->g[(i * n + n - 1 - j) * d1], &q->g[(i * n + j) * d1]);
  1506. }
  1507. return 0;
  1508. }
  1509. /********** Cost functions **********/
  1510. int kad_op_mse(kad_node_t *p, int action)
  1511. {
  1512. kad_node_t *y1 = p->child[0]; /* test */
  1513. kad_node_t *y0 = p->child[1]; /* truth */
  1514. int i, n;
  1515. n = kad_len(y0);
  1516. if (action == KAD_SYNC_DIM) {
  1517. if (n != kad_len(y1)) return -1;
  1518. p->n_d = 0;
  1519. }
  1520. else if (action == KAD_FORWARD) {
  1521. double cost = 0.0;
  1522. for (i = 0; i < n; ++i)
  1523. cost += (y1->x[i] - y0->x[i]) * (y1->x[i] - y0->x[i]);
  1524. p->x[0] = (float) (cost / n);
  1525. }
  1526. else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1527. float t = 2.0f * p->g[0] / n;
  1528. for (i = 0; i < n; ++i)
  1529. y1->g[i] += t * (y1->x[i] - y0->x[i]);
  1530. }
  1531. return 0;
  1532. }
  1533. int kad_op_ce_bin(kad_node_t *p, int action)
  1534. {
  1535. static const float tiny = 1e-9f;
  1536. kad_node_t *y1 = p->child[0]; /* test */
  1537. kad_node_t *y0 = p->child[1]; /* truth */
  1538. int i, n;
  1539. n = kad_len(y0);
  1540. if (action == KAD_SYNC_DIM) {
  1541. if (n != kad_len(y1)) return -1;
  1542. p->n_d = 0;
  1543. }
  1544. else if (action == KAD_FORWARD) {
  1545. float cost = 0.0f;
  1546. for (i = 0; i < n; ++i) {
  1547. if (y0->x[i] > 0.0f)
  1548. cost += y0->x[i] * logf(y0->x[i] / (y1->x[i] > tiny ? y1->x[i] : tiny));
  1549. if (1.0f - y0->x[i] > 0.0f)
  1550. cost += (1.0f - y0->x[i]) * logf((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny));
  1551. }
  1552. p->x[0] = cost / (float) n;
  1553. }
  1554. else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1555. float t = p->g[0] / (float) n;
  1556. for (i = 0; i < n; ++i) {
  1557. if (y0->x[i] > 0.0f)
  1558. y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny ? y1->x[i] : tiny);
  1559. if (1.0f - y0->x[i] > 0.0f)
  1560. y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny);
  1561. }
  1562. }
  1563. return 0;
  1564. }
  1565. int kad_op_ce_bin_neg(kad_node_t *p, int action)
  1566. {
  1567. static const float tiny = 1e-9f;
  1568. kad_node_t *y1 = p->child[0]; /* test */
  1569. kad_node_t *y0 = p->child[1]; /* truth */
  1570. int i, n;
  1571. n = kad_len(y0);
  1572. if (action == KAD_SYNC_DIM) {
  1573. if (n != kad_len(y1)) return -1;
  1574. p->n_d = 0;
  1575. }
  1576. else if (action == KAD_FORWARD) {
  1577. float cost = 0.0f;
  1578. for (i = 0; i < n; ++i) {
  1579. if (1.0f + y0->x[i] > 0.0f)
  1580. cost += .5f * (1.0f + y0->x[i]) * logf((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny ? 1.0f + y1->x[i] : tiny));
  1581. if (1.0f - y0->x[i] > 0.0f)
  1582. cost += .5f * (1.0f - y0->x[i]) * logf((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny));
  1583. }
  1584. p->x[0] = cost / (float) n;
  1585. }
  1586. else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1587. float t = p->g[0] / (float) n;
  1588. for (i = 0; i < n; ++i) {
  1589. if (1.0f + y0->x[i] > 0.0f)
  1590. y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny ? 1.0f + y1->x[i] : tiny);
  1591. if (1.0f - y0->x[i] > 0.0f)
  1592. y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny);
  1593. }
  1594. }
  1595. return 0;
  1596. }
  1597. int kad_op_ce_multi(kad_node_t *p, int action)
  1598. {
  1599. static const float tiny = 1e-9f;
  1600. kad_node_t *y1 = p->child[0]; /* test */
  1601. kad_node_t *y0 = p->child[1]; /* truth */
  1602. kad_node_t *c = 0;
  1603. int i, j, n1, d0;
  1604. n1 = y0->d[y0->n_d - 1];
  1605. d0 = kad_len(y0) / n1;
  1606. if (p->n_child == 3) {
  1607. c = p->child[2];
  1608. assert(c->n_d == 1 && c->d[0] == n1);
  1609. }
  1610. if (action == KAD_SYNC_DIM) {
  1611. if (kad_len(y0) != kad_len(y1) || y0->d[y0->n_d - 1] != y1->d[y1->n_d - 1]) return -1;
  1612. p->n_d = 0;
  1613. }
  1614. else if (action == KAD_FORWARD) {
  1615. float cost = 0.0f;
  1616. if (c == 0) {
  1617. for (j = 0; j < d0; ++j) {
  1618. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1619. for (i = 0; i < n1; ++i)
