Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

kautodiff.c 71KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396
  1. #include <stdlib.h>
  2. #include <assert.h>
  3. #include <stdarg.h>
  4. #include <string.h>
  5. #include <float.h>
  6. #include <math.h>
  7. #include "kautodiff.h"
  8. typedef struct {
  9. uint64_t s[2];
  10. double n_gset;
  11. int n_iset;
  12. volatile int lock;
  13. } kad_rng_t;
  14. /**********************
  15. * Graph construction *
  16. **********************/
  17. static inline kad_node_t *kad_new_core(int n_d, int op, int n_child)
  18. {
  19. kad_node_t *s;
  20. if (n_d >= KAD_MAX_DIM) return 0;
  21. s = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  22. s->n_d = n_d, s->op = op, s->n_child = n_child;
  23. if (s->n_child) s->child = (kad_node_t**)calloc(s->n_child, sizeof(kad_node_t*));
  24. return s;
  25. }
  26. static inline kad_node_t *kad_vleaf(uint8_t flag, float *x, float *g, int n_d, va_list ap)
  27. {
  28. int i;
  29. kad_node_t *p;
  30. if (n_d > KAD_MAX_DIM) return 0;
  31. p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  32. p->n_d = n_d;
  33. for (i = 0; i < n_d; ++i)
  34. p->d[i] = va_arg(ap, int32_t);
  35. p->x = x, p->g = g, p->flag = flag;
  36. return p;
  37. }
  38. kad_node_t *kad_const(float *x, int n_d, ...)
  39. {
  40. kad_node_t *p;
  41. va_list ap;
  42. va_start(ap, n_d); p = kad_vleaf(KAD_CONST, x, 0, n_d, ap); va_end(ap);
  43. return p;
  44. }
  45. kad_node_t *kad_feed(int n_d, ...)
  46. {
  47. kad_node_t *p;
  48. va_list ap;
  49. va_start(ap, n_d); p = kad_vleaf(0, 0, 0, n_d, ap); va_end(ap);
  50. return p;
  51. }
  52. kad_node_t *kad_var(float *x, float *g, int n_d, ...)
  53. {
  54. kad_node_t *p;
  55. va_list ap;
  56. va_start(ap, n_d); p = kad_vleaf(KAD_VAR, x, g, n_d, ap); va_end(ap);
  57. return p;
  58. }
  59. static inline kad_node_t *kad_finalize_node(kad_node_t *s) /* a helper function */
  60. {
  61. int i;
  62. if (kad_op_list[s->op](s, KAD_SYNC_DIM) < 0) { /* check dimension */
  63. if (s->ptr) free(s->ptr);
  64. free(s->child); free(s);
  65. return 0;
  66. }
  67. for (i = 0; i < s->n_child; ++i)
  68. if (kad_is_back(s->child[i]))
  69. break;
  70. if (i < s->n_child) s->flag |= KAD_VAR;
  71. return s;
  72. }
  73. /********** Simple arithmetic **********/
  74. static inline kad_node_t *kad_op2_core(int op, kad_node_t *x, kad_node_t *y)
  75. {
  76. kad_node_t *s;
  77. s = kad_new_core(0, op, 2);
  78. s->child[0] = x, s->child[1] = y;
  79. return kad_finalize_node(s);
  80. }
  81. static inline kad_node_t *kad_op1_core(int op, kad_node_t *x)
  82. {
  83. kad_node_t *s;
  84. s = kad_new_core(0, op, 1);
  85. s->child[0] = x;
  86. return kad_finalize_node(s);
  87. }
  88. #define KAD_FUNC_OP2(fname, op) kad_node_t *fname(kad_node_t *x, kad_node_t *y) { return kad_op2_core((op), x, y); }
  89. KAD_FUNC_OP2(kad_add, 1)
  90. KAD_FUNC_OP2(kad_sub, 23)
  91. KAD_FUNC_OP2(kad_mul, 2)
  92. KAD_FUNC_OP2(kad_cmul, 3)
  93. KAD_FUNC_OP2(kad_matmul, 9)
  94. KAD_FUNC_OP2(kad_ce_multi, 13)
  95. KAD_FUNC_OP2(kad_ce_bin, 22)
  96. KAD_FUNC_OP2(kad_ce_bin_neg, 4)
  97. KAD_FUNC_OP2(kad_mse, 29)
  98. #define KAD_FUNC_OP1(fname, op) kad_node_t *fname(kad_node_t *x) { return kad_op1_core((op), x); }
  99. KAD_FUNC_OP1(kad_log, 27)
  100. KAD_FUNC_OP1(kad_exp, 33)
  101. KAD_FUNC_OP1(kad_sin, 34)
  102. KAD_FUNC_OP1(kad_square, 5)
  103. KAD_FUNC_OP1(kad_sigm, 6)
  104. KAD_FUNC_OP1(kad_tanh, 7)
  105. KAD_FUNC_OP1(kad_relu, 8)
  106. KAD_FUNC_OP1(kad_1minus, 11)
  107. KAD_FUNC_OP1(kad_softmax, 14)
  108. KAD_FUNC_OP1(kad_stdnorm, 32)
  109. kad_node_t *kad_ce_multi_weighted(kad_node_t *pred, kad_node_t *truth, kad_node_t *weight)
  110. {
  111. kad_node_t *s;
  112. s = kad_new_core(0, 13, 3);
  113. s->child[0] = pred, s->child[1] = truth, s->child[2] = weight;
  114. return kad_finalize_node(s);
  115. }
  116. /********** Convolution **********/
  117. /* compute output dimension and padding sizes on both sides */
  118. static inline int conv_find_par(int in_size, int kernel_size, int stride, int pad0, int *new_pad0, int *new_pad1)
  119. {
  120. int out_size, pad_both;
  121. /* key equation: out_size = (in_size - kernel_size + pad_both) / stride + 1 */
  122. if (pad0 == KAD_PAD_SAME && stride == 1) out_size = in_size;
  123. else out_size = (in_size - kernel_size + (pad0 > 0? pad0 : 0) + stride - 1) / stride + 1;
  124. pad_both = (out_size - 1) * stride + kernel_size - in_size;
  125. *new_pad0 = pad_both / 2;
  126. *new_pad1 = pad_both - *new_pad0;
  127. return out_size;
  128. }
  129. typedef struct {
  130. int kernel_size, stride, pad[2];
  131. } conv_conf_t;
  132. static inline conv_conf_t *conv2d_gen_aux(int in_row, int in_col, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  133. {
  134. conv_conf_t *cnn;
  135. cnn = (conv_conf_t*)calloc(2, sizeof(conv_conf_t));
  136. cnn[0].kernel_size = kernel_r, cnn[0].stride = stride_r;
  137. cnn[1].kernel_size = kernel_c, cnn[1].stride = stride_c;
  138. conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]);
  139. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn[1].pad[0], &cnn[1].pad[1]);
  140. return cnn;
  141. }
  142. kad_node_t *kad_conv2d(kad_node_t *x, kad_node_t *w, int stride_r, int stride_c, int top_pad, int left_pad)
  143. {
  144. kad_node_t *s;
  145. if (x->n_d != 4 || w->n_d != 4) return 0;
  146. s = kad_new_core(0, 16, 2);
  147. s->child[0] = x, s->child[1] = w;
  148. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], w->d[2], w->d[3], stride_r, stride_c, top_pad, left_pad);
  149. s->ptr_size = sizeof(conv_conf_t) * 2;
  150. return kad_finalize_node(s);
  151. }
  152. kad_node_t *kad_max2d(kad_node_t *x, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  153. {
  154. kad_node_t *s;
  155. if (x->n_d != 4) return 0;
  156. s = kad_new_core(0, 17, 1);
  157. s->child[0] = x;
  158. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], kernel_r, kernel_c, stride_r, stride_c, top_pad, left_pad);
  159. s->ptr_size = sizeof(conv_conf_t) * 2;
  160. return kad_finalize_node(s);
  161. }
  162. static inline conv_conf_t *conv1d_gen_aux(int in_col, int kernel_c, int stride_c, int left_pad)
  163. {
  164. conv_conf_t *cnn;
  165. cnn = (conv_conf_t*)calloc(1, sizeof(conv_conf_t));
  166. cnn->kernel_size = kernel_c, cnn->stride = stride_c;
  167. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn->pad[0], &cnn->pad[1]);
  168. return cnn;
  169. }
  170. kad_node_t *kad_conv1d(kad_node_t *x, kad_node_t *w, int stride, int left_pad)
  171. {
  172. kad_node_t *s;
  173. if (x->n_d != 3 || w->n_d != 3) return 0;
  174. s = kad_new_core(0, 18, 2);
  175. s->child[0] = x, s->child[1] = w;
  176. s->ptr = conv1d_gen_aux(x->d[2], w->d[2], stride, left_pad);
  177. s->ptr_size = sizeof(conv_conf_t);
  178. return kad_finalize_node(s);
  179. }
  180. kad_node_t *kad_max1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  181. {
  182. kad_node_t *s;
  183. if (x->n_d != 3) return 0;
  184. s = kad_new_core(0, 19, 1);
  185. s->child[0] = x;
  186. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  187. s->ptr_size = sizeof(conv_conf_t);
  188. return kad_finalize_node(s);
  189. }
  190. kad_node_t *kad_avg1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  191. {
  192. kad_node_t *s;
  193. if (x->n_d != 3) return 0;
  194. s = kad_new_core(0, 28, 1);
  195. s->child[0] = x;
  196. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  197. s->ptr_size = sizeof(conv_conf_t);
  198. return kad_finalize_node(s);
  199. }
  200. /********** Multi-node pooling **********/
  201. static kad_node_t *kad_pooling_general(int op, int n, kad_node_t **x)
  202. {
  203. int i;
  204. kad_node_t *s;
  205. s = kad_new_core(0, op, n);
  206. s->flag |= KAD_POOL;
  207. for (i = 0; i < n; ++i)
  208. s->child[i] = x[i];
  209. return kad_finalize_node(s);
  210. }
  211. kad_node_t *kad_avg(int n, kad_node_t **x) { return kad_pooling_general(10, n, x); }
  212. kad_node_t *kad_max(int n, kad_node_t **x) { return kad_pooling_general(21, n, x); }
  213. kad_node_t *kad_stack(int n, kad_node_t **x) { return kad_pooling_general(35, n, x); }
  214. kad_node_t *kad_select(int n, kad_node_t **x, int which)
  215. {
  216. kad_node_t *s;
  217. int32_t i, *aux;
  218. aux = (int32_t*)calloc(1, 4);
  219. *aux = which;
  220. s = kad_new_core(0, 12, n);
  221. for (i = 0; i < n; ++i) s->child[i] = x[i];
  222. s->flag |= KAD_POOL, s->ptr = aux, s->ptr_size = 4;
  223. return kad_finalize_node(s);
  224. }
  225. /********** Dimension reduction **********/
  226. static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis)
  227. {
  228. kad_node_t *s;
  229. int32_t *aux;
  230. aux = (int32_t*)malloc(4);
  231. aux[0] = axis;
  232. s = kad_new_core(0, op, 1);
  233. s->child[0] = x;
  234. s->ptr = aux, s->ptr_size = 4;
  235. return kad_finalize_node(s);
  236. }
  237. kad_node_t *kad_reduce_sum(kad_node_t *x, int axis) { return kad_reduce_general(25, x, axis); }
  238. kad_node_t *kad_reduce_mean(kad_node_t *x, int axis) { return kad_reduce_general(26, x, axis); }
  239. /********** Sampling related **********/
  240. kad_node_t *kad_dropout(kad_node_t *x, kad_node_t *y)
  241. {
  242. kad_node_t *z;
  243. z = kad_op2_core(15, x, y);
  244. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  245. return z;
  246. }
  247. kad_node_t *kad_sample_normal(kad_node_t *x)
  248. {
  249. kad_node_t *z;
  250. z = kad_op1_core(24, x);
  251. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  252. return z;
  253. }
  254. /********** Miscellaneous **********/
  255. kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end)
  256. {
  257. kad_node_t *s;
  258. int32_t *aux;
  259. if (end < start || start < 0) return 0;
  260. aux = (int32_t*)malloc(3 * 4);
  261. aux[0] = axis, aux[1] = start, aux[2] = end;
  262. s = kad_new_core(0, 20, 1);
  263. s->child[0] = x;
  264. s->ptr = aux, s->ptr_size = 3 * 4;
  265. return kad_finalize_node(s);
  266. }
  267. kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p)
  268. {
  269. kad_node_t *s;
  270. int32_t i, *aux;
  271. aux = (int32_t*)malloc(4);
  272. aux[0] = axis;
  273. s = kad_new_core(0, 31, n);
  274. for (i = 0; i < n; ++i)
  275. s->child[i] = p[i];
  276. s->ptr = aux, s->ptr_size = 4;
  277. return kad_finalize_node(s);
  278. }
  279. kad_node_t *kad_concat(int axis, int n, ...)
