You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

huf_compress.c 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798
  1. /* ******************************************************************
  2. * Huffman encoder, part of New Generation Entropy library
  3. * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
  4. *
  5. * You can contact the author at :
  6. * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
  7. * - Public forum : https://groups.google.com/forum/#!forum/lz4c
  8. *
  9. * This source code is licensed under both the BSD-style license (found in the
  10. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11. * in the COPYING file in the root directory of this source tree).
  12. * You may select, at your option, one of the above-listed licenses.
  13. ****************************************************************** */
  14. /* **************************************************************
  15. * Compiler specifics
  16. ****************************************************************/
  17. #ifdef _MSC_VER /* Visual Studio */
  18. # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
  19. #endif
  20. /* **************************************************************
  21. * Includes
  22. ****************************************************************/
  23. #include <string.h> /* memcpy, memset */
  24. #include <stdio.h> /* printf (debug) */
  25. #include "compiler.h"
  26. #include "bitstream.h"
  27. #include "hist.h"
  28. #define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
  29. #include "fse.h" /* header compression */
  30. #define HUF_STATIC_LINKING_ONLY
  31. #include "huf.h"
  32. #include "error_private.h"
  33. /* **************************************************************
  34. * Error Management
  35. ****************************************************************/
  36. #define HUF_isError ERR_isError
  37. #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
  38. /* **************************************************************
  39. * Utils
  40. ****************************************************************/
  41. unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
  42. {
  43. return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
  44. }
  45. /* *******************************************************
  46. * HUF : Huffman block compression
  47. *********************************************************/
  48. /* HUF_compressWeights() :
  49. * Same as FSE_compress(), but dedicated to huff0's weights compression.
  50. * The use case needs much less stack memory.
  51. * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
  52. */
  53. #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
  54. static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
  55. {
  56. BYTE* const ostart = (BYTE*) dst;
  57. BYTE* op = ostart;
  58. BYTE* const oend = ostart + dstSize;
  59. unsigned maxSymbolValue = HUF_TABLELOG_MAX;
  60. U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
  61. FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
  62. BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];
  63. unsigned count[HUF_TABLELOG_MAX+1];
  64. S16 norm[HUF_TABLELOG_MAX+1];
  65. /* init conditions */
  66. if (wtSize <= 1) return 0; /* Not compressible */
  67. /* Scan input and build symbol stats */
  68. { unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
  69. if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
  70. if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
  71. }
  72. tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
  73. CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );
  74. /* Write table description header */
  75. { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
  76. op += hSize;
  77. }
  78. /* Compress */
  79. CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
  80. { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
  81. if (cSize == 0) return 0; /* not enough space for compressed data */
  82. op += cSize;
  83. }
  84. return (size_t)(op-ostart);
  85. }
  86. struct HUF_CElt_s {
  87. U16 val;
  88. BYTE nbBits;
  89. }; /* typedef'd to HUF_CElt within "huf.h" */
  90. /*! HUF_writeCTable() :
  91. `CTable` : Huffman tree to save, using huf representation.