  1620. if (x0[i] > 0.0f)
  1621. cost += x0[i] * logf(x0[i] / (x1[i] > tiny ? x1[i] : tiny));
  1622. }
  1623. }
  1624. else {
  1625. for (j = 0; j < d0; ++j) {
  1626. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1627. for (i = 0; i < n1; ++i)
  1628. if (x0[i] > 0.0f)
  1629. cost += c->x[i] * x0[i] * logf(x0[i] / (x1[i] > tiny ? x1[i] : tiny));
  1630. }
  1631. }
  1632. p->x[0] = cost / (float) d0;
  1633. }
  1634. else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1635. float t = p->g[0] / (float) d0;
  1636. if (c == 0) {
  1637. for (j = 0; j < d0; ++j) {
  1638. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1639. for (i = 0; i < n1; ++i)
  1640. g[i] -= t * x0[i] / (x1[i] > tiny ? x1[i] : tiny);
  1641. }
  1642. }
  1643. else {
  1644. for (j = 0; j < d0; ++j) {
  1645. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1646. for (i = 0; i < n1; ++i)
  1647. g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny ? x1[i] : tiny);
  1648. }
  1649. }
  1650. }
  1651. return 0;
  1652. }
  1653. /********** Normalization **********/
  1654. int kad_op_stdnorm(kad_node_t *p, int action)
  1655. {
  1656. int i, j, n, m;
  1657. kad_node_t *q = p->child[0];
  1658. assert(q->n_d > 0);
  1659. n = q->d[q->n_d - 1];
  1660. m = kad_len(q) / n;
  1661. if (action == KAD_SYNC_DIM) {
  1662. kad_copy_dim1(p, q);
  1663. }
  1664. else if (action == KAD_ALLOC) {
  1665. p->gtmp = g_realloc(p->gtmp, m * sizeof(float));
  1666. }
  1667. else if (action == KAD_FORWARD) {
  1668. float *si = (float *) p->gtmp;
  1669. for (j = 0; j < m; ++j) {
  1670. float *px = &p->x[j * n], *qx = &q->x[j * n];
  1671. float avg, std_inv;
  1672. double s;
  1673. for (i = 0, s = 0.0; i < n; ++i) s += qx[i];
  1674. avg = (float) (s / n);
  1675. for (i = 0; i < n; ++i) px[i] = qx[i] - avg;
  1676. for (i = 0, s = 0.0; i < n; ++i) s += px[i] * px[i];
  1677. std_inv = s == 0.0 ? 1.0f : (float) (1.0 / sqrt(s / n));
  1678. for (i = 0; i < n; ++i) px[i] *= std_inv;
  1679. si[j] = std_inv;
  1680. }
  1681. }
  1682. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1683. float *si = (float *) p->gtmp;
  1684. for (j = 0; j < m; ++j) {
  1685. float *pg = &p->g[j * n], *qg = &q->g[j * n], *px = &p->x[j * n], std_inv = si[j];
  1686. float s, t;
  1687. for (i = 0, s = t = 0.0f; i < n; ++i)
  1688. s += pg[i], t += px[i] * pg[i];
  1689. s /= (float) n;
  1690. t /= (float) n;
  1691. for (i = 0; i < n; ++i)
  1692. qg[i] += std_inv * (pg[i] - s - px[i] * t);
  1693. }
  1694. }
  1695. return 0;
  1696. }
  1697. /********** Activation functions **********/
  1698. int kad_op_sigm(kad_node_t *p, int action)
  1699. {
  1700. int i, n;
  1701. kad_node_t *q = p->child[0];
  1702. n = kad_len(q);
  1703. if (action == KAD_SYNC_DIM) {
  1704. kad_copy_dim1(p, q);
  1705. }
  1706. else if (action == KAD_FORWARD) {
  1707. for (i = 0; i < n; ++i)
  1708. p->x[i] = 1.0f / (1.0f + expf(-q->x[i]));
  1709. }
  1710. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1711. for (i = 0; i < n; ++i)
  1712. q->g[i] += p->g[i] * (p->x[i] * (1.0f - p->x[i]));
  1713. }
  1714. return 0;
  1715. }
  1716. int kad_op_tanh(kad_node_t *p, int action)
  1717. {
  1718. int i, n;
  1719. kad_node_t *q = p->child[0];
  1720. n = kad_len(q);
  1721. if (action == KAD_SYNC_DIM) {
  1722. kad_copy_dim1(p, q);
  1723. }
  1724. else if (action == KAD_FORWARD) {
  1725. for (i = 0; i < n; ++i) {
  1726. if (q->x[i] < -20.0f) p->x[i] = -1.0f;
  1727. else {
  1728. float y;
  1729. y = expf(-2.0f * q->x[i]);
  1730. p->x[i] = (1.0f - y) / (1.0f + y);
  1731. }
  1732. }
  1733. }
  1734. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1735. for (i = 0; i < n; ++i)
  1736. q->g[i] += p->g[i] * (1.0f - p->x[i] * p->x[i]);
  1737. }
  1738. return 0;
  1739. }
  1740. int kad_op_relu(kad_node_t *p, int action)
  1741. {
  1742. int i, n;
  1743. kad_node_t *q = p->child[0];
  1744. n = kad_len(q);
  1745. if (action == KAD_SYNC_DIM) {
  1746. kad_copy_dim1(p, q);
  1747. }
  1748. else if (action == KAD_FORWARD) {