  280. {
  281. int i;
  282. kad_node_t **p, *s;
  283. va_list ap;
  284. p = (kad_node_t**)malloc(n * sizeof(kad_node_t*));
  285. va_start(ap, n);
  286. for (i = 0; i < n; ++i) p[i] = va_arg(ap, kad_node_p);
  287. va_end(ap);
  288. s = kad_concat_array(axis, n, p);
  289. free(p);
  290. return s;
  291. }
  292. kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d)
  293. {
  294. kad_node_t *s;
  295. int32_t i, *aux = 0;
  296. if (n_d > 0) {
  297. aux = (int32_t*)malloc(n_d * 4);
  298. for (i = 0; i < n_d; ++i) aux[i] = d? d[i] : -1;
  299. }
  300. s = kad_new_core(0, 30, 1);
  301. s->child[0] = x, s->ptr = aux, s->ptr_size = n_d * 4;
  302. return kad_finalize_node(s);
  303. }
  304. kad_node_t *kad_reverse(kad_node_t *x, int axis)
  305. {
  306. kad_node_t *s;
  307. int32_t *aux;
  308. aux = (int32_t*)malloc(4);
  309. *aux = axis;
  310. s = kad_new_core(0, 36, 1);
  311. s->child[0] = x, s->ptr = aux, s->ptr_size = 4;
  312. return kad_finalize_node(s);
  313. }
  314. kad_node_t *kad_switch(int n, kad_node_t **p)
  315. {
  316. kad_node_t *s;
  317. int32_t i, *aux;
  318. aux = (int32_t*)calloc(1, 4);
  319. s = kad_new_core(0, 12, n);
  320. for (i = 0; i < n; ++i)
  321. s->child[i] = p[i];
  322. s->ptr = aux, s->ptr_size = 4;
  323. return kad_finalize_node(s);
  324. }
  325. /***********************
  326. * Graph linearization *
  327. ***********************/
  328. static void kad_mark_back(int n, kad_node_t **v)
  329. {
  330. int i, j;
  331. for (i = 0; i < n; ++i) {
  332. if (v[i]->n_child == 0) continue;
  333. for (j = 0; j < v[i]->n_child; ++j)
  334. if (kad_is_back(v[i]->child[j]))
  335. break;
  336. if (j < v[i]->n_child) v[i]->flag |= KAD_VAR;
  337. else v[i]->flag &= ~KAD_VAR;
  338. }
  339. }
  340. static void kad_allocate_internal(int n, kad_node_t **v)
  341. {
  342. int i;
  343. kad_mark_back(n, v);
  344. for (i = 0; i < n; ++i) {
  345. kad_node_t *p = v[i];
  346. if (p->n_child == 0) continue;
  347. p->x = (float*)realloc(p->x, kad_len(p) * sizeof(float));
  348. if (kad_is_back(p)) {
  349. p->g = (float*)realloc(p->g, kad_len(p) * sizeof(float));
  350. kad_op_list[p->op](p, KAD_ALLOC);
  351. }
  352. }
  353. }
  354. int kad_sync_dim(int n, kad_node_t **v, int batch_size)
  355. {
  356. int i, req_alloc = 0, req_sync = 0, old_size = 0;
  357. for (i = 0; i < n; ++i) {
  358. if (kad_is_feed(v[i])) {
  359. old_size = v[i]->d[0]; /* TODO: check if all feeds have the same batch size */
  360. if (batch_size > 0 && v[i]->d[0] != batch_size)
  361. v[i]->d[0] = batch_size, req_sync = 1;
  362. } else if (v[i]->n_child > 0 && req_sync)
  363. kad_op_list[v[i]->op](v[i], KAD_SYNC_DIM);
  364. }
  365. if (old_size < batch_size) req_alloc = 1;
  366. for (i = 0; i < n; ++i)
  367. if (v[i]->n_child > 0 && v[i]->x == 0) req_alloc = 1;
  368. if (req_alloc) kad_allocate_internal(n, v);
  369. return batch_size > 0? batch_size : old_size;
  370. }
  371. #define kvec_t(type) struct { size_t n, m; type *a; }
  372. #define kv_pop(v) ((v).a[--(v).n])
  373. #define kv_push(type, v, x) do { \
  374. if ((v).n == (v).m) { \
  375. (v).m = (v).m? (v).m<<1 : 2; \
  376. (v).a = (type*)realloc((v).a, sizeof(type) * (v).m); \
  377. } \
  378. (v).a[(v).n++] = (x); \
  379. } while (0)
  380. /* IMPORTANT: kad_node_t::tmp MUST BE set to zero before calling this function */
  381. kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots)
  382. {
  383. int i;
  384. kvec_t(kad_node_p) stack = {0,0,0}, a = {0,0,0};
  385. /* generate kad_node_t::tmp, the count of the parent nodes; shifted by 1; lowest bit to detect fake roots */
  386. for (i = 0; i < n_roots; ++i) {
  387. roots[i]->tmp = 1; /* mark the root */
  388. kv_push(kad_node_p, stack, roots[i]);
  389. }
  390. while (stack.n) {
  391. kad_node_t *p = kv_pop(stack);
  392. for (i = 0; i < p->n_child; ++i) {
  393. kad_node_t *q = p->child[i];
  394. if (q->tmp == 0) kv_push(kad_node_p, stack, q);
  395. q->tmp += 1<<1;
  396. }
  397. }
  398. /* topological sorting (Kahn's algorithm) */
  399. for (i = 0; i < n_roots; ++i)
  400. if (roots[i]->tmp>>1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */
  401. kv_push(kad_node_p, stack, roots[i]);
  402. while (stack.n) {
  403. kad_node_t *p = kv_pop(stack);
  404. kv_push(kad_node_p, a, p);
  405. for (i = 0; i < p->n_child; ++i) {
  406. p->child[i]->tmp -= 1<<1;
  407. if (p->child[i]->tmp>>1 == 0)
  408. kv_push(kad_node_p, stack, p->child[i]);
  409. }
  410. }
  411. free(stack.a);
  412. for (i = 0; i < (int)a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */
  413. assert(a.a[i]->tmp>>1 == 0);
  414. a.a[i]->tmp = 0;
  415. }
  416. /* reverse */
  417. for (i = 0; i < (int)a.n>>1; ++i) { /* reverse a.a[] */
  418. kad_node_p t;
  419. t = a.a[i], a.a[i] = a.a[a.n-1-i], a.a[a.n-1-i] = t;
  420. }
  421. kad_allocate_internal(a.n, a.a);
  422. *n_node = a.n;
  423. return a.a;
  424. }
  425. kad_node_t **kad_compile(int *n_node, int n_roots, ...)
  426. {
  427. int i;
  428. kad_node_t **roots, **ret;
  429. va_list ap;
  430. roots = (kad_node_t**)malloc(n_roots * sizeof(kad_node_t*));
  431. va_start(ap, n_roots);
  432. for (i = 0; i < n_roots; ++i) roots[i] = va_arg(ap, kad_node_p);
  433. va_end(ap);
  434. ret = kad_compile_array(n_node, n_roots, roots);
  435. free(roots);
  436. return ret;
  437. }
  438. /************************************
  439. * Miscellaneous on compiled graphs *
  440. ************************************/
  441. void kad_delete(int n, kad_node_t **a)
  442. {
  443. int i;
  444. for (i = 0; i < n; ++i) {
  445. kad_node_t *p = a[i];
  446. if (p->n_child) {
  447. free(p->x); free(p->g);
  448. }
  449. free(p->child); free(p->ptr); free(p->gtmp); free(p);
  450. }
  451. free(a);
  452. }
  453. int kad_size_var(int n, kad_node_t *const* v)
  454. {
  455. int c, i;
  456. for (i = c = 0; i < n; ++i)
  457. if (kad_is_var(v[i]))
  458. c += kad_len(v[i]);
  459. return c;
  460. }
  461. int kad_size_const(int n, kad_node_t *const* v)
  462. {
  463. int c, i;
  464. for (i = c = 0; i < n; ++i)
  465. if (kad_is_const(v[i]))
  466. c += kad_len(v[i]);
  467. return c;
  468. }
  469. /**********************************
  470. * Computate values and gradients *
  471. **********************************/
  472. static void kad_propagate_marks(int n, kad_node_t **a)
  473. {
  474. int i, j;
  475. for (i = n - 1; i >= 0; --i) {
  476. kad_node_t *p = a[i];
  477. if (p->tmp > 0) {
  478. if (kad_is_switch(p)) {
  479. int32_t *aux = (int32_t*)p->ptr;
  480. if (p->child[*aux]->tmp == 0)
  481. p->child[*aux]->tmp = 1;
  482. } else {
  483. for (j = 0; j < p->n_child; ++j)
  484. if (p->child[j]->tmp == 0)
  485. p->child[j]->tmp = 1;
  486. }
  487. }
  488. }
  489. }
  490. void kad_eval_marked(int n, kad_node_t **a)
  491. {
  492. int i;
  493. kad_propagate_marks(n, a);
  494. for (i = 0; i < n; ++i)
  495. if (a[i]->n_child && a[i]->tmp > 0)
  496. kad_op_list[a[i]->op](a[i], KAD_FORWARD);
  497. for (i = 0; i < n; ++i) a[i]->tmp = 0;
  498. }
  499. const float *kad_eval_at(int n, kad_node_t **a, int from)
  500. {
  501. int i;
  502. if (from < 0 || from >= n) from = n - 1;
  503. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  504. kad_eval_marked(n, a);
  505. return a[from]->x;
  506. }
  507. void kad_grad(int n, kad_node_t **a, int from)
  508. {
  509. int i;
  510. if (from < 0 || from >= n) from = n - 1;
  511. assert(a[from]->n_d == 0);
  512. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  513. kad_propagate_marks(n, a);
  514. for (i = 0; i <= from; ++i) /* set all grandients to zero */
  515. if (a[i]->g && a[i]->tmp > 0)
  516. memset(a[i]->g, 0, kad_len(a[i]) * sizeof(float));
  517. for (i = from, a[i]->g[0] = 1.0f; i >= 0; --i) /* backprop */
  518. if (a[i]->n_child && a[i]->tmp > 0)
  519. kad_op_list[a[i]->op](a[i], KAD_BACKWARD);
  520. for (i = 0; i <= from; ++i) a[i]->tmp = 0;
  521. }
  522. /***********************
  523. * Load and save graph *
  524. ***********************/
  525. static void kad_save1(FILE *fp, const kad_node_t *p)
  526. {
  527. fwrite(&p->ext_label, 4, 1, fp);
  528. fwrite(&p->ext_flag, 4, 1, fp);
  529. fwrite(&p->flag, 1, 1, fp);
  530. fwrite(&p->n_child, 4, 1, fp);
  531. if (p->n_child) {
  532. int32_t j, pre = p->pre? p->pre->tmp : -1;
  533. fwrite(&p->op, 2, 1, fp);
  534. for (j = 0; j < p->n_child; ++j)
  535. fwrite(&p->child[j]->tmp, 4, 1, fp);
  536. fwrite(&pre, 4, 1, fp);
  537. fwrite(&p->ptr_size, 4, 1, fp);
  538. if (p->ptr_size > 0 && p->ptr)
  539. fwrite(p->ptr, p->ptr_size, 1, fp);
  540. } else {
  541. fwrite(&p->n_d, 1, 1, fp);
  542. if (p->n_d) fwrite(p->d, 4, p->n_d, fp);
  543. }
  544. }
  545. static kad_node_t *kad_load1(FILE *fp, kad_node_t **node)
  546. {
  547. kad_node_t *p;
  548. p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  549. fread(&p->ext_label, 4, 1, fp);
  550. fread(&p->ext_flag, 4, 1, fp);
  551. fread(&p->flag, 1, 1, fp);
  552. fread(&p->n_child, 4, 1, fp);
  553. if (p->n_child) {
  554. int32_t j, k;
  555. p->child = (kad_node_t**)calloc(p->n_child, sizeof(kad_node_t*));
  556. fread(&p->op, 2, 1, fp);
  557. for (j = 0; j < p->n_child; ++j) {
  558. fread(&k, 4, 1, fp);
  559. p->child[j] = node? node[k] : 0;
  560. }
  561. fread(&k, 4, 1, fp);
  562. if (k >= 0) p->pre = node[k];
  563. fread(&p->ptr_size, 4, 1, fp);
  564. if (p->ptr_size > 0) {
  565. p->ptr = malloc(p->ptr_size);
  566. fread(p->ptr, p->ptr_size, 1, fp);
  567. }
  568. } else {
  569. fread(&p->n_d, 1, 1, fp);
  570. if (p->n_d) fread(p->d, 4, p->n_d, fp);
  571. }
  572. return p;
  573. }
  574. int kad_save(FILE *fp, int n_node, kad_node_t **node)
  575. {
  576. int32_t i, k = n_node;
  577. fwrite(&k, 4, 1, fp);
  578. for (i = 0; i < n_node; ++i) node[i]->tmp = i;
  579. for (i = 0; i < n_node; ++i) kad_save1(fp, node[i]);
  580. for (i = 0; i < n_node; ++i) node[i]->tmp = 0;
  581. return 0;
  582. }
  583. kad_node_t **kad_load(FILE *fp, int *_n_node)
  584. {
  585. int32_t i, n_node;
  586. kad_node_t **node;
  587. fread(&n_node, 4, 1, fp);
  588. node = (kad_node_t**)malloc(n_node * sizeof(kad_node_t*));
  589. for (i = 0; i < n_node; ++i) {
  590. kad_node_t *p;
  591. p = node[i] = kad_load1(fp, node);
  592. if (p->n_child) {
  593. kad_op_list[p->op](p, KAD_ALLOC);
