You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

xxhash.c 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. /*
  2. xxHash - Fast Hash algorithm
  3. Copyright (C) 2012-2014, Yann Collet.
  4. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  5. Redistribution and use in source and binary forms, with or without
  6. modification, are permitted provided that the following conditions are
  7. met:
  8. * Redistributions of source code must retain the above copyright
  9. notice, this list of conditions and the following disclaimer.
  10. * Redistributions in binary form must reproduce the above
  11. copyright notice, this list of conditions and the following disclaimer
  12. in the documentation and/or other materials provided with the
  13. distribution.
  14. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15. "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18. OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19. SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20. LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. You can contact the author at :
  26. - xxHash source repository : http://code.google.com/p/xxhash/
  27. - public discussion board : https://groups.google.com/forum/#!forum/lz4c
  28. */
  29. //**************************************
  30. // Tuning parameters
  31. //**************************************
  32. // Unaligned memory access is automatically enabled for "common" CPU, such as x86.
  33. // For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
  34. // If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
  35. // You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
  36. #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  37. # define XXH_USE_UNALIGNED_ACCESS 1
  38. #endif
  39. // XXH_ACCEPT_NULL_INPUT_POINTER :
  40. // If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  41. // When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  42. // This option has a very small performance cost (only measurable on small inputs).
  43. // By default, this option is disabled. To enable it, uncomment below define :
  44. // #define XXH_ACCEPT_NULL_INPUT_POINTER 1
  45. // XXH_FORCE_NATIVE_FORMAT :
  46. // By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  47. // Results are therefore identical for little-endian and big-endian CPU.
  48. // This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  49. // Should endian-independence be of no importance for your application, you may set the #define below to 1.
  50. // It will improve speed for Big-endian CPU.
  51. // This option has no impact on Little_Endian CPU.
  52. #define XXH_FORCE_NATIVE_FORMAT 0
  53. //**************************************
  54. // Compiler Specific Options
  55. //**************************************
  56. // Disable some Visual warning messages
  57. #ifdef _MSC_VER // Visual Studio
  58. # pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
  59. #endif
  60. #ifdef _MSC_VER // Visual Studio
  61. # define FORCE_INLINE static __forceinline
  62. #else
  63. # ifdef __GNUC__
  64. # define FORCE_INLINE static inline __attribute__((always_inline))
  65. # else
  66. # define FORCE_INLINE static inline
  67. # endif
  68. #endif
  69. //**************************************
  70. // Includes & Memory related functions
  71. //**************************************
  72. #include "xxhash.h"
  73. // Modify the local functions below should you wish to use some other memory routines
  74. // for malloc(), free()
  75. #include <stdlib.h>
  76. static void* XXH_malloc(size_t s) { return malloc(s); }
  77. static void XXH_free (void* p) { free(p); }
  78. // for memcpy()
  79. #include <string.h>
  80. static void* XXH_memcpy(void* dest, const void* src, size_t size)
  81. {
  82. return memcpy(dest,src,size);
  83. }
  84. //**************************************
  85. // Basic Types
  86. //**************************************
  87. #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
  88. # include <stdint.h>