  1749. for (i = 0; i < n; ++i)
  1750. p->x[i] = q->x[i] > 0.0f ? q->x[i] : 0.0f;
  1751. }
  1752. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1753. for (i = 0; i < n; ++i)
  1754. if (q->x[i] > 0.0f)
  1755. q->g[i] += p->g[i];
  1756. }
  1757. return 0;
  1758. }
  1759. int kad_op_sin(kad_node_t *p, int action)
  1760. {
  1761. int i, n;
  1762. kad_node_t *q = p->child[0];
  1763. n = kad_len(q);
  1764. if (action == KAD_SYNC_DIM) {
  1765. kad_copy_dim1(p, q);
  1766. }
  1767. else if (action == KAD_FORWARD) {
  1768. for (i = 0; i < n; ++i) p->x[i] = sinf(q->x[i]);
  1769. }
  1770. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1771. for (i = 0; i < n; ++i)
  1772. q->g[i] += p->g[i] * cosf(q->x[i]);
  1773. }
  1774. return 0;
  1775. }
  1776. int kad_op_softmax(kad_node_t *p, int action)
  1777. {
  1778. int i, j, n1, d0;
  1779. kad_node_t *q = p->child[0];
  1780. n1 = q->d[q->n_d - 1];
  1781. d0 = kad_len(q) / n1;
  1782. if (action == KAD_SYNC_DIM) {
  1783. kad_copy_dim1(p, q);
  1784. }
  1785. else if (action == KAD_FORWARD) {
  1786. for (j = 0; j < d0; ++j) {
  1787. float s, max, *x = &q->x[j * n1], *y = &p->x[j * n1];
  1788. for (i = 0, max = -FLT_MAX; i < n1; ++i)
  1789. max = max > x[i] ? max : x[i];
  1790. for (i = 0, s = 0.0f; i < n1; ++i) {
  1791. y[i] = expf(x[i] - max);
  1792. s += y[i];
  1793. }
  1794. for (i = 0, s = 1.0f / s; i < n1; ++i) y[i] *= s;
  1795. }
  1796. }
  1797. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1798. for (j = 0; j < d0; ++j) {
  1799. float s, *g = &p->g[j * n1], *y = &p->x[j * n1], *h = &q->g[j * n1];
  1800. for (i = 0, s = 0.0f; i < n1; ++i)
  1801. s += g[i] * y[i];
  1802. for (i = 0; i < n1; ++i)
  1803. h[i] += y[i] * (g[i] - s);
  1804. }
  1805. }
  1806. return 0;
  1807. }
  1808. /********** Multi-node pooling **********/
  1809. int kad_op_avg(kad_node_t *p, int action)
  1810. {
  1811. int i, n;
  1812. float tmp;
  1813. kad_node_t *q;
  1814. assert(p->n_child > 0);
  1815. tmp = 1.0f / p->n_child;
  1816. q = p->child[0];
  1817. n = kad_len(q);
  1818. if (action == KAD_SYNC_DIM) {
  1819. for (i = 1; i < p->n_child; ++i)
  1820. if (kad_len(p->child[i]) != n) return -1;
  1821. kad_copy_dim1(p, q);
  1822. }
  1823. else if (action == KAD_FORWARD) {
  1824. memcpy(p->x, q->x, n * sizeof(float));
  1825. for (i = 1; i < p->n_child; ++i)
  1826. kad_saxpy(n, 1.0f, p->child[i]->x, p->x);
  1827. for (i = 0; i < n; ++i) p->x[i] *= tmp;
  1828. }
  1829. else if (action == KAD_BACKWARD) {
  1830. for (i = 0; i < p->n_child; ++i)
  1831. if (kad_is_back(p->child[i]))
  1832. kad_saxpy(n, tmp, p->g, p->child[i]->g);
  1833. }
  1834. return 0;
  1835. }
  1836. int kad_op_max(kad_node_t *p, int action)
  1837. {
  1838. int i, n;
  1839. kad_node_t *q = p->child[0];
  1840. n = kad_len(q);
  1841. if (action == KAD_SYNC_DIM) {
  1842. int *max_j;
  1843. for (i = 1; i < p->n_child; ++i)
  1844. if (kad_len(p->child[i]) != n) return -1;
  1845. kad_copy_dim1(p, q);
  1846. max_j = (int *) g_malloc0_n(n, sizeof(int));
  1847. p->gtmp = max_j;
  1848. }
  1849. else if (action == KAD_FORWARD) {
  1850. int j, *max_j = (int *) p->gtmp;
  1851. memset(max_j, 0, n * sizeof(int));
  1852. memcpy(p->x, q->x, n * sizeof(float));
  1853. for (j = 1; j < p->n_child; ++j)
  1854. for (i = 0, q = p->child[j]; i < n; ++i)
  1855. if (q->x[i] > p->x[i]) p->x[i] = q->x[i], max_j[i] = j;
  1856. }
  1857. else if (action == KAD_BACKWARD) {
  1858. int *max_j = (int *) p->gtmp;
  1859. for (i = 0; i < n; ++i)
  1860. p->child[max_j[i]]->g[i] += p->g[i];
  1861. }
  1862. return 0;
  1863. }
  1864. int kad_op_stack(kad_node_t *p, int action) /* TODO: allow axis, as in TensorFlow */
  1865. {
  1866. int i, n, axis = 0;
  1867. kad_node_t *q;
  1868. assert(p->n_child > 0);
  1869. q = p->child[0];
  1870. n = kad_len(q);
  1871. if (action == KAD_SYNC_DIM) {
  1872. for (i = 1; i < p->n_child; ++i)
  1873. if (kad_len(p->child[i]) != n) return -1;
  1874. p->n_d = q->n_d + 1;
  1875. for (i = 0; i < axis; ++i) p->d[i] = q->d[i];