  594. kad_op_list[p->op](p, KAD_SYNC_DIM);
  595. }
  596. }
  597. *_n_node = n_node;
  598. kad_mark_back(n_node, node);
  599. return node;
  600. }
  601. /***************
  602. * Graph clone *
  603. ***************/
  604. static inline kad_node_t *kad_dup1(const kad_node_t *p)
  605. {
  606. kad_node_t *q;
  607. q = (kad_node_t*)malloc(sizeof(kad_node_t));
  608. memcpy(q, p, sizeof(kad_node_t));
  609. q->pre = 0, q->tmp = 0, q->gtmp = 0;
  610. if (p->ptr && p->ptr_size > 0) {
  611. if (kad_use_rng(p) && !(p->flag & KAD_SHARE_RNG) && p->ptr_size == sizeof(kad_rng_t)) {
  612. q->ptr = kad_rng(); /* each time step uses a different RNG */
  613. } else {
  614. q->ptr = malloc(p->ptr_size);
  615. memcpy(q->ptr, p->ptr, p->ptr_size);
  616. }
  617. }
  618. if (q->n_child) {
  619. q->x = q->g = 0;
  620. q->child = (kad_node_t**)calloc(q->n_child, sizeof(kad_node_t*));
  621. }
  622. return q;
  623. }
  624. kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)
  625. {
  626. int i, j;
  627. kad_node_t **u;
  628. u = (kad_node_t**)calloc(n, sizeof(kad_node_t*));
  629. for (i = 0; i < n; ++i) v[i]->tmp = i;
  630. for (i = 0; i < n; ++i) {
  631. kad_node_t *p = v[i], *q;
  632. q = u[i] = kad_dup1(p);
  633. if (p->pre) q->pre = u[p->pre->tmp];
  634. if (p->n_child) {
  635. for (j = 0; j < p->n_child; ++j)
  636. q->child[j] = u[p->child[j]->tmp];
  637. } else if (!kad_is_feed(p)) {
  638. q->x = (float*)malloc(kad_len(p) * sizeof(float));
  639. memcpy(q->x, p->x, kad_len(p) * sizeof(float));
  640. q->g = 0;
  641. }
  642. }
  643. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  644. kad_sync_dim(n, u, batch_size); /* this will allocate x[] and g[] at internal nodes */
  645. return u;
  646. }
  647. /**************
  648. * Unroll RNN *
  649. **************/
  650. typedef struct {
  651. int32_t n, m;
  652. kad_node_t **v;
  653. } nodes_t;
  654. static inline void push_nodes(nodes_t *w, kad_node_t *p)
  655. {
  656. if (w->n == w->m) {
  657. w->m = w->m? w->m<<1 : 16;
  658. w->v = (kad_node_t**)realloc(w->v, w->m * sizeof(kad_node_t*));
  659. }
  660. w->v[w->n++] = p;
  661. }
  662. static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t **t, int len, nodes_t *w)
  663. {
  664. int i, j, l;
  665. uint8_t *flag;
  666. kad_node_t **aux;
  667. assert(kad_is_pivot(v[i_pivot]) && t[i_pivot] == 0);
  668. t[i_pivot] = kad_dup1(v[i_pivot]);
  669. t[i_pivot]->n_child = len;
  670. t[i_pivot]->child = (kad_node_t**)realloc(t[i_pivot]->child, len * sizeof(kad_node_t*));
  671. flag = (uint8_t*)calloc(n_v, 1);
  672. for (i = i_pivot, flag[i] = 16; i >= 0; --i) {
  673. if (i < i_pivot && kad_is_pivot(v[i])) continue; /* don't trespass other pivots */
  674. if (flag[i]&16) /* flag 16: nodes to unroll */
  675. for (j = 0; j < v[i]->n_child; ++j)
  676. flag[v[i]->child[j]->tmp] = 16;
  677. }
  678. for (i = 0; i < i_pivot; ++i) {
  679. if (!(flag[i]&16)) continue;
  680. if (kad_is_var(v[i]) || kad_is_const(v[i]) || kad_is_pivot(v[i])) flag[i] |= 1; /* external nodes that should not be duplicated */
  681. if (v[i]->pre) flag[v[i]->pre->tmp] |= 2;
  682. }
  683. flag[v[i_pivot]->child[0]->tmp] |= 4;
  684. aux = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
  685. for (l = 0; l < len; ++l) {
  686. for (i = 0; i < i_pivot; ++i) {
  687. if (!(flag[i]&16) || ((flag[i]&3) && t[i])) continue;
  688. t[i] = kad_dup1(v[i]);
  689. if (v[i]->n_child)
  690. for (j = 0; j < v[i]->n_child; ++j)
  691. t[i]->child[j] = t[v[i]->child[j]->tmp];
  692. if (flag[i]&4) t[i_pivot]->child[l] = t[i];
  693. if (l == 0 && (flag[i]&2)) aux[i] = t[i];
  694. if (v[i]->pre) {
  695. t[v[i]->pre->tmp] = t[i];
  696. if (l == len - 1) t[i]->pre = aux[v[i]->pre->tmp]; /* this forms a cycle! */
  697. }
  698. push_nodes(w, t[i]);
  699. }
  700. }
  701. push_nodes(w, t[i_pivot]);
  702. free(aux); free(flag);
  703. }
  704. int kad_n_pivots(int n_v, kad_node_t **v)
  705. {
  706. int i, n_pivots = 0;
  707. for (i = 0; i < n_v; ++i)
  708. if (kad_is_pivot(v[i])) ++n_pivots;
  709. return n_pivots;
  710. }
  711. kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
  712. {
  713. int i, j, n_pivots = 0;
  714. kad_node_t **t;
  715. nodes_t w = {0,0,0};
  716. t = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
  717. n_pivots = kad_n_pivots(n_v, v);
  718. for (i = 0; i < n_v; ++i) v[i]->tmp = i;
  719. if (n_pivots) {
  720. int k, *i_pivots;
  721. i_pivots = (int*)calloc(n_pivots, sizeof(int));
  722. for (i = k = 0; i < n_v; ++i) /* collect pivots */
  723. if (kad_is_pivot(v[i])) i_pivots[k++] = i;
  724. for (i = 0; i < n_pivots; ++i) /* unroll each pivot, from the lowest to the highest */
  725. kad_unroll_helper(n_v, v, i_pivots[i], t, len[i], &w);
  726. free(i_pivots);
  727. }
  728. for (i = 0; i < n_v; ++i) { /* copy over the rest of nodes */
  729. if (t[i]) continue;
  730. t[i] = kad_dup1(v[i]);
  731. if (v[i]->n_child)
  732. for (j = 0; j < v[i]->n_child; ++j)
  733. t[i]->child[j] = t[v[i]->child[j]->tmp];
  734. push_nodes(&w, t[i]);
  735. }
  736. free(t);
  737. for (i = 0; i < n_v; ++i) v[i]->tmp = 0;
  738. for (i = 0; i < w.n; ++i) /* stack may change the output dimension */
  739. if (w.v[i]->n_child > 0)
  740. kad_op_list[w.v[i]->op](w.v[i], KAD_SYNC_DIM);
  741. kad_allocate_internal(w.n, w.v);
  742. *new_n = w.n;
  743. return w.v;
  744. }
  745. /********************************
  746. * Vector and matrix operations *
  747. ********************************/
  748. #ifdef __SSE__
  749. #include <xmmintrin.h>
  750. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot using SSE */
  751. {
  752. int i, n8 = n>>3<<3;
  753. __m128 vs1, vs2;
  754. float s, t[4];
  755. vs1 = _mm_setzero_ps();
  756. vs2 = _mm_setzero_ps();
  757. for (i = 0; i < n8; i += 8) {
  758. __m128 vx1, vx2, vy1, vy2;
  759. vx1 = _mm_loadu_ps(&x[i]);
  760. vx2 = _mm_loadu_ps(&x[i+4]);
  761. vy1 = _mm_loadu_ps(&y[i]);
  762. vy2 = _mm_loadu_ps(&y[i+4]);
  763. vs1 = _mm_add_ps(vs1, _mm_mul_ps(vx1, vy1));
  764. vs2 = _mm_add_ps(vs2, _mm_mul_ps(vx2, vy2));
  765. }
  766. for (s = 0.; i < n; ++i) s += x[i] * y[i];
  767. _mm_storeu_ps(t, vs1);
  768. s += t[0] + t[1] + t[2] + t[3];
  769. _mm_storeu_ps(t, vs2);
  770. s += t[0] + t[1] + t[2] + t[3];
  771. return s;
  772. }
  773. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) /* BLAS saxpy using SSE */
  774. {
  775. int i, n8 = n>>3<<3;
  776. __m128 va;
  777. va = _mm_set1_ps(a);
  778. for (i = 0; i < n8; i += 8) {
  779. __m128 vx1, vx2, vy1, vy2, vt1, vt2;
  780. vx1 = _mm_loadu_ps(&x[i]);
  781. vx2 = _mm_loadu_ps(&x[i+4]);
  782. vy1 = _mm_loadu_ps(&y[i]);
  783. vy2 = _mm_loadu_ps(&y[i+4]);
  784. vt1 = _mm_add_ps(_mm_mul_ps(va, vx1), vy1);
  785. vt2 = _mm_add_ps(_mm_mul_ps(va, vx2), vy2);
  786. _mm_storeu_ps(&y[i], vt1);
  787. _mm_storeu_ps(&y[i+4], vt2);
  788. }
  789. for (; i < n; ++i) y[i] += a * x[i];
  790. }
  791. #else
  792. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot */
  793. {
  794. int i;
  795. float s = 0.;
  796. for (i = 0; i < n; ++i) s += x[i] * y[i];
  797. return s;
  798. }
  799. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) // BLAS saxpy
  800. {
  801. int i;
  802. for (i = 0; i < n; ++i) y[i] += a * x[i];
  803. }
  804. #endif
  805. void kad_vec_mul_sum(int n, float *a, const float *b, const float *c)
  806. {
  807. int i;
  808. for (i = 0; i < n; ++i) a[i] += b[i] * c[i];
  809. }
  810. void kad_saxpy(int n, float a, const float *x, float *y) { kad_saxpy_inlined(n, a, x, y); }
  811. #ifdef HAVE_CBLAS
  812. #include "cblas.h"
  813. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)
  814. {
  815. cblas_sgemm(CblasRowMajor, trans_A? CblasTrans : CblasNoTrans, trans_B? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A? M : K, B, trans_B? K : N, 1.0f, C, N);
  816. }
  817. #else
  818. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) /* simplified BLAS sgemm */
  819. {
  820. static const int x = 16;
  821. int i, j, k;
  822. if (!trans_A && trans_B) {
  823. for (i = 0; i < M; i += x)
  824. for (j = 0; j < N; j += x) {
  825. int ii, ie = M < i + x? M : i + x;
  826. int jj, je = N < j + x? N : j + x;
  827. for (ii = i; ii < ie; ++ii) { /* loop tiling */
  828. const float *aii = A + ii * K, *bjj;
  829. float *cii = C + ii * N;
  830. for (jj = j, bjj = B + j * K; jj < je; ++jj, bjj += K)
  831. cii[jj] += kad_sdot(K, aii, bjj);
  832. }
  833. }
  834. } else if (!trans_A && !trans_B) {
  835. for (i = 0; i < M; ++i)
  836. for (k = 0; k < K; ++k)
  837. kad_saxpy_inlined(N, A[i*K+k], &B[k*N], &C[i*N]);
  838. } else if (trans_A && !trans_B) {
  839. for (k = 0; k < K; ++k)
  840. for (i = 0; i < M; ++i)
  841. kad_saxpy_inlined(N, A[k*M+i], &B[k*N], &C[i*N]);
  842. } else abort(); /* not implemented for (trans_A && trans_B) */
  843. }
  844. #endif
  845. /***************************
  846. * Random number generator *
  847. ***************************/
  848. static kad_rng_t kad_rng_dat = { {0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0 };
  849. static inline uint64_t kad_splitmix64(uint64_t x)
  850. {
  851. uint64_t z = (x += 0x9E3779B97F4A7C15ULL);
  852. z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ULL;
  853. z = (z ^ (z >> 27)) * 0x94D049BB133111EBULL;
  854. return z ^ (z >> 31);
  855. }
  856. static inline uint64_t kad_xoroshiro128plus_next(kad_rng_t *r)
  857. {
  858. const uint64_t s0 = r->s[0];
  859. uint64_t s1 = r->s[1];
  860. const uint64_t result = s0 + s1;
  861. s1 ^= s0;
  862. r->s[0] = (s0 << 55 | s0 >> 9) ^ s1 ^ (s1 << 14);
  863. r->s[1] = s0 << 36 | s0 >> 28;
  864. return result;
  865. }
  866. static inline void kad_xoroshiro128plus_jump(kad_rng_t *r)
  867. {
  868. static const uint64_t JUMP[] = { 0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL };
  869. uint64_t s0 = 0, s1 = 0;
  870. int i, b;
  871. for (i = 0; i < 2; ++i)
  872. for (b = 0; b < 64; b++) {
  873. if (JUMP[i] & 1ULL << b)
  874. s0 ^= r->s[0], s1 ^= r->s[1];
  875. kad_xoroshiro128plus_next(r);
  876. }
  877. r->s[0] = s0, r->s[1] = s1;
  878. }
  879. void kad_srand(void *d, uint64_t seed)
  880. {
  881. kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
  882. r->n_gset = 0.0, r->n_iset = 0;
  883. r->s[0] = kad_splitmix64(seed);