  89. typedef uint8_t BYTE;
  90. typedef uint16_t U16;
  91. typedef uint32_t U32;
  92. typedef int32_t S32;
  93. typedef uint64_t U64;
  94. #else
  95. typedef unsigned char BYTE;
  96. typedef unsigned short U16;
  97. typedef unsigned int U32;
  98. typedef signed int S32;
  99. typedef unsigned long long U64;
  100. #endif
  101. #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
  102. # define _PACKED __attribute__ ((packed))
  103. #else
  104. # define _PACKED
  105. #endif
  106. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  107. # ifdef __IBMC__
  108. # pragma pack(1)
  109. # else
  110. # pragma pack(push, 1)
  111. # endif
  112. #endif
  113. typedef struct _U32_S
  114. {
  115. U32 v;
  116. } _PACKED U32_S;
  117. typedef struct _U64_S
  118. {
  119. U64 v;
  120. } _PACKED U64_S;
  121. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  122. # pragma pack(pop)
  123. #endif
  124. #define A32(x) (((U32_S *)(x))->v)
  125. #define A64(x) (((U64_S *)(x))->v)
  126. //***************************************
  127. // Compiler-specific Functions and Macros
  128. //***************************************
  129. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  130. // Note : although _rotl exists for minGW (GCC under windows), performance seems poor
  131. #if defined(_MSC_VER)
  132. # define XXH_rotl32(x,r) _rotl(x,r)
  133. # define XXH_rotl64(x,r) _rotl64(x,r)
  134. #else
  135. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  136. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  137. #endif
  138. #if defined(_MSC_VER) // Visual Studio
  139. # define XXH_swap32 _byteswap_ulong
  140. # define XXH_swap64 _byteswap_uint64
  141. #elif GCC_VERSION >= 403
  142. # define XXH_swap32 __builtin_bswap32
  143. # define XXH_swap64 __builtin_bswap64
  144. #else
  145. static inline U32 XXH_swap32 (U32 x)
  146. {
  147. return ((x << 24) & 0xff000000 ) |
  148. ((x << 8) & 0x00ff0000 ) |
  149. ((x >> 8) & 0x0000ff00 ) |
  150. ((x >> 24) & 0x000000ff );
  151. }
  152. static inline U64 XXH_swap64 (U64 x)
  153. {
  154. return ((x << 56) & 0xff00000000000000ULL) |
  155. ((x << 40) & 0x00ff000000000000ULL) |
  156. ((x << 24) & 0x0000ff0000000000ULL) |
  157. ((x << 8) & 0x000000ff00000000ULL) |
  158. ((x >> 8) & 0x00000000ff000000ULL) |
  159. ((x >> 24) & 0x0000000000ff0000ULL) |
  160. ((x >> 40) & 0x000000000000ff00ULL) |
  161. ((x >> 56) & 0x00000000000000ffULL);
  162. }
  163. #endif
  164. //**************************************
  165. // Constants
  166. //**************************************
  167. #define PRIME32_1 2654435761U
  168. #define PRIME32_2 2246822519U
  169. #define PRIME32_3 3266489917U
  170. #define PRIME32_4 668265263U
  171. #define PRIME32_5 374761393U
  172. #define PRIME64_1 11400714785074694791ULL
  173. #define PRIME64_2 14029467366897019727ULL
  174. #define PRIME64_3 1609587929392839161ULL
  175. #define PRIME64_4 9650029242287828579ULL
  176. #define PRIME64_5 2870177450012600261ULL
  177. //**************************************
  178. // Architecture Macros
  179. //**************************************
  180. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  181. #ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
  182. static const int one = 1;
  183. # define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
  184. #endif
  185. //**************************************
  186. // Macros
  187. //**************************************
  188. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
  189. //****************************
  190. // Memory reads
  191. //****************************
  192. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  193. FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  194. {
  195. if (align==XXH_unaligned)
  196. return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
  197. else
  198. return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
  199. }
  200. FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  201. {