  92. @return : size of saved CTable */
  93. size_t HUF_writeCTable (void* dst, size_t maxDstSize,
  94. const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
  95. {
  96. BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
  97. BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
  98. BYTE* op = (BYTE*)dst;
  99. U32 n;
  100. /* check conditions */
  101. if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
  102. /* convert to weight */
  103. bitsToWeight[0] = 0;
  104. for (n=1; n<huffLog+1; n++)
  105. bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
  106. for (n=0; n<maxSymbolValue; n++)
  107. huffWeight[n] = bitsToWeight[CTable[n].nbBits];
  108. /* attempt weights compression by FSE */
  109. { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
  110. if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
  111. op[0] = (BYTE)hSize;
  112. return hSize+1;
  113. } }
  114. /* write raw values as 4-bits (max : 15) */
  115. if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
  116. if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
  117. op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
  118. huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
  119. for (n=0; n<maxSymbolValue; n+=2)
  120. op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
  121. return ((maxSymbolValue+1)/2) + 1;
  122. }
  123. size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
  124. {
  125. BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
  126. U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
  127. U32 tableLog = 0;
  128. U32 nbSymbols = 0;
  129. /* get symbol weights */
  130. CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
  131. /* check result */
  132. if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
  133. if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
  134. /* Prepare base value per rank */
  135. { U32 n, nextRankStart = 0;
  136. for (n=1; n<=tableLog; n++) {
  137. U32 current = nextRankStart;
  138. nextRankStart += (rankVal[n] << (n-1));
  139. rankVal[n] = current;
  140. } }
  141. /* fill nbBits */
  142. *hasZeroWeights = 0;
  143. { U32 n; for (n=0; n<nbSymbols; n++) {
  144. const U32 w = huffWeight[n];
  145. *hasZeroWeights |= (w == 0);
  146. CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
  147. } }
  148. /* fill val */
  149. { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
  150. U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
  151. { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
  152. /* determine stating value per rank */
  153. valPerRank[tableLog+1] = 0; /* for w==0 */
  154. { U16 min = 0;
  155. U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
  156. valPerRank[n] = min; /* get starting value within each rank */
  157. min += nbPerRank[n];
  158. min >>= 1;
  159. } }
  160. /* assign value within rank, symbol order */
  161. { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
  162. }
  163. *maxSymbolValuePtr = nbSymbols - 1;
  164. return readSize;
  165. }
  166. U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
  167. {
  168. const HUF_CElt* table = (const HUF_CElt*)symbolTable;
  169. assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
  170. return table[symbolValue].nbBits;
  171. }
  172. typedef struct nodeElt_s {
  173. U32 count;
  174. U16 parent;
  175. BYTE byte;
  176. BYTE nbBits;
  177. } nodeElt;
  178. static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
  179. {
  180. const U32 largestBits = huffNode[lastNonNull].nbBits;
  181. if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
  182. /* there are several too large elements (at least >= 2) */
  183. { int totalCost = 0;
  184. const U32 baseCost = 1 << (largestBits - maxNbBits);
  185. int n = (int)lastNonNull;
  186. while (huffNode[n].nbBits > maxNbBits) {
  187. totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
  188. huffNode[n].nbBits = (BYTE)maxNbBits;
  189. n --;
  190. } /* n stops at huffNode[n].nbBits <= maxNbBits */
  191. while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
  192. /* renorm totalCost */
  193. totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
  194. /* repay normalized cost */
  195. { U32 const noSymbol = 0xF0F0F0F0;
  196. U32 rankLast[HUF_TABLELOG_MAX+2];
  197. /* Get pos of last (smallest) symbol per rank */
  198. memset(rankLast, 0xF0, sizeof(rankLast));
  199. { U32 currentNbBits = maxNbBits;
  200. int pos;
  201. for (pos=n ; pos >= 0; pos--) {
  202. if (huffNode[pos].nbBits >= currentNbBits) continue;
  203. currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
  204. rankLast[maxNbBits-currentNbBits] = (U32)pos;
  205. } }
  206. while (totalCost > 0) {
  207. U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