  884. r->s[1] = kad_splitmix64(r->s[0]);
  885. }
  886. void *kad_rng(void)
  887. {
  888. kad_rng_t *r;
  889. r = (kad_rng_t*)calloc(1, sizeof(kad_rng_t));
  890. kad_xoroshiro128plus_jump(&kad_rng_dat);
  891. r->s[0] = kad_rng_dat.s[0], r->s[1] = kad_rng_dat.s[1];
  892. return r;
  893. }
  894. uint64_t kad_rand(void *d) { return kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat); }
  895. double kad_drand(void *d)
  896. {
  897. union { uint64_t i; double d; } u;
  898. u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat) >> 12;
  899. return u.d - 1.0;
  900. }
  901. double kad_drand_normal(void *d)
  902. {
  903. kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
  904. if (r->n_iset == 0) {
  905. double fac, rsq, v1, v2;
  906. do {
  907. v1 = 2.0 * kad_drand(d) - 1.0;
  908. v2 = 2.0 * kad_drand(d) - 1.0;
  909. rsq = v1 * v1 + v2 * v2;
  910. } while (rsq >= 1.0 || rsq == 0.0);
  911. fac = sqrt(-2.0 * log(rsq) / rsq);
  912. r->n_gset = v1 * fac;
  913. r->n_iset = 1;
  914. return v2 * fac;
  915. } else {
  916. r->n_iset = 0;
  917. return r->n_gset;
  918. }
  919. }
  920. /*************
  921. * Operators *
  922. *************/
  923. static inline void kad_copy_dim1(kad_node_t *dst, const kad_node_t *src) /* set the dimension/shape of dst to src */
  924. {
  925. dst->n_d = src->n_d;
  926. if (src->n_d) memcpy(dst->d, src->d, src->n_d * sizeof(int));
  927. }
  928. /********** Arithmetic operations **********/
  929. int kad_op_add(kad_node_t *p, int action)
  930. {
  931. int i, n0, n1;
  932. kad_node_t *q[2];
  933. q[0] = p->child[0], n0 = kad_len(q[0]);
  934. q[1] = p->child[1], n1 = kad_len(q[1]);
  935. if (action == KAD_SYNC_DIM) {
  936. if (n0 % n1 != 0) return -1;
  937. kad_copy_dim1(p, q[0]);
  938. } else if (action == KAD_FORWARD) {
  939. assert(n0 >= n1);
  940. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  941. for (i = 0; i < n0; i += n1)
  942. kad_saxpy(n1, 1.0f, q[1]->x, p->x + i);
  943. } else if (action == KAD_BACKWARD) {
  944. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  945. if (kad_is_back(q[1]))
  946. for (i = 0; i < n0; i += n1)
  947. kad_saxpy(n1, 1.0f, p->g + i, q[1]->g);
  948. }
  949. return 0;
  950. }
  951. int kad_op_sub(kad_node_t *p, int action)
  952. {
  953. int i, n0, n1;
  954. kad_node_t *q[2];
  955. q[0] = p->child[0], n0 = kad_len(q[0]);
  956. q[1] = p->child[1], n1 = kad_len(q[1]);
  957. if (action == KAD_SYNC_DIM) {
  958. if (n0 % n1 != 0) return -1;
  959. kad_copy_dim1(p, q[0]);
  960. } else if (action == KAD_FORWARD) {
  961. assert(n0 >= n1);
  962. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  963. for (i = 0; i < n0; i += n1)
  964. kad_saxpy(n1, -1.0f, q[1]->x, p->x + i);
  965. } else if (action == KAD_BACKWARD) {
  966. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  967. if (kad_is_back(q[1]))
  968. for (i = 0; i < n0; i += n1)
  969. kad_saxpy(n1, -1.0f, p->g + i, q[1]->g);
  970. }
  971. return 0;
  972. }
  973. int kad_op_mul(kad_node_t *p, int action)
  974. {
  975. int i, n0, n1;
  976. kad_node_t *q[2];
  977. q[0] = p->child[0], n0 = kad_len(q[0]);
  978. q[1] = p->child[1], n1 = kad_len(q[1]);
  979. if (action == KAD_SYNC_DIM) {
  980. if (n0 % n1 != 0) return -1;
  981. kad_copy_dim1(p, q[0]);
  982. } else if (action == KAD_FORWARD) {
  983. assert(n0 >= n1);
  984. memset(p->x, 0, n0 * sizeof(float));
  985. if (q[0]->x != 0 && q[1]->x != 0)
  986. for (i = 0; i < n0; i += n1) /* TODO: optimize when n1==1 */
  987. kad_vec_mul_sum(n1, p->x + i, q[0]->x + i, q[1]->x);
  988. } else if (action == KAD_BACKWARD) {
  989. if (kad_is_back(q[0]) && q[1]->x)
  990. for (i = 0; i < n0; i += n1)
  991. kad_vec_mul_sum(n1, q[0]->g + i, p->g + i, q[1]->x);
  992. if (kad_is_back(q[1]) && q[0]->x)
  993. for (i = 0; i < n0; i += n1)
  994. kad_vec_mul_sum(n1, q[1]->g, p->g + i, q[0]->x + i);
  995. }
  996. return 0;
  997. }
  998. int kad_op_cmul(kad_node_t *p, int action)
  999. {
  1000. int i, n_a_row, n_b_row, n_col, n_a_col = 1, n_b_col = 1;
  1001. kad_node_t *q[2];
  1002. q[0] = p->child[0], q[1] = p->child[1];
  1003. n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1]? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1];
  1004. for (i = q[0]->n_d - 1; i >= 0; --i) if (n_a_col < n_col) n_a_col *= q[0]->d[i];
  1005. for (i = q[1]->n_d - 1; i >= 0; --i) if (n_b_col < n_col) n_b_col *= q[1]->d[i];
  1006. n_a_row = kad_len(q[0]) / n_a_col, n_b_row = kad_len(q[1]) / n_b_col;
  1007. if (action == KAD_SYNC_DIM) {
  1008. if (n_a_col != n_b_col) return -1;
  1009. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_row;
  1010. } else if (action == KAD_FORWARD) {
  1011. memset(p->x, 0, n_a_row * n_b_row * sizeof(float));
  1012. if (q[0]->x && q[1]->x)
  1013. kad_sgemm_simple(0, 1, n_a_row, n_b_row, n_col, q[0]->x, q[1]->x, p->x); /* Y = X * trans(W) */
  1014. } else if (action == KAD_BACKWARD) {
  1015. if (kad_is_back(q[0]) && q[1]->x)
  1016. kad_sgemm_simple(0, 0, n_a_row, n_col, n_b_row, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * W */
  1017. if (kad_is_back(q[1]) && q[0]->x)
  1018. kad_sgemm_simple(1, 0, n_b_row, n_col, n_a_row, p->g, q[0]->x, q[1]->g); /* G_w <- trans(G_y) * X */
  1019. }
  1020. return 0;
  1021. }
  1022. int kad_op_matmul(kad_node_t *p, int action) /* TODO: matmul and cmul have different broadcasting rules */
  1023. {
  1024. int n_a_row, n_b_row, n_a_col, n_b_col;
  1025. kad_node_t *q[2];
  1026. q[0] = p->child[0];
  1027. q[1] = p->child[1];
  1028. n_a_row = q[0]->n_d == 1? 1 : q[0]->d[0];
  1029. n_b_row = q[1]->n_d == 1? 1 : q[1]->d[0];
  1030. n_a_col = kad_len(q[0]) / n_a_row;
  1031. n_b_col = kad_len(q[1]) / n_b_row;
  1032. if (action == KAD_SYNC_DIM) {
  1033. if (n_a_col != n_b_row) return -1;
  1034. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_col;
  1035. } else if (action == KAD_FORWARD) {
  1036. memset(p->x, 0, n_a_row * n_b_col * sizeof(float));
  1037. if (q[0]->x && q[1]->x)
  1038. kad_sgemm_simple(0, 0, n_a_row, n_b_col, n_a_col, q[0]->x, q[1]->x, p->x); /* Y = X * W */
  1039. } else if (action == KAD_BACKWARD) {
  1040. if (kad_is_back(q[0]) && q[1]->x)
  1041. kad_sgemm_simple(0, 1, n_a_row, n_a_col, n_b_col, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * trans(W) */
  1042. if (kad_is_back(q[1]) && q[0]->x)
  1043. kad_sgemm_simple(1, 0, n_b_row, n_b_col, n_a_row, q[0]->x, p->g, q[1]->g); /* G_y <- trans(A) * G_y */
  1044. }
  1045. return 0;
  1046. }
  1047. int kad_op_square(kad_node_t *p, int action)
  1048. {
  1049. int i, n;
  1050. kad_node_t *q = p->child[0];
  1051. n = kad_len(q);
  1052. if (action == KAD_SYNC_DIM) {
  1053. kad_copy_dim1(p, q);
  1054. } else if (action == KAD_FORWARD) {
  1055. for (i = 0; i < n; ++i)
  1056. p->x[i] = q->x[i] * q->x[i];
  1057. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1058. for (i = 0; i < n; ++i)
  1059. q->g[i] += p->g[i] * (q->x[i] + q->x[i]);
  1060. }
  1061. return 0;
  1062. }
  1063. int kad_op_1minus(kad_node_t *p, int action)
  1064. {
  1065. int i, n;
  1066. kad_node_t *q = p->child[0];
  1067. n = kad_len(q);
  1068. if (action == KAD_SYNC_DIM) {
  1069. kad_copy_dim1(p, q);
  1070. } else if (action == KAD_FORWARD) {
  1071. for (i = 0; i < n; ++i) p->x[i] = 1.0f - q->x[i];
  1072. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1073. kad_saxpy(n, -1.0f, p->g, q->g);
  1074. }
  1075. return 0;
  1076. }
  1077. int kad_op_exp(kad_node_t *p, int action)
  1078. {
  1079. int i, n;
  1080. kad_node_t *q = p->child[0];
  1081. n = kad_len(q);
  1082. if (action == KAD_SYNC_DIM) {
  1083. kad_copy_dim1(p, q);
  1084. } else if (action == KAD_FORWARD) {
  1085. for (i = 0; i < n; ++i) p->x[i] = expf(q->x[i]);
  1086. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1087. for (i = 0; i < n; ++i)
  1088. q->g[i] += p->g[i] * p->x[i];
  1089. }
  1090. return 0;
  1091. }
  1092. int kad_op_log(kad_node_t *p, int action)
  1093. {
  1094. int i, n;
  1095. kad_node_t *q = p->child[0];
  1096. n = kad_len(q);
  1097. if (action == KAD_SYNC_DIM) {
  1098. kad_copy_dim1(p, q);
  1099. } else if (action == KAD_FORWARD) {
  1100. for (i = 0; i < n; ++i) p->x[i] = logf(q->x[i]);
  1101. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1102. for (i = 0; i < n; ++i)
  1103. q->g[i] += p->g[i] / q->x[i];
  1104. }
  1105. return 0;
  1106. }
  1107. int kad_op_reduce_sum(kad_node_t *p, int action)
  1108. {
  1109. kad_node_t *q = p->child[0];
  1110. int i, j, k, axis, d0, d1;
  1111. assert(p->ptr);
  1112. axis = *(int32_t*)p->ptr;
  1113. if (axis < 0 || axis >= q->n_d) return -1;
  1114. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1115. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1116. if (action == KAD_SYNC_DIM) {
  1117. p->n_d = q->n_d - 1;
  1118. for (i = j = 0; i < q->n_d; ++i)
  1119. if (i != axis) p->d[j++] = q->d[i];
  1120. } else if (action == KAD_FORWARD) {
  1121. memset(p->x, 0, kad_len(p) * sizeof(float));
  1122. for (i = 0; i < d0; ++i)
  1123. for (j = 0; j < q->d[axis]; ++j)
  1124. for (k = 0; k < d1; ++k)
  1125. p->x[i * d1 + k] += q->x[(i * q->d[axis] + j) * d1 + k];
  1126. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1127. for (i = 0; i < d0; ++i)
  1128. for (j = 0; j < q->d[axis]; ++j)
  1129. for (k = 0; k < d1; ++k)
  1130. q->g[(i * q->d[axis] + j) * d1 + k] += p->g[i * d1 + k];
  1131. }
  1132. return 0;
  1133. }
  1134. int kad_op_reduce_mean(kad_node_t *p, int action)
  1135. {
  1136. kad_node_t *q = p->child[0];
  1137. int i, j, k, axis, d0, d1;
  1138. assert(p->ptr);
  1139. axis = *(int32_t*)p->ptr;
  1140. if (axis < 0 || axis >= q->n_d) return -1;
  1141. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1142. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1143. if (action == KAD_SYNC_DIM) {
  1144. p->n_d = q->n_d - 1;
  1145. for (i = j = 0; i < q->n_d; ++i)
  1146. if (i != axis) p->d[j++] = q->d[i];
  1147. } else if (action == KAD_FORWARD) {
  1148. float t = 1.0f / q->d[axis];
  1149. memset(p->x, 0, kad_len(p) * sizeof(float));
  1150. for (i = 0; i < d0; ++i)
  1151. for (j = 0; j < q->d[axis]; ++j)
  1152. for (k = 0; k < d1; ++k)
  1153. p->x[i * d1 + k] += t * q->x[(i * q->d[axis] + j) * d1 + k];
  1154. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1155. float t = 1.0f / q->d[axis];