  202. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  203. }
  204. FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  205. {
  206. if (align==XXH_unaligned)
  207. return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
  208. else
  209. return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
  210. }
  211. FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  212. {
  213. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  214. }
  215. //****************************
  216. // Simple Hash Functions
  217. //****************************
  218. FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  219. {
  220. const BYTE* p = (const BYTE*)input;
  221. const BYTE* bEnd = p + len;
  222. U32 h32;
  223. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  224. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  225. if (p==NULL)
  226. {
  227. len=0;
  228. bEnd=p=(const BYTE*)(size_t)16;
  229. }
  230. #endif
  231. if (len>=16)
  232. {
  233. const BYTE* const limit = bEnd - 16;
  234. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  235. U32 v2 = seed + PRIME32_2;
  236. U32 v3 = seed + 0;
  237. U32 v4 = seed - PRIME32_1;
  238. do
  239. {
  240. v1 += XXH_get32bits(p) * PRIME32_2;
  241. v1 = XXH_rotl32(v1, 13);
  242. v1 *= PRIME32_1;
  243. p+=4;
  244. v2 += XXH_get32bits(p) * PRIME32_2;
  245. v2 = XXH_rotl32(v2, 13);
  246. v2 *= PRIME32_1;
  247. p+=4;
  248. v3 += XXH_get32bits(p) * PRIME32_2;
  249. v3 = XXH_rotl32(v3, 13);
  250. v3 *= PRIME32_1;
  251. p+=4;
  252. v4 += XXH_get32bits(p) * PRIME32_2;
  253. v4 = XXH_rotl32(v4, 13);
  254. v4 *= PRIME32_1;
  255. p+=4;
  256. }
  257. while (p<=limit);
  258. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  259. }
  260. else
  261. {
  262. h32 = seed + PRIME32_5;
  263. }
  264. h32 += (U32) len;
  265. while (p+4<=bEnd)
  266. {
  267. h32 += XXH_get32bits(p) * PRIME32_3;
  268. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  269. p+=4;
  270. }
  271. while (p<bEnd)
  272. {
  273. h32 += (*p) * PRIME32_5;
  274. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  275. p++;
  276. }
  277. h32 ^= h32 >> 15;
  278. h32 *= PRIME32_2;
  279. h32 ^= h32 >> 13;
  280. h32 *= PRIME32_3;
  281. h32 ^= h32 >> 16;
  282. return h32;
  283. }
  284. unsigned int XXH32 (const void* input, size_t len, unsigned seed)
  285. {
  286. #if 0
  287. // Simple version, good for code maintenance, but unfortunately slow for small inputs
  288. XXH32_state_t state;
  289. XXH32_reset(&state, seed);
  290. XXH32_update(&state, input, len);
  291. return XXH32_digest(&state);
  292. #else
  293. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  294. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  295. if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
  296. {
  297. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  298. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  299. else
  300. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  301. }
  302. # endif
  303. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  304. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  305. else
  306. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  307. #endif
  308. }
  309. FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  310. {
  311. const BYTE* p = (const BYTE*)input;
  312. const BYTE* bEnd = p + len;
  313. U64 h64;
  314. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  315. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  316. if (p==NULL)
  317. {
  318. len=0;
  319. bEnd=p=(const BYTE*)(size_t)32;
  320. }
  321. #endif
  322. if (len>=32)
  323. {
  324. const BYTE* const limit = bEnd - 32;
  325. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  326. U64 v2 = seed + PRIME64_2;
  327. U64 v3 = seed + 0;
  328. U64 v4 = seed - PRIME64_1;
  329. do
  330. {
  331. v1 += XXH_get64bits(p) * PRIME64_2;
  332. p+=8;
  333. v1 = XXH_rotl64(v1, 31);
  334. v1 *= PRIME64_1;
  335. v2 += XXH_get64bits(p) * PRIME64_2;
  336. p+=8;
  337. v2 = XXH_rotl64(v2, 31);