  1876. p->d[axis] = p->n_child;
  1877. for (; i < q->n_d; ++i) p->d[i + 1] = q->d[i];
  1878. }
  1879. else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */
  1880. for (i = 0; i < p->n_child; ++i)
  1881. memcpy(&p->x[i * n], p->child[i]->x, n * sizeof(float));
  1882. }
  1883. else if (action == KAD_BACKWARD) {
  1884. for (i = 0; i < p->n_child; ++i)
  1885. if (kad_is_back(p->child[i]))
  1886. kad_saxpy(n, 1.0f, &p->g[i * n], p->child[i]->g);
  1887. }
  1888. return 0;
  1889. }
  1890. int kad_op_select(kad_node_t *p, int action)
  1891. {
  1892. kad_node_t *q;
  1893. int i, n, which;
  1894. which = *(int32_t *) p->ptr;
  1895. if (which < 0) which += p->n_child;
  1896. assert(which >= 0 && which < p->n_child);
  1897. q = p->child[which];
  1898. n = kad_len(q);
  1899. if (action == KAD_SYNC_DIM) {
  1900. for (i = 0; i < p->n_child; ++i)
  1901. if (p->child[i]->n_d != q->n_d || kad_len(p->child[i]) != n)
  1902. break;
  1903. if (i < p->n_child) return -1;
  1904. kad_copy_dim1(p, q);
  1905. }
  1906. else if (action == KAD_FORWARD) {
  1907. memcpy(p->x, q->x, n * sizeof(float));
  1908. }
  1909. else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1910. kad_saxpy(n, 1.0f, p->g, q->g);
  1911. }
  1912. return 0;
  1913. }
  1914. /********** 2D convolution **********/
  1915. static void conv_rot180(int d0, int d1, float *x) /* rotate/reverse a weight martix */
  1916. {
  1917. int i, j;
  1918. for (i = 0; i < d0; ++i) {
  1919. float tmp, *xi = &x[i * d1];
  1920. for (j = 0; j < d1 >> 1; ++j)
  1921. tmp = xi[j], xi[j] = xi[d1 - 1 - j], xi[d1 - 1 - j] = tmp;
  1922. }
  1923. }
  1924. static void conv2d_move_1to3(int d[4], const float *x, float *y) /* convert the NCHW shape to the NHWC shape */
  1925. {
  1926. int i, j, k, l;
  1927. for (i = 0; i < d[0]; ++i)
  1928. for (j = 0; j < d[1]; ++j)
  1929. for (k = 0; k < d[2]; ++k) {
  1930. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1931. for (l = 0; l < d[3]; ++l)
  1932. y[(ik + l) * d[1] + j] = x[ijk + l];
  1933. }
  1934. }
  1935. static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the NHWC shape back to NCHW and add to another NCHW-shaped array */
  1936. {
  1937. int i, j, k, l;
  1938. for (i = 0; i < d[0]; ++i)
  1939. for (j = 0; j < d[1]; ++j)
  1940. for (k = 0; k < d[2]; ++k) {
  1941. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1942. for (l = 0; l < d[3]; ++l)
  1943. x[ijk + l] += y[(ik + l) * d[1] + j];
  1944. }
  1945. }
  1946. #define conv_out_size(in_size, aux) (((in_size) - (aux)->kernel_size + (aux)->pad[0] + (aux)->pad[1]) / (aux)->stride + 1)
  1947. #define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
  1948. do { \
  1949. int j, l; \
  1950. if (_stride > 1) { \
  1951. for (l = 0; l < _wn; ++l) { \
  1952. const float *xl = &_xx[l - _pad]; \
  1953. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1954. kad_saxpy(_pn, _ww[l], _t, _yy); \
  1955. } \
  1956. } \
  1957. else \
  1958. for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \
  1959. } while (0)
  1960. #define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
  1961. do { \
  1962. int j, l; \
  1963. if (_stride > 1) { \
  1964. for (l = 0; l < _wn; ++l) { \
  1965. float *xl = &_xx[l - _pad]; \
  1966. memset(_t, 0, _pn * sizeof(float)); \
  1967. kad_saxpy(_pn, _ww[l], _yy, _t); \
  1968. for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \
  1969. } \
  1970. } \
  1971. else \
  1972. for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \
  1973. } while (0)
  1974. #define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
  1975. do { \
  1976. int j, l; \
  1977. if (_stride > 1) { \
  1978. for (l = 0; l < _wn; ++l) { \
  1979. const float *xl = &_xx[l - _pad]; \
  1980. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1981. _ww[l] += kad_sdot(_pn, _yy, _t); \
  1982. } \
  1983. } \
  1984. else \
  1985. for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \
  1986. } while (0)
  1987. /* Forward and backward passes are implemented with two different algorithms.