  1156. for (i = 0; i < d0; ++i)
  1157. for (j = 0; j < q->d[axis]; ++j)
  1158. for (k = 0; k < d1; ++k)
  1159. q->g[(i * q->d[axis] + j) * d1 + k] += t * p->g[i * d1 + k];
  1160. }
  1161. return 0;
  1162. }
  1163. /********** Miscellaneous **********/
  1164. int kad_op_dropout(kad_node_t *p, int action)
  1165. {
  1166. int i, n;
  1167. kad_node_t *q = p->child[0];
  1168. assert(p->child[1]->n_d == 0);
  1169. n = kad_len(q);
  1170. if (action == KAD_SYNC_DIM) {
  1171. kad_copy_dim1(p, q);
  1172. } else if (action == KAD_ALLOC) {
  1173. if (kad_is_back(p->child[0]))
  1174. p->gtmp = realloc(p->gtmp, n);
  1175. } else if (action == KAD_FORWARD) {
  1176. float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1177. uint8_t *flag = (uint8_t*)p->gtmp;
  1178. for (i = 0; i < n; ++i) {
  1179. int kept = (kad_drand(p->ptr) >= r);
  1180. p->x[i] = kept? q->x[i] * z : 0.0f;
  1181. if (flag) flag[i] = kept;
  1182. }
  1183. } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1184. float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1185. uint8_t *flag = (uint8_t*)p->gtmp;
  1186. for (i = 0; i < n; ++i)
  1187. if (flag[i]) q->g[i] += z * p->g[i];
  1188. }
  1189. return 0;
  1190. }
  1191. int kad_op_sample_normal(kad_node_t *p, int action) /* not tested */
  1192. {
  1193. int i, n;
  1194. kad_node_t *q = p->child[0];
  1195. n = kad_len(q);
  1196. if (action == KAD_SYNC_DIM) {
  1197. kad_copy_dim1(p, q);
  1198. } else if (action == KAD_ALLOC) {
  1199. if (kad_is_back(p->child[0]))
  1200. p->gtmp = realloc(p->gtmp, n * sizeof(float));
  1201. } else if (action == KAD_FORWARD) {
  1202. float *r = (float*)p->gtmp;
  1203. for (i = 0; i < n; ++i) {
  1204. float z;
  1205. z = (float)kad_drand_normal(p->ptr);
  1206. p->x[i] = q->x[i] * z;
  1207. if (r) r[i] = z;
  1208. }
  1209. } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1210. float *r = (float*)p->gtmp;
  1211. for (i = 0; i < n; ++i)
  1212. q->g[i] += p->g[i] * r[i];
  1213. }
  1214. return 0;
  1215. }
  1216. int kad_op_slice(kad_node_t *p, int action)
  1217. {
  1218. kad_node_t *q = p->child[0];
  1219. int32_t *aux, *range;
  1220. int i, axis, d0, d1;
  1221. assert(p->ptr);
  1222. aux = (int32_t*)p->ptr, axis = aux[0], range = aux + 1;
  1223. if (axis < 0 || axis >= q->n_d) return -1;
  1224. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1225. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1226. if (action == KAD_SYNC_DIM) {
  1227. if (range[0] >= range[1] || range[0] < 0 || range[1] > q->d[axis]) return -1;
  1228. kad_copy_dim1(p, q);
  1229. p->d[axis] = range[1] - range[0];
  1230. } else if (action == KAD_FORWARD) {
  1231. for (i = 0; i < d0; ++i)
  1232. memcpy(&p->x[i * p->d[axis] * d1], &q->x[(i * q->d[axis] + range[0]) * d1], (range[1] - range[0]) * d1 * sizeof(float));
  1233. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1234. for (i = 0; i < d0; ++i)
  1235. kad_saxpy((range[1] - range[0]) * d1, 1.0f, &p->g[i * p->d[axis] * d1], &q->g[(i * q->d[axis] + range[0]) * d1]);
  1236. }
  1237. return 0;
  1238. }
  1239. int kad_op_concat(kad_node_t *p, int action)
  1240. {
  1241. kad_node_t *q = p->child[0];
  1242. int32_t *aux;
  1243. int i, j, k, axis, d0, d1;
  1244. assert(p->ptr);
  1245. aux = (int32_t*)p->ptr, axis = aux[0];
  1246. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1247. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1248. if (action == KAD_SYNC_DIM) {
  1249. for (i = 1; i < p->n_child; ++i) {
  1250. if (p->child[i]->n_d != q->n_d) return -1;
  1251. for (j = 0; j < q->n_d; ++j)
  1252. if (j != axis && q->d[j] != p->child[i]->d[j]) return -1;
  1253. }
  1254. kad_copy_dim1(p, q);
  1255. for (i = 1; i < p->n_child; ++i)
  1256. p->d[axis] += p->child[i]->d[axis];
  1257. } else if (action == KAD_FORWARD) {
  1258. for (i = 0; i < d0; ++i)
  1259. for (j = k = 0; j < p->n_child; ++j) {
  1260. q = p->child[j];
  1261. memcpy(&p->x[(i * p->d[axis] + k) * d1], &q->x[i * q->d[axis] * d1], q->d[axis] * d1 * sizeof(float));
  1262. k += q->d[axis];
  1263. }
  1264. } else if (action == KAD_BACKWARD) {
  1265. for (i = 0; i < d0; ++i)
  1266. for (j = k = 0; j < p->n_child; ++j) {
  1267. q = p->child[j];
  1268. if (!kad_is_back(q)) continue;
  1269. kad_saxpy(q->d[axis] * d1, 1.0f, &p->g[(i * p->d[axis] + k) * d1], &q->g[i * q->d[axis] * d1]);
  1270. k += q->d[axis];
  1271. }
  1272. }
  1273. return 0;
  1274. }
  1275. int kad_op_reshape(kad_node_t *p, int action)
  1276. {
  1277. kad_node_t *q = p->child[0];
  1278. if (action == KAD_SYNC_DIM) {
  1279. if (p->ptr) {
  1280. int32_t *aux = (int32_t*)p->ptr;
  1281. int i, len = 1, n_missing = 0;
  1282. p->n_d = p->ptr_size / 4;
  1283. for (i = 0; i < p->n_d; ++i) p->d[i] = aux[i];
  1284. for (i = 0; i < p->n_d; ++i)
  1285. if (p->d[i] <= 0) ++n_missing;
  1286. else len *= p->d[i];
  1287. if (n_missing == 0 && len != kad_len(q)) return -1;
  1288. if (n_missing > 1) { /* attempt to infer missing dimensions except the last one */
  1289. for (i = 0; i < p->n_d; ++i)
  1290. if (p->d[i] <= 0 && i < q->n_d) {
  1291. p->d[i] = q->d[i], len *= p->d[i];
  1292. if (--n_missing == 1) break;
  1293. }
  1294. if (n_missing > 1) return -1;
  1295. }
  1296. if (n_missing == 1) { /* infer the last missing dimension */
  1297. if (kad_len(q) % len != 0) return -1;
  1298. for (i = 0; i < p->n_d; ++i)
  1299. if (p->d[i] <= 0) p->d[i] = kad_len(q) / len;
  1300. }
  1301. } else kad_copy_dim1(p, q);
  1302. } else if (action == KAD_FORWARD) {
  1303. memcpy(p->x, q->x, kad_len(p) * sizeof(float));
  1304. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1305. kad_saxpy(kad_len(p), 1.0f, p->g, q->g);
  1306. }
  1307. return 0;
  1308. }
  1309. int kad_op_reverse(kad_node_t *p, int action)
  1310. {
  1311. kad_node_t *q = p->child[0];
  1312. int axis, i, j, n, d0, d1;
  1313. axis = p->ptr? *(int32_t*)p->ptr : 0;
  1314. if (axis < 0) axis += q->n_d;
  1315. assert(axis >= 0 && axis < q->n_d);
  1316. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1317. n = q->d[axis];
  1318. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1319. if (action == KAD_SYNC_DIM) {
  1320. kad_copy_dim1(p, q);
  1321. } else if (action == KAD_FORWARD) {
  1322. for (i = 0; i < d0; ++i)
  1323. for (j = 0; j < n; ++j)
  1324. memcpy(&p->x[(i * n + n - 1 - j) * d1], &q->x[(i * n + j) * d1], d1 * sizeof(float));
  1325. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1326. for (i = 0; i < d0; ++i)
  1327. for (j = 0; j < n; ++j)
  1328. kad_saxpy(d1, 1.0f, &p->g[(i * n + n - 1 - j) * d1], &q->g[(i * n + j) * d1]);
  1329. }
  1330. return 0;
  1331. }
  1332. /********** Cost functions **********/
  1333. int kad_op_mse(kad_node_t *p, int action)
  1334. {
  1335. kad_node_t *y1 = p->child[0]; /* test */
  1336. kad_node_t *y0 = p->child[1]; /* truth */
  1337. int i, n;
  1338. n = kad_len(y0);
  1339. if (action == KAD_SYNC_DIM) {
  1340. if (n != kad_len(y1)) return -1;
  1341. p->n_d = 0;
  1342. } else if (action == KAD_FORWARD) {
  1343. double cost = 0.0;
  1344. for (i = 0; i < n; ++i)
  1345. cost += (y1->x[i] - y0->x[i]) * (y1->x[i] - y0->x[i]);
  1346. p->x[0] = (float)(cost / n);
  1347. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1348. float t = 2.0f * p->g[0] / n;
  1349. for (i = 0; i < n; ++i)
  1350. y1->g[i] += t * (y1->x[i] - y0->x[i]);
  1351. }
  1352. return 0;
  1353. }
  1354. int kad_op_ce_bin(kad_node_t *p, int action)
  1355. {
  1356. static const float tiny = 1e-9f;
  1357. kad_node_t *y1 = p->child[0]; /* test */
  1358. kad_node_t *y0 = p->child[1]; /* truth */
  1359. int i, n;
  1360. n = kad_len(y0);
  1361. if (action == KAD_SYNC_DIM) {
  1362. if (n != kad_len(y1)) return -1;
  1363. p->n_d = 0;
  1364. } else if (action == KAD_FORWARD) {
  1365. double cost = 0.0;
  1366. for (i = 0; i < n; ++i) {
  1367. if (y0->x[i] > 0.0f)
  1368. cost += y0->x[i] * log(y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny));
  1369. if (1.0f - y0->x[i] > 0.0f)
  1370. cost += (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
  1371. }
  1372. p->x[0] = (float)(cost / n);
  1373. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1374. float t = p->g[0] / n;
  1375. for (i = 0; i < n; ++i) {
  1376. if (y0->x[i] > 0.0f)
  1377. y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny);
  1378. if (1.0f - y0->x[i] > 0.0f)
  1379. y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
  1380. }
  1381. }
  1382. return 0;
  1383. }
  1384. int kad_op_ce_bin_neg(kad_node_t *p, int action)
  1385. {
  1386. static const float tiny = 1e-9f;
  1387. kad_node_t *y1 = p->child[0]; /* test */
  1388. kad_node_t *y0 = p->child[1]; /* truth */
  1389. int i, n;
  1390. n = kad_len(y0);
  1391. if (action == KAD_SYNC_DIM) {
  1392. if (n != kad_len(y1)) return -1;
  1393. p->n_d = 0;
  1394. } else if (action == KAD_FORWARD) {
  1395. double cost = 0.0;
  1396. for (i = 0; i < n; ++i) {
  1397. if (1.0f + y0->x[i] > 0.0f)
  1398. cost += .5f * (1.0f + y0->x[i]) * log((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny));
  1399. if (1.0f - y0->x[i] > 0.0f)
  1400. cost += .5f * (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
  1401. }
  1402. p->x[0] = (float)(cost / n);
  1403. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1404. float t = p->g[0] / n;
  1405. for (i = 0; i < n; ++i) {
  1406. if (1.0f + y0->x[i] > 0.0f)
  1407. y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny);
  1408. if (1.0f - y0->x[i] > 0.0f)
  1409. y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
  1410. }
  1411. }
  1412. return 0;
  1413. }
  1414. int kad_op_ce_multi(kad_node_t *p, int action)
  1415. {
  1416. static const float tiny = 1e-9f;
  1417. kad_node_t *y1 = p->child[0]; /* test */
  1418. kad_node_t *y0 = p->child[1]; /* truth */
  1419. kad_node_t *c = 0;
  1420. int i, j, n1, d0;
  1421. n1 = y0->d[y0->n_d - 1];
  1422. d0 = kad_len(y0) / n1;
  1423. if (p->n_child == 3) {
  1424. c = p->child[2];
  1425. assert(c->n_d == 1 && c->d[0] == n1);
  1426. }
  1427. if (action == KAD_SYNC_DIM) {
  1428. if (kad_len(y0) != kad_len(y1) || y0->d[y0->n_d - 1] != y1->d[y1->n_d - 1]) return -1;
  1429. p->n_d = 0;
  1430. } else if (action == KAD_FORWARD) {
  1431. double cost = 0.0;
  1432. if (c == 0) {
  1433. for (j = 0; j < d0; ++j) {