  338. v2 *= PRIME64_1;
  339. v3 += XXH_get64bits(p) * PRIME64_2;
  340. p+=8;
  341. v3 = XXH_rotl64(v3, 31);
  342. v3 *= PRIME64_1;
  343. v4 += XXH_get64bits(p) * PRIME64_2;
  344. p+=8;
  345. v4 = XXH_rotl64(v4, 31);
  346. v4 *= PRIME64_1;
  347. }
  348. while (p<=limit);
  349. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  350. v1 *= PRIME64_2;
  351. v1 = XXH_rotl64(v1, 31);
  352. v1 *= PRIME64_1;
  353. h64 ^= v1;
  354. h64 = h64 * PRIME64_1 + PRIME64_4;
  355. v2 *= PRIME64_2;
  356. v2 = XXH_rotl64(v2, 31);
  357. v2 *= PRIME64_1;
  358. h64 ^= v2;
  359. h64 = h64 * PRIME64_1 + PRIME64_4;
  360. v3 *= PRIME64_2;
  361. v3 = XXH_rotl64(v3, 31);
  362. v3 *= PRIME64_1;
  363. h64 ^= v3;
  364. h64 = h64 * PRIME64_1 + PRIME64_4;
  365. v4 *= PRIME64_2;
  366. v4 = XXH_rotl64(v4, 31);
  367. v4 *= PRIME64_1;
  368. h64 ^= v4;
  369. h64 = h64 * PRIME64_1 + PRIME64_4;
  370. }
  371. else
  372. {
  373. h64 = seed + PRIME64_5;
  374. }
  375. h64 += (U64) len;
  376. while (p+8<=bEnd)
  377. {
  378. U64 k1 = XXH_get64bits(p);
  379. k1 *= PRIME64_2;
  380. k1 = XXH_rotl64(k1,31);
  381. k1 *= PRIME64_1;
  382. h64 ^= k1;
  383. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  384. p+=8;
  385. }
  386. if (p+4<=bEnd)
  387. {
  388. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  389. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  390. p+=4;
  391. }
  392. while (p<bEnd)
  393. {
  394. h64 ^= (*p) * PRIME64_5;
  395. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  396. p++;
  397. }
  398. h64 ^= h64 >> 33;
  399. h64 *= PRIME64_2;
  400. h64 ^= h64 >> 29;
  401. h64 *= PRIME64_3;
  402. h64 ^= h64 >> 32;
  403. return h64;
  404. }
  405. unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  406. {
  407. #if 0
  408. // Simple version, good for code maintenance, but unfortunately slow for small inputs
  409. XXH64_state_t state;
  410. XXH64_reset(&state, seed);
  411. XXH64_update(&state, input, len);
  412. return XXH64_digest(&state);
  413. #else
  414. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  415. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  416. if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
  417. {
  418. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  419. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  420. else
  421. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  422. }
  423. # endif
  424. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  425. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  426. else
  427. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  428. #endif
  429. }
  430. /****************************************************
  431. * Advanced Hash Functions
  432. ****************************************************/
  433. /*** Allocation ***/
  434. typedef struct
  435. {
  436. U64 total_len;
  437. U32 seed;
  438. U32 v1;
  439. U32 v2;
  440. U32 v3;
  441. U32 v4;
  442. U32 mem32[4]; /* defined as U32 for alignment */
  443. U32 memsize;
  444. } XXH_istate32_t;
  445. typedef struct
  446. {
  447. U64 total_len;
  448. U64 seed;
  449. U64 v1;
  450. U64 v2;
  451. U64 v3;
  452. U64 v4;
  453. U64 mem64[4]; /* defined as U64 for alignment */
  454. U32 memsize;
  455. } XXH_istate64_t;
  456. XXH32_state_t* XXH32_createState(void)
  457. {
  458. XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
  459. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  460. }
  461. void* XXH32_init (unsigned seed)
  462. {
  463. XXH32_state_t *st = XXH32_createState();
  464. XXH32_reset(st, seed);
  465. return st;
  466. }
  467. XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  468. {
  469. XXH_free(statePtr);
  470. return XXH_OK;
  471. }
  472. XXH64_state_t* XXH64_createState(void)
  473. {
  474. XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
  475. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  476. }
  477. XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  478. {
  479. XXH_free(statePtr);
  480. return XXH_OK;