  1988. * The first is faster for small kernels with few input channels; otherwise the
  1989. * second algorithm is faster. Both algorithms should produce identical
  1990. * results, up to the precision of "float".
  1991. */
  1992. int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-width (NCHW) shape */
  1993. {
  1994. #define conv2d_loop1(_x, _w, _y, _tmp, _row_func) \
  1995. do { /* for the NCHW shape */ \
  1996. int n, c1, c0, i, k, ii; \
  1997. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1998. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1999. for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \
  2000. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  2001. float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \
  2002. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output row */ \
  2003. float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \
  2004. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  2005. if (x_padded) { \
  2006. memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \
  2007. _xx = x_padded + aux[1].pad[0]; \
  2008. } \
  2009. _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \
  2010. } /* ~i */ \
  2011. } /* ~k, c0, c1, n */ \
  2012. } while (0)
  2013. #define conv2d_loop2(_x, _w, _y, _code) \
  2014. do { /* for the NHWC shape */ \
  2015. int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \
  2016. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  2017. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  2018. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  2019. float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \
  2020. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output and input row */ \
  2021. float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \
  2022. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  2023. if (x_padded) { \
  2024. memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \
  2025. _xx = x_padded; \
  2026. } \
  2027. for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \
  2028. } /* ~i */ \
  2029. } /* ~k, c1, n */ \
  2030. } while (0)
  2031. conv_conf_t *aux = (conv_conf_t *) p->ptr;
  2032. kad_node_t *q = p->child[0], *w = p->child[1];
  2033. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  2034. int algo_switch = 0;
  2035. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  2036. if (w->d[3] * w->d[1] < 16) {
  2037. t = (float *) g_malloc(p->d[3] * sizeof(float));
  2038. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0 ? (float *) g_malloc0_n(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0;
  2039. }
  2040. else {
  2041. q1 = (float *) g_malloc(kad_len(q) * sizeof(float));
  2042. w1 = (float *) g_malloc(kad_len(w) * sizeof(float));
  2043. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0 ? (float *) g_malloc0_n((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0;
  2044. algo_switch = 1;
  2045. }
  2046. }
  2047. if (action == KAD_SYNC_DIM) {
  2048. if (q->n_d != 4 || w->n_d != 4) return -1;
  2049. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  2050. p->n_d = 4;
  2051. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  2052. }
  2053. else if (action == KAD_FORWARD) {
  2054. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  2055. memset(p->x, 0, kad_len(p) * sizeof(float));
  2056. if (!algo_switch) { /* this is the first algorithm */
  2057. conv2d_loop1(q->x, w->x, p->x, t, process_row_for);
  2058. }
  2059. else { /* this is the second algorithm */
  2060. conv2d_move_1to3(q->d, q->x, q1);
  2061. conv2d_move_1to3(w->d, w->x, w1);
  2062. conv2d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  2063. }
  2064. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  2065. }
  2066. else if (action == KAD_BACKWARD) {
  2067. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  2068. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  2069. if (!algo_switch) {
  2070. conv2d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  2071. }
  2072. else {
  2073. memset(q1, 0, kad_len(q) * sizeof(float));
  2074. conv2d_move_1to3(w->d, w->x, w1);
  2075. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  2076. conv2d_add_3to1(q->d, q1, q->g);
  2077. }
  2078. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  2079. }
  2080. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  2081. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  2082. if (!algo_switch) {
  2083. conv2d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  2084. }
  2085. else {
  2086. conv2d_move_1to3(q->d, q->x, q1);
  2087. memset(w1, 0, kad_len(w) * sizeof(float));
  2088. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  2089. conv2d_add_3to1(w->d, w1, w->g);
  2090. }
  2091. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  2092. }
  2093. }
  2094. g_free(t);
  2095. g_free(q1);
  2096. g_free(w1);
  2097. g_free(x_padded);
  2098. return 0;
  2099. }