  1434. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1435. for (i = 0; i < n1; ++i)
  1436. if (x0[i] > 0.0f)
  1437. cost += x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
  1438. }
  1439. } else {
  1440. for (j = 0; j < d0; ++j) {
  1441. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1442. for (i = 0; i < n1; ++i)
  1443. if (x0[i] > 0.0f)
  1444. cost += c->x[i] * x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
  1445. }
  1446. }
  1447. p->x[0] = (float)(cost / d0);
  1448. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1449. float t = p->g[0] / d0;
  1450. if (c == 0) {
  1451. for (j = 0; j < d0; ++j) {
  1452. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1453. for (i = 0; i < n1; ++i)
  1454. g[i] -= t * x0[i] / (x1[i] > tiny? x1[i] : tiny);
  1455. }
  1456. } else {
  1457. for (j = 0; j < d0; ++j) {
  1458. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1459. for (i = 0; i < n1; ++i)
  1460. g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny? x1[i] : tiny);
  1461. }
  1462. }
  1463. }
  1464. return 0;
  1465. }
  1466. /********** Normalization **********/
  1467. int kad_op_stdnorm(kad_node_t *p, int action)
  1468. {
  1469. int i, j, n, m;
  1470. kad_node_t *q = p->child[0];
  1471. assert(q->n_d > 0);
  1472. n = q->d[q->n_d - 1];
  1473. m = kad_len(q) / n;
  1474. if (action == KAD_SYNC_DIM) {
  1475. kad_copy_dim1(p, q);
  1476. } else if (action == KAD_ALLOC) {
  1477. p->gtmp = realloc(p->gtmp, m * sizeof(float));
  1478. } else if (action == KAD_FORWARD) {
  1479. float *si = (float*)p->gtmp;
  1480. for (j = 0; j < m; ++j) {
  1481. float *px = &p->x[j * n], *qx = &q->x[j * n];
  1482. float avg, std_inv;
  1483. double s;
  1484. for (i = 0, s = 0.0; i < n; ++i) s += qx[i];
  1485. avg = (float)(s / n);
  1486. for (i = 0; i < n; ++i) px[i] = qx[i] - avg;
  1487. for (i = 0, s = 0.0; i < n; ++i) s += px[i] * px[i];
  1488. std_inv = s == 0.0? 1.0f : (float)(1.0 / sqrt(s / n));
  1489. for (i = 0; i < n; ++i) px[i] *= std_inv;
  1490. si[j] = std_inv;
  1491. }
  1492. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1493. float *si = (float*)p->gtmp;
  1494. for (j = 0; j < m; ++j) {
  1495. float *pg = &p->g[j * n], *qg = &q->g[j * n], *px = &p->x[j * n], std_inv = si[j];
  1496. double s, t;
  1497. for (i = 0, s = t = 0.0; i < n; ++i)
  1498. s += pg[i], t += px[i] * pg[i];
  1499. s /= n, t /= n;
  1500. for (i = 0; i < n; ++i)
  1501. qg[i] += std_inv * (pg[i] - s - px[i] * t);
  1502. }
  1503. }
  1504. return 0;
  1505. }
  1506. /********** Activation functions **********/
  1507. int kad_op_sigm(kad_node_t *p, int action)
  1508. {
  1509. int i, n;
  1510. kad_node_t *q = p->child[0];
  1511. n = kad_len(q);
  1512. if (action == KAD_SYNC_DIM) {
  1513. kad_copy_dim1(p, q);
  1514. } else if (action == KAD_FORWARD) {
  1515. for (i = 0; i < n; ++i)
  1516. p->x[i] = 1.0f / (1.0f + expf(-q->x[i]));
  1517. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1518. for (i = 0; i < n; ++i)
  1519. q->g[i] += p->g[i] * (p->x[i] * (1.0f - p->x[i]));
  1520. }
  1521. return 0;
  1522. }
  1523. int kad_op_tanh(kad_node_t *p, int action)
  1524. {
  1525. int i, n;
  1526. kad_node_t *q = p->child[0];
  1527. n = kad_len(q);
  1528. if (action == KAD_SYNC_DIM) {
  1529. kad_copy_dim1(p, q);
  1530. } else if (action == KAD_FORWARD) {
  1531. for (i = 0; i < n; ++i) {
  1532. if (q->x[i] < -20.0f) p->x[i] = -1.0f;
  1533. else {
  1534. float y;
  1535. y = expf(-2.0f * q->x[i]);
  1536. p->x[i] = (1.0f - y) / (1.0f + y);
  1537. }
  1538. }
  1539. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1540. for (i = 0; i < n; ++i)
  1541. q->g[i] += p->g[i] * (1.0f - p->x[i] * p->x[i]);
  1542. }
  1543. return 0;
  1544. }
  1545. int kad_op_relu(kad_node_t *p, int action)
  1546. {
  1547. int i, n;
  1548. kad_node_t *q = p->child[0];
  1549. n = kad_len(q);
  1550. if (action == KAD_SYNC_DIM) {
  1551. kad_copy_dim1(p, q);
  1552. } else if (action == KAD_FORWARD) {
  1553. for (i = 0; i < n; ++i)
  1554. p->x[i] = q->x[i] > 0.0f? q->x[i] : 0.0f;
  1555. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1556. for (i = 0; i < n; ++i)
  1557. if (q->x[i] > 0.0f)
  1558. q->g[i] += p->g[i];
  1559. }
  1560. return 0;
  1561. }
  1562. int kad_op_sin(kad_node_t *p, int action)
  1563. {
  1564. int i, n;
  1565. kad_node_t *q = p->child[0];
  1566. n = kad_len(q);
  1567. if (action == KAD_SYNC_DIM) {
  1568. kad_copy_dim1(p, q);
  1569. } else if (action == KAD_FORWARD) {
  1570. for (i = 0; i < n; ++i) p->x[i] = sinf(q->x[i]);
  1571. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1572. for (i = 0; i < n; ++i)
  1573. q->g[i] += p->g[i] * cosf(q->x[i]);
  1574. }
  1575. return 0;
  1576. }
  1577. int kad_op_softmax(kad_node_t *p, int action)
  1578. {
  1579. int i, j, n1, d0;
  1580. kad_node_t *q = p->child[0];
  1581. n1 = q->d[q->n_d - 1];
  1582. d0 = kad_len(q) / n1;
  1583. if (action == KAD_SYNC_DIM) {
  1584. kad_copy_dim1(p, q);
  1585. } else if (action == KAD_FORWARD) {
  1586. for (j = 0; j < d0; ++j) {
  1587. float s, max, *x = &q->x[j * n1], *y = &p->x[j * n1];
  1588. for (i = 0, max = -FLT_MAX; i < n1; ++i)
  1589. max = max > x[i]? max : x[i];
  1590. for (i = 0, s = 0.0f; i < n1; ++i) {
  1591. y[i] = expf(x[i] - max);
  1592. s += y[i];
  1593. }
  1594. for (i = 0, s = 1.0f / s; i < n1; ++i) y[i] *= s;
  1595. }
  1596. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1597. for (j = 0; j < d0; ++j) {
  1598. float s, *g = &p->g[j * n1], *y = &p->x[j * n1], *h = &q->g[j * n1];
  1599. for (i = 0, s = 0.0f; i < n1; ++i)
  1600. s += g[i] * y[i];
  1601. for (i = 0; i < n1; ++i)
  1602. h[i] += y[i] * (g[i] - s);
  1603. }
  1604. }
  1605. return 0;
  1606. }
  1607. /********** Multi-node pooling **********/
  1608. int kad_op_avg(kad_node_t *p, int action)
  1609. {
  1610. int i, n;
  1611. float tmp;
  1612. kad_node_t *q;
  1613. assert(p->n_child > 0);
  1614. tmp = 1.0f / p->n_child;
  1615. q = p->child[0];
  1616. n = kad_len(q);
  1617. if (action == KAD_SYNC_DIM) {
  1618. for (i = 1; i < p->n_child; ++i)
  1619. if (kad_len(p->child[i]) != n) return -1;
  1620. kad_copy_dim1(p, q);
  1621. } else if (action == KAD_FORWARD) {
  1622. memcpy(p->x, q->x, n * sizeof(float));
  1623. for (i = 1; i < p->n_child; ++i)
  1624. kad_saxpy(n, 1.0f, p->child[i]->x, p->x);
  1625. for (i = 0; i < n; ++i) p->x[i] *= tmp;
  1626. } else if (action == KAD_BACKWARD) {
  1627. for (i = 0; i < p->n_child; ++i)
  1628. if (kad_is_back(p->child[i]))
  1629. kad_saxpy(n, tmp, p->g, p->child[i]->g);
  1630. }
  1631. return 0;
  1632. }
  1633. int kad_op_max(kad_node_t *p, int action)
  1634. {
  1635. int i, n;
  1636. kad_node_t *q = p->child[0];
  1637. n = kad_len(q);
  1638. if (action == KAD_SYNC_DIM) {
  1639. int *max_j;
  1640. for (i = 1; i < p->n_child; ++i)
  1641. if (kad_len(p->child[i]) != n) return -1;
  1642. kad_copy_dim1(p, q);
  1643. max_j = (int*)calloc(n, sizeof(int));
  1644. p->gtmp = max_j;
  1645. } else if (action == KAD_FORWARD) {
  1646. int j, *max_j = (int*)p->gtmp;
  1647. memset(max_j, 0, n * sizeof(int));
  1648. memcpy(p->x, q->x, n * sizeof(float));
  1649. for (j = 1; j < p->n_child; ++j)
  1650. for (i = 0, q = p->child[j]; i < n; ++i)
  1651. if (q->x[i] > p->x[i]) p->x[i] = q->x[i], max_j[i] = j;
  1652. } else if (action == KAD_BACKWARD) {
  1653. int *max_j = (int*)p->gtmp;
  1654. for (i = 0; i < n; ++i)
  1655. p->child[max_j[i]]->g[i] += p->g[i];
  1656. }
  1657. return 0;
  1658. }
  1659. int kad_op_stack(kad_node_t *p, int action) /* TODO: allow axis, as in TensorFlow */
  1660. {
  1661. int i, n, axis = 0;
  1662. kad_node_t *q;
  1663. assert(p->n_child > 0);
  1664. q = p->child[0];
  1665. n = kad_len(q);
  1666. if (action == KAD_SYNC_DIM) {
  1667. for (i = 1; i < p->n_child; ++i)
  1668. if (kad_len(p->child[i]) != n) return -1;
  1669. p->n_d = q->n_d + 1;
  1670. for (i = 0; i < axis; ++i) p->d[i] = q->d[i];
  1671. p->d[axis] = p->n_child;
  1672. for (; i < q->n_d; ++i) p->d[i+1] = q->d[i];
  1673. } else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */
  1674. for (i = 0; i < p->n_child; ++i)
  1675. memcpy(&p->x[i * n], p->child[i]->x, n * sizeof(float));
  1676. } else if (action == KAD_BACKWARD) {
  1677. for (i = 0; i < p->n_child; ++i)
  1678. if (kad_is_back(p->child[i]))
  1679. kad_saxpy(n, 1.0f, &p->g[i * n], p->child[i]->g);
  1680. }
  1681. return 0;
  1682. }
  1683. int kad_op_select(kad_node_t *p, int action)
  1684. {
  1685. kad_node_t *q;
  1686. int i, n, which;
  1687. which = *(int32_t*)p->ptr;
  1688. if (which < 0) which += p->n_child;
  1689. assert(which >= 0 && which < p->n_child);
  1690. q = p->child[which];
  1691. n = kad_len(q);
  1692. if (action == KAD_SYNC_DIM) {
  1693. for (i = 0; i < p->n_child; ++i)
  1694. if (p->child[i]->n_d != q->n_d || kad_len(p->child[i]) != n)
  1695. break;
  1696. if (i < p->n_child) return -1;
  1697. kad_copy_dim1(p, q);
  1698. } else if (action == KAD_FORWARD) {
  1699. memcpy(p->x, q->x, n * sizeof(float));
  1700. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1701. kad_saxpy(n, 1.0f, p->g, q->g);
  1702. }
  1703. return 0;
  1704. }
  1705. /********** 2D convolution **********/
  1706. static void conv_rot180(int d0, int d1, float *x) /* rotate/reverse a weight martix */
  1707. {
  1708. int i, j;
  1709. for (i = 0; i < d0; ++i) {
  1710. float tmp, *xi = &x[i * d1];
  1711. for (j = 0; j < d1>>1; ++j)
  1712. tmp = xi[j], xi[j] = xi[d1-1-j], xi[d1-1-j] = tmp;
  1713. }
  1714. }
  1715. static void conv2d_move_1to3(int d[4], const float *x, float *y) /* convert the NCHW shape to the NHWC shape */
  1716. {
  1717. int i, j, k, l;
  1718. for (i = 0; i < d[0]; ++i)
  1719. for (j = 0; j < d[1]; ++j)
  1720. for (k = 0; k < d[2]; ++k) {
  1721. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1722. for (l = 0; l < d[3]; ++l)
  1723. y[(ik + l) * d[1] + j] = x[ijk + l];
  1724. }
  1725. }
  1726. static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the NHWC shape back to NCHW and add to another NCHW-shaped array */
  1727. {
  1728. int i, j, k, l;
  1729. for (i = 0; i < d[0]; ++i)
  1730. for (j = 0; j < d[1]; ++j)
  1731. for (k = 0; k < d[2]; ++k) {
  1732. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1733. for (l = 0; l < d[3]; ++l)