  208. for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
  209. U32 const highPos = rankLast[nBitsToDecrease];
  210. U32 const lowPos = rankLast[nBitsToDecrease-1];
  211. if (highPos == noSymbol) continue;
  212. if (lowPos == noSymbol) break;
  213. { U32 const highTotal = huffNode[highPos].count;
  214. U32 const lowTotal = 2 * huffNode[lowPos].count;
  215. if (highTotal <= lowTotal) break;
  216. } }
  217. /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
  218. /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
  219. while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
  220. nBitsToDecrease ++;
  221. totalCost -= 1 << (nBitsToDecrease-1);
  222. if (rankLast[nBitsToDecrease-1] == noSymbol)
  223. rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
  224. huffNode[rankLast[nBitsToDecrease]].nbBits ++;
  225. if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
  226. rankLast[nBitsToDecrease] = noSymbol;
  227. else {
  228. rankLast[nBitsToDecrease]--;
  229. if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
  230. rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
  231. } } /* while (totalCost > 0) */
  232. while (totalCost < 0) { /* Sometimes, cost correction overshoot */
  233. if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
  234. while (huffNode[n].nbBits == maxNbBits) n--;
  235. huffNode[n+1].nbBits--;
  236. assert(n >= 0);
  237. rankLast[1] = (U32)(n+1);
  238. totalCost++;
  239. continue;
  240. }
  241. huffNode[ rankLast[1] + 1 ].nbBits--;
  242. rankLast[1]++;
  243. totalCost ++;
  244. } } } /* there are several too large elements (at least >= 2) */
  245. return maxNbBits;
  246. }
  247. typedef struct {
  248. U32 base;
  249. U32 current;
  250. } rankPos;
  251. typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
  252. #define RANK_POSITION_TABLE_SIZE 32
  253. typedef struct {
  254. huffNodeTable huffNodeTbl;
  255. rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
  256. } HUF_buildCTable_wksp_tables;
  257. static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
  258. {
  259. U32 n;
  260. memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
  261. for (n=0; n<=maxSymbolValue; n++) {
  262. U32 r = BIT_highbit32(count[n] + 1);
  263. rankPosition[r].base ++;
  264. }
  265. for (n=30; n>0; n--) rankPosition[n-1].base += rankPosition[n].base;
  266. for (n=0; n<32; n++) rankPosition[n].current = rankPosition[n].base;
  267. for (n=0; n<=maxSymbolValue; n++) {
  268. U32 const c = count[n];
  269. U32 const r = BIT_highbit32(c+1) + 1;
  270. U32 pos = rankPosition[r].current++;
  271. while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
  272. huffNode[pos] = huffNode[pos-1];
  273. pos--;
  274. }
  275. huffNode[pos].count = c;
  276. huffNode[pos].byte = (BYTE)n;
  277. }
  278. }
  279. /** HUF_buildCTable_wksp() :
  280. * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
  281. * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
  282. */
  283. #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
  284. size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
  285. {
  286. HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
  287. nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
  288. nodeElt* const huffNode = huffNode0+1;
  289. int nonNullRank;
  290. int lowS, lowN;
  291. int nodeNb = STARTNODE;
  292. int n, nodeRoot;
  293. /* safety checks */
  294. if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
  295. if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
  296. return ERROR(workSpace_tooSmall);
  297. if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
  298. if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
  299. return ERROR(maxSymbolValue_tooLarge);
  300. memset(huffNode0, 0, sizeof(huffNodeTable));
  301. /* sort, decreasing order */
  302. HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
  303. /* init for parents */
  304. nonNullRank = (int)maxSymbolValue;
  305. while(huffNode[nonNullRank].count == 0) nonNullRank--;
  306. lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
  307. huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
  308. huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
  309. nodeNb++; lowS-=2;
  310. for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
  311. huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
  312. /* create parents */
  313. while (nodeNb <= nodeRoot) {
  314. int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
  315. int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
  316. huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
  317. huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
  318. nodeNb++;
  319. }
  320. /* distribute weights (unlimited tree height) */
  321. huffNode[nodeRoot].nbBits = 0;