  2100. int kad_op_max2d(kad_node_t *p, int action)
  2101. {
  2102. conv_conf_t *aux = (conv_conf_t *) p->ptr;
  2103. kad_node_t *q = p->child[0];
  2104. if (action == KAD_SYNC_DIM) {
  2105. if (q->n_d != 4) return -1;
  2106. p->n_d = 4;
  2107. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  2108. }
  2109. else if (action == KAD_ALLOC) {
  2110. p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
  2111. }
  2112. else if (action == KAD_FORWARD) {
  2113. int rest = 1, len, t, i;
  2114. int *f = (int *) p->gtmp;
  2115. len = kad_len(p);
  2116. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  2117. for (i = 0; i < p->n_d - 2; ++i) rest *= p->d[i];
  2118. for (t = 0; t < rest; ++t) {
  2119. int i, j, k, l, p_row = p->d[p->n_d - 2], p_col = p->d[p->n_d - 1];
  2120. for (i = 0; i < p_row; ++i) {
  2121. int u = (t * p_row + i) * p_col;
  2122. for (k = 0; k < aux[0].kernel_size; ++k) {
  2123. int v, v0, v_end, ii = i * aux[0].stride + k - aux[0].pad[0];
  2124. if (ii < 0 || ii >= q->d[p->n_d - 2]) continue;
  2125. v0 = (t * q->d[p->n_d - 2] + ii) * q->d[p->n_d - 1];
  2126. v_end = v0 + q->d[p->n_d - 1];
  2127. for (l = 0; l < aux[1].kernel_size; ++l)
  2128. for (j = 0, v = v0 + (l > aux[1].pad[0] ? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride)
  2129. if (p->x[u + j] < q->x[v])
  2130. p->x[u + j] = q->x[v], f[u + j] = v;
  2131. } /* ~k */
  2132. } /* ~i */
  2133. }
  2134. }
  2135. else if (action == KAD_BACKWARD) {
  2136. int i, len, *f = (int *) p->gtmp;
  2137. len = kad_len(p);
  2138. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  2139. }
  2140. return 0;
  2141. }
  2142. /********** 1D convolution **********/
  2143. static void conv1d_move_1to2(int d[3], const float *x, float *y)
  2144. {
  2145. int i, j, k;
  2146. for (k = 0; k < d[0]; ++k)
  2147. for (j = 0; j < d[1]; ++j)
  2148. for (i = 0; i < d[2]; ++i)
  2149. y[(k * d[2] + i) * d[1] + j] = x[(k * d[1] + j) * d[2] + i];
  2150. }
  2151. static void conv1d_add_2to1(int d[3], const float *y, float *x)
  2152. {
  2153. int i, j, k;
  2154. for (k = 0; k < d[0]; ++k)
  2155. for (j = 0; j < d[1]; ++j)
  2156. for (i = 0; i < d[2]; ++i)
  2157. x[(k * d[1] + j) * d[2] + i] += y[(k * d[2] + i) * d[1] + j];
  2158. }
  2159. int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW) shape */
  2160. {
  2161. #define conv1d_loop1(_x, _w, _y, _tmp, _row_func) \
  2162. do { /* for the NCW shape */ \
  2163. int n, c1, c0; \
  2164. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  2165. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  2166. for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \
  2167. float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \
  2168. float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \
  2169. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  2170. if (x_padded) { \
  2171. memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \
  2172. _xx = x_padded + aux->pad[0]; \
  2173. } \
  2174. _row_func(_xx, _ww, _yy, w->d[2], p->d[2], aux->stride, aux->pad[0], (_tmp)); \
  2175. } /* ~c0, c1, n */ \
  2176. } while (0)
  2177. #define conv1d_loop2(_x, _w, _y, _code) \
  2178. do { /* for the NWC shape */ \
  2179. int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \
  2180. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  2181. for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \
  2182. float *_ww = &(_w)[c1 * m]; \
  2183. float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \
  2184. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  2185. if (x_padded) { \
  2186. memcpy(x_padded + aux->pad[0] * q->d[1], _xx, q->d[2] * q->d[1] * sizeof(float)); \
  2187. _xx = x_padded; \
  2188. } \
  2189. for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \
  2190. } /* ~c1, n */ \
  2191. } while (0)
  2192. conv_conf_t *aux = (conv_conf_t *) p->ptr;
  2193. kad_node_t *q = p->child[0], *w = p->child[1];
  2194. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  2195. int algo_switch = 0;
  2196. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  2197. if (w->d[2] * w->d[1] < 32) {
  2198. t = (float *) g_malloc(p->d[2] * sizeof(float));
  2199. x_padded = aux->pad[0] + aux->pad[1] > 0 ? (float *) g_malloc0_n(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0;
  2200. }
  2201. else {
  2202. q1 = (float *) g_malloc(kad_len(q) * sizeof(float));
  2203. w1 = (float *) g_malloc(kad_len(w) * sizeof(float));
  2204. x_padded = aux->pad[0] + aux->pad[1] > 0 ? (float *) g_malloc0_n((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0;
  2205. algo_switch = 1;
  2206. }
  2207. }
  2208. if (action == KAD_SYNC_DIM) {
  2209. if (q->n_d != 3 || w->n_d != 3) return -1;
  2210. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  2211. p->n_d = 3;
  2212. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], aux);
  2213. }
  2214. else if (action == KAD_FORWARD) {