  1734. x[ijk + l] += y[(ik + l) * d[1] + j];
  1735. }
  1736. }
  1737. #define conv_out_size(in_size, aux) (((in_size) - (aux)->kernel_size + (aux)->pad[0] + (aux)->pad[1]) / (aux)->stride + 1)
  1738. #define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1739. int j, l; \
  1740. if (_stride > 1) { \
  1741. for (l = 0; l < _wn; ++l) { \
  1742. const float *xl = &_xx[l - _pad]; \
  1743. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1744. kad_saxpy(_pn, _ww[l], _t, _yy); \
  1745. } \
  1746. } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \
  1747. } while (0)
  1748. #define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1749. int j, l; \
  1750. if (_stride > 1) { \
  1751. for (l = 0; l < _wn; ++l) { \
  1752. float *xl = &_xx[l - _pad]; \
  1753. memset(_t, 0, _pn * sizeof(float)); \
  1754. kad_saxpy(_pn, _ww[l], _yy, _t); \
  1755. for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \
  1756. } \
  1757. } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \
  1758. } while (0)
  1759. #define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1760. int j, l; \
  1761. if (_stride > 1) { \
  1762. for (l = 0; l < _wn; ++l) { \
  1763. const float *xl = &_xx[l - _pad]; \
  1764. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1765. _ww[l] += kad_sdot(_pn, _yy, _t); \
  1766. } \
  1767. } else for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \
  1768. } while (0)
  1769. /* Forward and backward passes are implemented with two different algorithms.
  1770. * The first is faster for small kernels with few input channels; otherwise the
  1771. * second algorithm is faster. Both algorithms should produce identical
  1772. * results, up to the precision of "float".
  1773. */
  1774. int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-width (NCHW) shape */
  1775. {
  1776. #define conv2d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCHW shape */ \
  1777. int n, c1, c0, i, k, ii; \
  1778. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1779. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1780. for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \
  1781. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  1782. float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \
  1783. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output row */ \
  1784. float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \
  1785. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  1786. if (x_padded) { \
  1787. memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \
  1788. _xx = x_padded + aux[1].pad[0]; \
  1789. } \
  1790. _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \
  1791. } /* ~i */ \
  1792. } /* ~k, c0, c1, n */ \
  1793. } while (0)
  1794. #define conv2d_loop2(_x, _w, _y, _code) do { /* for the NHWC shape */ \
  1795. int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \
  1796. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1797. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1798. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  1799. float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \
  1800. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output and input row */ \
  1801. float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \
  1802. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  1803. if (x_padded) { \
  1804. memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \
  1805. _xx = x_padded; \
  1806. } \
  1807. for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \
  1808. } /* ~i */ \
  1809. } /* ~k, c1, n */ \
  1810. } while (0)
  1811. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  1812. kad_node_t *q = p->child[0], *w = p->child[1];
  1813. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  1814. int algo_switch = 0;
  1815. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  1816. if (w->d[3] * w->d[1] < 16) {
  1817. t = (float*)malloc(p->d[3] * sizeof(float));
  1818. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0;
  1819. } else {
  1820. q1 = (float*)malloc(kad_len(q) * sizeof(float));
  1821. w1 = (float*)malloc(kad_len(w) * sizeof(float));
  1822. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0;
  1823. algo_switch = 1;
  1824. }
  1825. }
  1826. if (action == KAD_SYNC_DIM) {
  1827. if (q->n_d != 4 || w->n_d != 4) return -1;
  1828. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  1829. p->n_d = 4;
  1830. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  1831. } else if (action == KAD_FORWARD) {
  1832. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1833. memset(p->x, 0, kad_len(p) * sizeof(float));
  1834. if (!algo_switch) { /* this is the first algorithm */
  1835. conv2d_loop1(q->x, w->x, p->x, t, process_row_for);
  1836. } else { /* this is the second algorithm */
  1837. conv2d_move_1to3(q->d, q->x, q1);
  1838. conv2d_move_1to3(w->d, w->x, w1);
  1839. conv2d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  1840. }
  1841. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1842. } else if (action == KAD_BACKWARD) {
  1843. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  1844. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1845. if (!algo_switch) {
  1846. conv2d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  1847. } else {
  1848. memset(q1, 0, kad_len(q) * sizeof(float));
  1849. conv2d_move_1to3(w->d, w->x, w1);
  1850. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  1851. conv2d_add_3to1(q->d, q1, q->g);
  1852. }
  1853. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1854. }
  1855. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  1856. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  1857. if (!algo_switch) {
  1858. conv2d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  1859. } else {
  1860. conv2d_move_1to3(q->d, q->x, q1);
  1861. memset(w1, 0, kad_len(w) * sizeof(float));
  1862. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  1863. conv2d_add_3to1(w->d, w1, w->g);
  1864. }
  1865. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  1866. }
  1867. }
  1868. free(t); free(q1); free(w1); free(x_padded);
  1869. return 0;
  1870. }
  1871. int kad_op_max2d(kad_node_t *p, int action)
  1872. {
  1873. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  1874. kad_node_t *q = p->child[0];
  1875. if (action == KAD_SYNC_DIM) {
  1876. if (q->n_d != 4) return -1;
  1877. p->n_d = 4;
  1878. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  1879. } else if (action == KAD_ALLOC) {
  1880. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  1881. } else if (action == KAD_FORWARD) {
  1882. int rest = 1, len, t, i;
  1883. int *f = (int*)p->gtmp;
  1884. len = kad_len(p);
  1885. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  1886. for (i = 0; i < p->n_d - 2; ++i) rest *= p->d[i];
  1887. for (t = 0; t < rest; ++t) {
  1888. int i, j, k, l, p_row = p->d[p->n_d - 2], p_col = p->d[p->n_d - 1];
  1889. for (i = 0; i < p_row; ++i) {
  1890. int u = (t * p_row + i) * p_col;
  1891. for (k = 0; k < aux[0].kernel_size; ++k) {
  1892. int v, v0, v_end, ii = i * aux[0].stride + k - aux[0].pad[0];
  1893. if (ii < 0 || ii >= q->d[p->n_d - 2]) continue;
  1894. v0 = (t * q->d[p->n_d - 2] + ii) * q->d[p->n_d - 1];
  1895. v_end = v0 + q->d[p->n_d - 1];
  1896. for (l = 0; l < aux[1].kernel_size; ++l)
  1897. for (j = 0, v = v0 + (l > aux[1].pad[0]? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride)
  1898. if (p->x[u + j] < q->x[v])
  1899. p->x[u + j] = q->x[v], f[u + j] = v;
  1900. } /* ~k */
  1901. } /* ~i */
  1902. }
  1903. } else if (action == KAD_BACKWARD) {
  1904. int i, len, *f = (int*)p->gtmp;
  1905. len = kad_len(p);
  1906. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  1907. }
  1908. return 0;
  1909. }
  1910. /********** 1D convolution **********/
  1911. static void conv1d_move_1to2(int d[3], const float *x, float *y)
  1912. {
  1913. int i, j, k;
  1914. for (k = 0; k < d[0]; ++k)
  1915. for (j = 0; j < d[1]; ++j)
  1916. for (i = 0; i < d[2]; ++i)
  1917. y[(k * d[2] + i) * d[1] + j] = x[(k * d[1] + j) * d[2] + i];
  1918. }
  1919. static void conv1d_add_2to1(int d[3], const float *y, float *x)
  1920. {
  1921. int i, j, k;
  1922. for (k = 0; k < d[0]; ++k)
  1923. for (j = 0; j < d[1]; ++j)
  1924. for (i = 0; i < d[2]; ++i)
  1925. x[(k * d[1] + j) * d[2] + i] += y[(k * d[2] + i) * d[1] + j];
  1926. }
  1927. int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW) shape */
  1928. {
  1929. #define conv1d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCW shape */ \
  1930. int n, c1, c0; \
  1931. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1932. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1933. for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \
  1934. float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \
  1935. float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \
  1936. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  1937. if (x_padded) { \
  1938. memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \
  1939. _xx = x_padded + aux->pad[0]; \
  1940. } \
  1941. _row_func(_xx, _ww, _yy, w->d[2], p->d[2], aux->stride, aux->pad[0], (_tmp)); \
  1942. } /* ~c0, c1, n */ \
  1943. } while (0)
  1944. #define conv1d_loop2(_x, _w, _y, _code) do { /* for the NWC shape */ \
  1945. int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \
  1946. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1947. for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \
  1948. float *_ww = &(_w)[c1 * m]; \
  1949. float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \
  1950. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  1951. if (x_padded) { \
  1952. memcpy(x_padded + aux->pad[0] * q->d[1], _xx, q->d[2] * q->d[1] * sizeof(float)); \
  1953. _xx = x_padded; \
  1954. } \
  1955. for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \
  1956. } /* ~c1, n */ \
  1957. } while (0)
  1958. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  1959. kad_node_t *q = p->child[0], *w = p->child[1];
  1960. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  1961. int algo_switch = 0;
  1962. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  1963. if (w->d[2] * w->d[1] < 32) {
  1964. t = (float*)malloc(p->d[2] * sizeof(float));