  322. for (n=nodeRoot-1; n>=STARTNODE; n--)
  323. huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
  324. for (n=0; n<=nonNullRank; n++)
  325. huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
  326. /* enforce maxTableLog */
  327. maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
  328. /* fill result into tree (val, nbBits) */
  329. { U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
  330. U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
  331. int const alphabetSize = (int)(maxSymbolValue + 1);
  332. if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
  333. for (n=0; n<=nonNullRank; n++)
  334. nbPerRank[huffNode[n].nbBits]++;
  335. /* determine stating value per rank */
  336. { U16 min = 0;
  337. for (n=(int)maxNbBits; n>0; n--) {
  338. valPerRank[n] = min; /* get starting value within each rank */
  339. min += nbPerRank[n];
  340. min >>= 1;
  341. } }
  342. for (n=0; n<alphabetSize; n++)
  343. tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
  344. for (n=0; n<alphabetSize; n++)
  345. tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
  346. }
  347. return maxNbBits;
  348. }
  349. /** HUF_buildCTable() :
  350. * @return : maxNbBits
  351. * Note : count is used before tree is written, so they can safely overlap
  352. */
  353. size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
  354. {
  355. HUF_buildCTable_wksp_tables workspace;
  356. return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
  357. }
  358. size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
  359. {
  360. size_t nbBits = 0;
  361. int s;
  362. for (s = 0; s <= (int)maxSymbolValue; ++s) {
  363. nbBits += CTable[s].nbBits * count[s];
  364. }
  365. return nbBits >> 3;
  366. }
  367. int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  368. int bad = 0;
  369. int s;
  370. for (s = 0; s <= (int)maxSymbolValue; ++s) {
  371. bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
  372. }
  373. return !bad;
  374. }
  375. size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
  376. FORCE_INLINE_TEMPLATE void
  377. HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
  378. {
  379. BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
  380. }
  381. #define HUF_FLUSHBITS(s) BIT_flushBits(s)
  382. #define HUF_FLUSHBITS_1(stream) \
  383. if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
  384. #define HUF_FLUSHBITS_2(stream) \
  385. if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
  386. FORCE_INLINE_TEMPLATE size_t
  387. HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
  388. const void* src, size_t srcSize,
  389. const HUF_CElt* CTable)
  390. {
  391. const BYTE* ip = (const BYTE*) src;
  392. BYTE* const ostart = (BYTE*)dst;
  393. BYTE* const oend = ostart + dstSize;
  394. BYTE* op = ostart;
  395. size_t n;
  396. BIT_CStream_t bitC;
  397. /* init */
  398. if (dstSize < 8) return 0; /* not enough space to compress */
  399. { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
  400. if (HUF_isError(initErr)) return 0; }
  401. n = srcSize & ~3; /* join to mod 4 */
  402. switch (srcSize & 3)
  403. {
  404. case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
  405. HUF_FLUSHBITS_2(&bitC);
  406. /* fall-through */
  407. case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
  408. HUF_FLUSHBITS_1(&bitC);
  409. /* fall-through */
  410. case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
  411. HUF_FLUSHBITS(&bitC);
  412. /* fall-through */
  413. case 0 : /* fall-through */
  414. default: break;
  415. }
  416. for (; n>0; n-=4) { /* note : n&3==0 at this stage */
  417. HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
  418. HUF_FLUSHBITS_1(&bitC);
  419. HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
  420. HUF_FLUSHBITS_2(&bitC);
  421. HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
  422. HUF_FLUSHBITS_1(&bitC);
  423. HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
  424. HUF_FLUSHBITS(&bitC);
  425. }
  426. return BIT_closeCStream(&bitC);
  427. }
  428. #if DYNAMIC_BMI2
  429. static TARGET_ATTRIBUTE("bmi2") size_t
  430. HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
  431. const void* src, size_t srcSize,
  432. const HUF_CElt* CTable)
  433. {
  434. return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
  435. }
  436. static size_t
  437. HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
  438. const void* src, size_t srcSize,
  439. const HUF_CElt* CTable)
  440. {
  441. return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
  442. }
  443. static size_t
  444. HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
  445. const void* src, size_t srcSize,
  446. const HUF_CElt* CTable, const int bmi2)
  447. {
  448. if (bmi2) {
  449. return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