  2215. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2216. memset(p->x, 0, kad_len(p) * sizeof(float));
  2217. if (!algo_switch) { /* this is the first algorithm */
  2218. conv1d_loop1(q->x, w->x, p->x, t, process_row_for);
  2219. }
  2220. else { /* this is the second algorithm */
  2221. conv1d_move_1to2(q->d, q->x, q1);
  2222. conv1d_move_1to2(w->d, w->x, w1);
  2223. conv1d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  2224. }
  2225. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2226. }
  2227. else if (action == KAD_BACKWARD) {
  2228. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  2229. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2230. if (!algo_switch) {
  2231. conv1d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  2232. }
  2233. else {
  2234. memset(q1, 0, kad_len(q) * sizeof(float));
  2235. conv1d_move_1to2(w->d, w->x, w1);
  2236. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  2237. conv1d_add_2to1(q->d, q1, q->g);
  2238. }
  2239. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2240. }
  2241. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  2242. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2243. if (!algo_switch) {
  2244. conv1d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  2245. }
  2246. else {
  2247. conv1d_move_1to2(q->d, q->x, q1);
  2248. memset(w1, 0, kad_len(w) * sizeof(float));
  2249. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  2250. conv1d_add_2to1(w->d, w1, w->g);
  2251. }
  2252. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2253. }
  2254. }
  2255. g_free(t);
  2256. g_free(q1);
  2257. g_free(w1);
  2258. g_free(x_padded);
  2259. return 0;
  2260. }
  2261. int kad_op_max1d(kad_node_t *p, int action)
  2262. {
  2263. conv_conf_t *aux = (conv_conf_t *) p->ptr;
  2264. kad_node_t *q = p->child[0];
  2265. if (action == KAD_SYNC_DIM) {
  2266. if (q->n_d != 3) return -1;
  2267. p->n_d = 3;
  2268. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2269. }
  2270. else if (action == KAD_ALLOC) {
  2271. p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
  2272. }
  2273. else if (action == KAD_FORWARD) {
  2274. int rest = 1, len, t, i;
  2275. int *f = (int *) p->gtmp;
  2276. len = kad_len(p);
  2277. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  2278. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2279. for (t = 0; t < rest; ++t) {
  2280. int j, l, p_width = p->d[p->n_d - 1];
  2281. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2282. for (l = 0; l < aux->kernel_size; ++l)
  2283. for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2284. if (p->x[u + j] < q->x[v])
  2285. p->x[u + j] = q->x[v], f[u + j] = v;
  2286. }
  2287. }
  2288. else if (action == KAD_BACKWARD) {
  2289. int i, len, *f = (int *) p->gtmp;
  2290. len = kad_len(p);
  2291. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  2292. }
  2293. return 0;
  2294. }
  2295. int kad_op_avg1d(kad_node_t *p, int action)
  2296. {
  2297. conv_conf_t *aux = (conv_conf_t *) p->ptr;
  2298. kad_node_t *q = p->child[0];
  2299. if (action == KAD_SYNC_DIM) {
  2300. if (q->n_d != 3) return -1;
  2301. p->n_d = 3;
  2302. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2303. }
  2304. else if (action == KAD_ALLOC) {
  2305. p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
  2306. }
  2307. else if (action == KAD_FORWARD) {
  2308. int rest = 1, len, t, i;
  2309. int *f = (int *) p->gtmp;
  2310. len = kad_len(p);
  2311. for (i = 0; i < len; ++i) p->x[i] = 0.0f, f[i] = 0;
  2312. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2313. for (t = 0; t < rest; ++t) {
  2314. int j, l, p_width = p->d[p->n_d - 1];
  2315. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2316. for (l = 0; l < aux->kernel_size; ++l)
  2317. for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2318. p->x[u + j] += q->x[v], ++f[u + j];
  2319. }
  2320. for (i = 0; i < len; ++i) p->x[i] /= f[i];
  2321. }
  2322. else if (action == KAD_BACKWARD) {
  2323. int rest = 1, t, i;
  2324. int *f = (int *) p->gtmp;
  2325. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2326. for (t = 0; t < rest; ++t) {
  2327. int j, l, p_width = p->d[p->n_d - 1];
  2328. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2329. for (l = 0; l < aux->kernel_size; ++l)
  2330. for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2331. q->g[v] += p->g[u + j] / f[u + j];
  2332. }
  2333. }
  2334. return 0;
  2335. }
  2336. /********** List of operators **********/
  2337. kad_op_f kad_op_list[KAD_MAX_OP] = {
  2338. 0,
  2339. kad_op_add, /* 1: element-wise addition */
  2340. kad_op_mul, /* 2: element-wise multiplication */
  2341. kad_op_cmul, /* 3: column multiplication */
  2342. kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */
  2343. kad_op_square, /* 5: square */
  2344. kad_op_sigm, /* 6: sigmoid */
  2345. kad_op_tanh, /* 7: tanh */
  2346. kad_op_relu, /* 8: ReLU */
  2347. kad_op_matmul, /* 9: matrix multiplication */