  1965. x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0;
  1966. } else {
  1967. q1 = (float*)malloc(kad_len(q) * sizeof(float));
  1968. w1 = (float*)malloc(kad_len(w) * sizeof(float));
  1969. x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0;
  1970. algo_switch = 1;
  1971. }
  1972. }
  1973. if (action == KAD_SYNC_DIM) {
  1974. if (q->n_d != 3 || w->n_d != 3) return -1;
  1975. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  1976. p->n_d = 3;
  1977. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], aux);
  1978. } else if (action == KAD_FORWARD) {
  1979. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  1980. memset(p->x, 0, kad_len(p) * sizeof(float));
  1981. if (!algo_switch) { /* this is the first algorithm */
  1982. conv1d_loop1(q->x, w->x, p->x, t, process_row_for);
  1983. } else { /* this is the second algorithm */
  1984. conv1d_move_1to2(q->d, q->x, q1);
  1985. conv1d_move_1to2(w->d, w->x, w1);
  1986. conv1d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  1987. }
  1988. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  1989. } else if (action == KAD_BACKWARD) {
  1990. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  1991. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  1992. if (!algo_switch) {
  1993. conv1d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  1994. } else {
  1995. memset(q1, 0, kad_len(q) * sizeof(float));
  1996. conv1d_move_1to2(w->d, w->x, w1);
  1997. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  1998. conv1d_add_2to1(q->d, q1, q->g);
  1999. }
  2000. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2001. }
  2002. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  2003. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2004. if (!algo_switch) {
  2005. conv1d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  2006. } else {
  2007. conv1d_move_1to2(q->d, q->x, q1);
  2008. memset(w1, 0, kad_len(w) * sizeof(float));
  2009. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  2010. conv1d_add_2to1(w->d, w1, w->g);
  2011. }
  2012. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2013. }
  2014. }
  2015. free(t); free(q1); free(w1); free(x_padded);
  2016. return 0;
  2017. }
  2018. int kad_op_max1d(kad_node_t *p, int action)
  2019. {
  2020. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  2021. kad_node_t *q = p->child[0];
  2022. if (action == KAD_SYNC_DIM) {
  2023. if (q->n_d != 3) return -1;
  2024. p->n_d = 3;
  2025. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2026. } else if (action == KAD_ALLOC) {
  2027. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  2028. } else if (action == KAD_FORWARD) {
  2029. int rest = 1, len, t, i;
  2030. int *f = (int*)p->gtmp;
  2031. len = kad_len(p);
  2032. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  2033. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2034. for (t = 0; t < rest; ++t) {
  2035. int j, l, p_width = p->d[p->n_d - 1];
  2036. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2037. for (l = 0; l < aux->kernel_size; ++l)
  2038. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2039. if (p->x[u + j] < q->x[v])
  2040. p->x[u + j] = q->x[v], f[u + j] = v;
  2041. }
  2042. } else if (action == KAD_BACKWARD) {
  2043. int i, len, *f = (int*)p->gtmp;
  2044. len = kad_len(p);
  2045. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  2046. }
  2047. return 0;
  2048. }
  2049. int kad_op_avg1d(kad_node_t *p, int action)
  2050. {
  2051. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  2052. kad_node_t *q = p->child[0];
  2053. if (action == KAD_SYNC_DIM) {
  2054. if (q->n_d != 3) return -1;
  2055. p->n_d = 3;
  2056. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2057. } else if (action == KAD_ALLOC) {
  2058. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  2059. } else if (action == KAD_FORWARD) {
  2060. int rest = 1, len, t, i;
  2061. int *f = (int*)p->gtmp;
  2062. len = kad_len(p);
  2063. for (i = 0; i < len; ++i) p->x[i] = 0.0f, f[i] = 0;
  2064. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2065. for (t = 0; t < rest; ++t) {
  2066. int j, l, p_width = p->d[p->n_d - 1];
  2067. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2068. for (l = 0; l < aux->kernel_size; ++l)
  2069. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2070. p->x[u + j] += q->x[v], ++f[u + j];
  2071. }
  2072. for (i = 0; i < len; ++i) p->x[i] /= f[i];
  2073. } else if (action == KAD_BACKWARD) {
  2074. int rest = 1, t, i;
  2075. int *f = (int*)p->gtmp;
  2076. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2077. for (t = 0; t < rest; ++t) {
  2078. int j, l, p_width = p->d[p->n_d - 1];
  2079. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2080. for (l = 0; l < aux->kernel_size; ++l)
  2081. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2082. q->g[v] += p->g[u + j] / f[u + j];
  2083. }
  2084. }
  2085. return 0;
  2086. }
  2087. /********** List of operators **********/
  2088. kad_op_f kad_op_list[KAD_MAX_OP] = {
  2089. 0,
  2090. kad_op_add, /* 1: element-wise addition */
  2091. kad_op_mul, /* 2: element-wise multiplication */
  2092. kad_op_cmul, /* 3: column multiplication */
  2093. kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */
  2094. kad_op_square, /* 5: square */
  2095. kad_op_sigm, /* 6: sigmoid */
  2096. kad_op_tanh, /* 7: tanh */
  2097. kad_op_relu, /* 8: ReLU */
  2098. kad_op_matmul, /* 9: matrix multiplication */
  2099. kad_op_avg, /* 10: general average pooling (not for ConvNet) */
  2100. kad_op_1minus, /* 11: 1-x */
  2101. kad_op_select, /* 12: choose between one of the children */
  2102. kad_op_ce_multi, /* 13: multi-class cross-entropy */
  2103. kad_op_softmax, /* 14: softmax */
  2104. kad_op_dropout, /* 15: dropout */
  2105. kad_op_conv2d, /* 16: 2D convolution */
  2106. kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */
  2107. kad_op_conv1d, /* 18: 1D convolution */
  2108. kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */
  2109. kad_op_slice, /* 20: slice data at a dimension */
  2110. kad_op_max, /* 21: general max pooling */
  2111. kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */
  2112. kad_op_sub, /* 23: element-wise subtraction */
  2113. kad_op_sample_normal, /* 24: sample from a normal distribution */
  2114. kad_op_reduce_sum, /* 25 */
  2115. kad_op_reduce_mean, /* 26 */
  2116. kad_op_log, /* 27: log() */
  2117. kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */
  2118. kad_op_mse, /* 29: mean square error */
  2119. kad_op_reshape, /* 30 */
  2120. kad_op_concat, /* 31 */
  2121. kad_op_stdnorm, /* 32: layer normalization */
  2122. kad_op_exp, /* 33: exp() */
  2123. kad_op_sin, /* 34: sin() */
  2124. kad_op_stack, /* 35: tf.stack, but on the first axis only */
  2125. kad_op_reverse /* 36: tf.reverse, but on one axis only */
  2126. };
  2127. char *kad_op_name[KAD_MAX_OP] = {
  2128. 0, "add", "mul", "cmul", "ce_bin_neg", "square", "sigm", "tanh", "relu", "matmul", "avg", "1minus", "select", "ce_multi", "softmax",
  2129. "dropout", "conv2d", "max2d", "conv1d", "max1d", "slice", "max", "ce_bin", "sub", "sample_normal", "reduce_sum", "reduce_mean", "log",
  2130. "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse"
  2131. };
  2132. /**************************
  2133. *** Debugging routines ***
  2134. **************************/
  2135. void kad_trap_fe(void)
  2136. {
  2137. #ifdef __SSE__
  2138. _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~(_MM_MASK_INVALID | _MM_MASK_DIV_ZERO));
  2139. #endif
  2140. }
  2141. void kad_print_graph(FILE *fp, int n, kad_node_t **v)
  2142. {
  2143. int i, j;
  2144. for (i = 0; i < n; ++i) v[i]->tmp = i;
  2145. for (i = 0; i < n; ++i) {
  2146. kad_node_t *p = v[i];
  2147. fprintf(fp, "%d\t%x:%x\t%d\t", i, p->flag, p->ext_flag, p->ext_label);
  2148. if (p->pre) fprintf(fp, "%d\t", p->pre->tmp);
  2149. else fprintf(fp, ".\t");
  2150. fputs("[", fp);
  2151. for (j = 0; j < p->n_d; ++j) {
  2152. if (j) fputc(',', fp);
  2153. fprintf(fp, "%d", p->d[j]);
  2154. }
  2155. fprintf(fp, "]\t");
  2156. if (p->n_child) {
  2157. fprintf(fp, "%s(", kad_op_name[p->op]);
  2158. for (j = 0; j < p->n_child; ++j) {
  2159. if (j) fputc(',', fp);
  2160. fprintf(fp, "$%d", p->child[j]->tmp);
  2161. }
  2162. fprintf(fp, ")");
  2163. } else fprintf(fp, "%s", kad_is_feed(p)? "feed" : kad_is_var(p)? "var" : kad_is_const(p)? "const" : "N/A");
  2164. fputc('\n', fp);
  2165. }
  2166. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  2167. }
  2168. static void kad_add_delta(int n, kad_node_t **a, float c, float *delta)
  2169. {
  2170. int i, k;
  2171. for (i = k = 0; i < n; ++i)
  2172. if (kad_is_var(a[i])) {
  2173. kad_saxpy(kad_len(a[i]), c, &delta[k], a[i]->x);
  2174. k += kad_len(a[i]);
  2175. }
  2176. }
  2177. void kad_check_grad(int n, kad_node_t **a, int from)
  2178. {
  2179. const float eps = 1e-5f, rel = 1e-7f / eps;
  2180. int i, k, n_var;
  2181. float *g0, *delta, f0, f_minus, f_plus, s0, s1, rel_err, p_m_err;
  2182. n_var = kad_size_var(n, a);
  2183. g0 = (float*)calloc(n_var, sizeof(float));
  2184. f0 = *kad_eval_at(n, a, from);
  2185. kad_grad(n, a, from);
  2186. for (i = k = 0; i < n; ++i)
  2187. if (kad_is_var(a[i])) {
  2188. memcpy(&g0[k], a[i]->g, kad_len(a[i]) * sizeof(float));
  2189. k += kad_len(a[i]);
  2190. }
  2191. delta = (float*)calloc(n_var, sizeof(float));
  2192. for (k = 0; k < n_var; ++k) delta[k] = (float)kad_drand(0) * eps;
  2193. kad_add_delta(n, a, 1.0f, delta);
  2194. f_plus = *kad_eval_at(n, a, from);
  2195. kad_add_delta(n, a, -2.0f, delta);
  2196. f_minus = *kad_eval_at(n, a, from);
  2197. kad_add_delta(n, a, 1.0f, delta);
  2198. s0 = kad_sdot(n_var, g0, delta);
  2199. s1 = .5f * (f_plus - f_minus);
  2200. fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0/eps, s1/eps, f0);
  2201. if (fabs(s1) >= rel * eps) {
  2202. rel_err = fabsf(fabsf(s0) - fabsf(s1)) / (fabsf(s0) + fabsf(s1));
  2203. p_m_err = fabsf(f_plus + f_minus - 2.0f * f0) / fabsf(f_plus - f_minus);
  2204. fprintf(stderr, "rel_err:%g p_m_err:%g -- ", rel_err, p_m_err);
  2205. if (rel_err >= rel && rel_err > p_m_err) fprintf(stderr, "failed\n");
  2206. else fprintf(stderr, "passed\n");
  2207. } else fprintf(stderr, "skipped\n");
  2208. free(delta); free(g0);
  2209. }