  450. }
  451. return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
  452. }
  453. #else
  454. static size_t
  455. HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
  456. const void* src, size_t srcSize,
  457. const HUF_CElt* CTable, const int bmi2)
  458. {
  459. (void)bmi2;
  460. return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
  461. }
  462. #endif
  463. size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
  464. {
  465. return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
  466. }
  467. static size_t
  468. HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
  469. const void* src, size_t srcSize,
  470. const HUF_CElt* CTable, int bmi2)
  471. {
  472. size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
  473. const BYTE* ip = (const BYTE*) src;
  474. const BYTE* const iend = ip + srcSize;
  475. BYTE* const ostart = (BYTE*) dst;
  476. BYTE* const oend = ostart + dstSize;
  477. BYTE* op = ostart;
  478. if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
  479. if (srcSize < 12) return 0; /* no saving possible : too small input */
  480. op += 6; /* jumpTable */
  481. assert(op <= oend);
  482. { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
  483. if (cSize==0) return 0;
  484. assert(cSize <= 65535);
  485. MEM_writeLE16(ostart, (U16)cSize);
  486. op += cSize;
  487. }
  488. ip += segmentSize;
  489. assert(op <= oend);
  490. { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
  491. if (cSize==0) return 0;
  492. assert(cSize <= 65535);
  493. MEM_writeLE16(ostart+2, (U16)cSize);
  494. op += cSize;
  495. }
  496. ip += segmentSize;
  497. assert(op <= oend);
  498. { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
  499. if (cSize==0) return 0;
  500. assert(cSize <= 65535);
  501. MEM_writeLE16(ostart+4, (U16)cSize);
  502. op += cSize;
  503. }
  504. ip += segmentSize;
  505. assert(op <= oend);
  506. assert(ip <= iend);
  507. { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
  508. if (cSize==0) return 0;
  509. op += cSize;
  510. }
  511. return (size_t)(op-ostart);
  512. }
  513. size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
  514. {
  515. return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
  516. }
  517. typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
  518. static size_t HUF_compressCTable_internal(
  519. BYTE* const ostart, BYTE* op, BYTE* const oend,
  520. const void* src, size_t srcSize,
  521. HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
  522. {
  523. size_t const cSize = (nbStreams==HUF_singleStream) ?
  524. HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
  525. HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
  526. if (HUF_isError(cSize)) { return cSize; }
  527. if (cSize==0) { return 0; } /* uncompressible */
  528. op += cSize;
  529. /* check compressibility */
  530. assert(op >= ostart);
  531. if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
  532. return (size_t)(op-ostart);
  533. }
  534. typedef struct {
  535. unsigned count[HUF_SYMBOLVALUE_MAX + 1];
  536. HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
  537. HUF_buildCTable_wksp_tables buildCTable_wksp;
  538. } HUF_compress_tables_t;
  539. /* HUF_compress_internal() :
  540. * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
  541. static size_t
  542. HUF_compress_internal (void* dst, size_t dstSize,
  543. const void* src, size_t srcSize,
  544. unsigned maxSymbolValue, unsigned huffLog,
  545. HUF_nbStreams_e nbStreams,
  546. void* workSpace, size_t wkspSize,
  547. HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
  548. const int bmi2)
  549. {
  550. HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
  551. BYTE* const ostart = (BYTE*)dst;
  552. BYTE* const oend = ostart + dstSize;
  553. BYTE* op = ostart;
  554. HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
  555. /* checks & inits */
  556. if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
  557. if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
  558. if (!srcSize) return 0; /* Uncompressed */
  559. if (!dstSize) return 0; /* cannot fit anything within dst budget */
  560. if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
  561. if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
  562. if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
  563. if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
  564. if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
  565. /* Heuristic : If old table is valid, use it for small inputs */
  566. if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
  567. return HUF_compressCTable_internal(ostart, op, oend,
  568. src, srcSize,
  569. nbStreams, oldHufTable, bmi2);
  570. }
  571. /* Scan input and build symbol stats */