  2348. kad_op_avg, /* 10: general average pooling (not for ConvNet) */
  2349. kad_op_1minus, /* 11: 1-x */
  2350. kad_op_select, /* 12: choose between one of the children */
  2351. kad_op_ce_multi, /* 13: multi-class cross-entropy */
  2352. kad_op_softmax, /* 14: softmax */
  2353. kad_op_dropout, /* 15: dropout */
  2354. kad_op_conv2d, /* 16: 2D convolution */
  2355. kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */
  2356. kad_op_conv1d, /* 18: 1D convolution */
  2357. kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */
  2358. kad_op_slice, /* 20: slice data at a dimension */
  2359. kad_op_max, /* 21: general max pooling */
  2360. kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */
  2361. kad_op_sub, /* 23: element-wise subtraction */
  2362. kad_op_sample_normal, /* 24: sample from a normal distribution */
  2363. kad_op_reduce_sum, /* 25 */
  2364. kad_op_reduce_mean, /* 26 */
  2365. kad_op_log, /* 27: log() */
  2366. kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */
  2367. kad_op_mse, /* 29: mean square error */
  2368. kad_op_reshape, /* 30 */
  2369. kad_op_concat, /* 31 */
  2370. kad_op_stdnorm, /* 32: layer normalization */
  2371. kad_op_exp, /* 33: exp() */
  2372. kad_op_sin, /* 34: sin() */
  2373. kad_op_stack, /* 35: tf.stack, but on the first axis only */
  2374. kad_op_reverse /* 36: tf.reverse, but on one axis only */
  2375. };
  2376. char *kad_op_name[KAD_MAX_OP] = {
  2377. 0, "add", "mul", "cmul", "ce_bin_neg", "square", "sigm", "tanh", "relu", "matmul", "avg", "1minus", "select", "ce_multi", "softmax",
  2378. "dropout", "conv2d", "max2d", "conv1d", "max1d", "slice", "max", "ce_bin", "sub", "sample_normal", "reduce_sum", "reduce_mean", "log",
  2379. "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse"};
  2380. /**************************
  2381. *** Debugging routines ***
  2382. **************************/
  2383. void kad_trap_fe(void)
  2384. {
  2385. #ifdef __SSE__
  2386. _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~(_MM_MASK_INVALID | _MM_MASK_DIV_ZERO));
  2387. #endif
  2388. }
  2389. void kad_print_graph(FILE *fp, int n, kad_node_t **v)
  2390. {
  2391. int i, j;
  2392. for (i = 0; i < n; ++i) v[i]->tmp = i;
  2393. for (i = 0; i < n; ++i) {
  2394. kad_node_t *p = v[i];
  2395. fprintf(fp, "%d\t%x:%x\t%d\t", i, p->flag, p->ext_flag, p->ext_label);
  2396. if (p->pre) fprintf(fp, "%d\t", p->pre->tmp);
  2397. else
  2398. fprintf(fp, ".\t");
  2399. fputs("[", fp);
  2400. for (j = 0; j < p->n_d; ++j) {
  2401. if (j) fputc(',', fp);
  2402. fprintf(fp, "%d", p->d[j]);
  2403. }
  2404. fprintf(fp, "]\t");
  2405. if (p->n_child) {
  2406. fprintf(fp, "%s(", kad_op_name[p->op]);
  2407. for (j = 0; j < p->n_child; ++j) {
  2408. if (j) fputc(',', fp);
  2409. fprintf(fp, "$%d", p->child[j]->tmp);
  2410. }
  2411. fprintf(fp, ")");
  2412. }
  2413. else
  2414. fprintf(fp, "%s", kad_is_feed(p) ? "feed" : kad_is_var(p) ? "var"
  2415. : kad_is_const(p) ? "const"
  2416. : "N/A");
  2417. fputc('\n', fp);
  2418. }
  2419. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  2420. }
  2421. static void kad_add_delta(int n, kad_node_t **a, float c, float *delta)
  2422. {
  2423. int i, k;
  2424. for (i = k = 0; i < n; ++i)
  2425. if (kad_is_var(a[i])) {
  2426. kad_saxpy(kad_len(a[i]), c, &delta[k], a[i]->x);
  2427. k += kad_len(a[i]);
  2428. }
  2429. }
  2430. void kad_check_grad(int n, kad_node_t **a, int from)
  2431. {
  2432. const float eps = 1e-5f, rel = 1e-7f / eps;
  2433. int i, k, n_var;
  2434. float *g0, *delta, f0, f_minus, f_plus, s0, s1, rel_err, p_m_err;
  2435. n_var = kad_size_var(n, a);
  2436. g0 = (float *) g_malloc0_n(n_var, sizeof(float));
  2437. f0 = *kad_eval_at(n, a, from);
  2438. kad_grad(n, a, from);
  2439. for (i = k = 0; i < n; ++i)
  2440. if (kad_is_var(a[i])) {
  2441. memcpy(&g0[k], a[i]->g, kad_len(a[i]) * sizeof(float));
  2442. k += kad_len(a[i]);
  2443. }
  2444. delta = (float *) g_malloc0_n(n_var, sizeof(float));
  2445. for (k = 0; k < n_var; ++k) delta[k] = (float) kad_drand(0) * eps;
  2446. kad_add_delta(n, a, 1.0f, delta);
  2447. f_plus = *kad_eval_at(n, a, from);
  2448. kad_add_delta(n, a, -2.0f, delta);
  2449. f_minus = *kad_eval_at(n, a, from);
  2450. kad_add_delta(n, a, 1.0f, delta);
  2451. s0 = kad_sdot(n_var, g0, delta);
  2452. s1 = .5f * (f_plus - f_minus);
  2453. fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0 / eps, s1 / eps, f0);
  2454. if (fabs(s1) >= rel * eps) {
  2455. rel_err = fabsf(fabsf(s0) - fabsf(s1)) / (fabsf(s0) + fabsf(s1));
  2456. p_m_err = fabsf(f_plus + f_minus - 2.0f * f0) / fabsf(f_plus - f_minus);
  2457. fprintf(stderr, "rel_err:%g p_m_err:%g -- ", rel_err, p_m_err);
  2458. if (rel_err >= rel && rel_err > p_m_err) fprintf(stderr, "failed\n");
  2459. else
  2460. fprintf(stderr, "passed\n");
  2461. }
  2462. else
  2463. fprintf(stderr, "skipped\n");
  2464. g_free(delta);
  2465. g_free(g0);
  2466. }