  572. { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) );
  573. if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
  574. if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
  575. }
  576. /* Check validity of previous table */
  577. if ( repeat
  578. && *repeat == HUF_repeat_check
  579. && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
  580. *repeat = HUF_repeat_none;
  581. }
  582. /* Heuristic : use existing table for small inputs */
  583. if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
  584. return HUF_compressCTable_internal(ostart, op, oend,
  585. src, srcSize,
  586. nbStreams, oldHufTable, bmi2);
  587. }
  588. /* Build Huffman Tree */
  589. huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
  590. { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
  591. maxSymbolValue, huffLog,
  592. &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
  593. CHECK_F(maxBits);
  594. huffLog = (U32)maxBits;
  595. /* Zero unused symbols in CTable, so we can check it for validity */
  596. memset(table->CTable + (maxSymbolValue + 1), 0,
  597. sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
  598. }
  599. /* Write table description header */
  600. { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
  601. /* Check if using previous huffman table is beneficial */
  602. if (repeat && *repeat != HUF_repeat_none) {
  603. size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
  604. size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
  605. if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
  606. return HUF_compressCTable_internal(ostart, op, oend,
  607. src, srcSize,
  608. nbStreams, oldHufTable, bmi2);
  609. } }
  610. /* Use the new huffman table */
  611. if (hSize + 12ul >= srcSize) { return 0; }
  612. op += hSize;
  613. if (repeat) { *repeat = HUF_repeat_none; }
  614. if (oldHufTable)
  615. memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
  616. }
  617. return HUF_compressCTable_internal(ostart, op, oend,
  618. src, srcSize,
  619. nbStreams, table->CTable, bmi2);
  620. }
  621. size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
  622. const void* src, size_t srcSize,
  623. unsigned maxSymbolValue, unsigned huffLog,
  624. void* workSpace, size_t wkspSize)
  625. {
  626. return HUF_compress_internal(dst, dstSize, src, srcSize,
  627. maxSymbolValue, huffLog, HUF_singleStream,
  628. workSpace, wkspSize,
  629. NULL, NULL, 0, 0 /*bmi2*/);
  630. }
  631. size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
  632. const void* src, size_t srcSize,
  633. unsigned maxSymbolValue, unsigned huffLog,
  634. void* workSpace, size_t wkspSize,
  635. HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
  636. {
  637. return HUF_compress_internal(dst, dstSize, src, srcSize,
  638. maxSymbolValue, huffLog, HUF_singleStream,
  639. workSpace, wkspSize, hufTable,
  640. repeat, preferRepeat, bmi2);
  641. }
  642. size_t HUF_compress1X (void* dst, size_t dstSize,
  643. const void* src, size_t srcSize,
  644. unsigned maxSymbolValue, unsigned huffLog)
  645. {
  646. unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
  647. return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
  648. }
  649. /* HUF_compress4X_repeat():
  650. * compress input using 4 streams.
  651. * provide workspace to generate compression tables */
  652. size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
  653. const void* src, size_t srcSize,
  654. unsigned maxSymbolValue, unsigned huffLog,
  655. void* workSpace, size_t wkspSize)
  656. {
  657. return HUF_compress_internal(dst, dstSize, src, srcSize,
  658. maxSymbolValue, huffLog, HUF_fourStreams,
  659. workSpace, wkspSize,
  660. NULL, NULL, 0, 0 /*bmi2*/);
  661. }
  662. /* HUF_compress4X_repeat():
  663. * compress input using 4 streams.
  664. * re-use an existing huffman compression table */
  665. size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
  666. const void* src, size_t srcSize,
  667. unsigned maxSymbolValue, unsigned huffLog,
  668. void* workSpace, size_t wkspSize,
  669. HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
  670. {
  671. return HUF_compress_internal(dst, dstSize, src, srcSize,
  672. maxSymbolValue, huffLog, HUF_fourStreams,
  673. workSpace, wkspSize,
  674. hufTable, repeat, preferRepeat, bmi2);
  675. }
  676. size_t HUF_compress2 (void* dst, size_t dstSize,
  677. const void* src, size_t srcSize,
  678. unsigned maxSymbolValue, unsigned huffLog)
  679. {
  680. unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
  681. return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
  682. }
  683. size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
  684. {
  685. return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
  686. }