  481. }
  482. /*** Hash feed ***/
  483. XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
  484. {
  485. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  486. state->seed = seed;
  487. state->v1 = seed + PRIME32_1 + PRIME32_2;
  488. state->v2 = seed + PRIME32_2;
  489. state->v3 = seed + 0;
  490. state->v4 = seed - PRIME32_1;
  491. state->total_len = 0;
  492. state->memsize = 0;
  493. return XXH_OK;
  494. }
  495. XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
  496. {
  497. XXH_istate64_t* state = (XXH_istate64_t*) state_in;
  498. state->seed = seed;
  499. state->v1 = seed + PRIME64_1 + PRIME64_2;
  500. state->v2 = seed + PRIME64_2;
  501. state->v3 = seed + 0;
  502. state->v4 = seed - PRIME64_1;
  503. state->total_len = 0;
  504. state->memsize = 0;
  505. return XXH_OK;
  506. }
  507. FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  508. {
  509. XXH_istate32_t* state = (XXH_istate32_t *) state_in;
  510. const BYTE* p = (const BYTE*)input;
  511. const BYTE* const bEnd = p + len;
  512. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  513. if (input==NULL) return XXH_ERROR;
  514. #endif
  515. state->total_len += len;
  516. if (state->memsize + len < 16) // fill in tmp buffer
  517. {
  518. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  519. state->memsize += (U32)len;
  520. return XXH_OK;
  521. }
  522. if (state->memsize) // some data left from previous update
  523. {
  524. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  525. {
  526. const U32* p32 = state->mem32;
  527. state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
  528. state->v1 = XXH_rotl32(state->v1, 13);
  529. state->v1 *= PRIME32_1;
  530. p32++;
  531. state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
  532. state->v2 = XXH_rotl32(state->v2, 13);
  533. state->v2 *= PRIME32_1;
  534. p32++;
  535. state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
  536. state->v3 = XXH_rotl32(state->v3, 13);
  537. state->v3 *= PRIME32_1;
  538. p32++;
  539. state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
  540. state->v4 = XXH_rotl32(state->v4, 13);
  541. state->v4 *= PRIME32_1;
  542. p32++;
  543. }
  544. p += 16-state->memsize;
  545. state->memsize = 0;
  546. }
  547. if (p <= bEnd-16)
  548. {
  549. const BYTE* const limit = bEnd - 16;
  550. U32 v1 = state->v1;
  551. U32 v2 = state->v2;
  552. U32 v3 = state->v3;
  553. U32 v4 = state->v4;
  554. do
  555. {
  556. v1 += XXH_readLE32(p, endian) * PRIME32_2;
  557. v1 = XXH_rotl32(v1, 13);
  558. v1 *= PRIME32_1;
  559. p+=4;
  560. v2 += XXH_readLE32(p, endian) * PRIME32_2;
  561. v2 = XXH_rotl32(v2, 13);
  562. v2 *= PRIME32_1;
  563. p+=4;
  564. v3 += XXH_readLE32(p, endian) * PRIME32_2;
  565. v3 = XXH_rotl32(v3, 13);
  566. v3 *= PRIME32_1;
  567. p+=4;
  568. v4 += XXH_readLE32(p, endian) * PRIME32_2;
  569. v4 = XXH_rotl32(v4, 13);
  570. v4 *= PRIME32_1;
  571. p+=4;
  572. }
  573. while (p<=limit);
  574. state->v1 = v1;
  575. state->v2 = v2;
  576. state->v3 = v3;
  577. state->v4 = v4;
  578. }
  579. if (p < bEnd)
  580. {
  581. XXH_memcpy(state->mem32, p, bEnd-p);
  582. state->memsize = (int)(bEnd-p);
  583. }
  584. return XXH_OK;
  585. }
  586. XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  587. {
  588. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  589. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  590. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  591. else
  592. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  593. }
  594. FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
  595. {
  596. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  597. const BYTE * p = (const BYTE*)state->mem32;
  598. BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
  599. U32 h32;
  600. if (state->total_len >= 16)
  601. {
  602. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  603. }
  604. else
  605. {
  606. h32 = state->seed + PRIME32_5;
  607. }
  608. h32 += (U32) state->total_len;
  609. while (p+4<=bEnd)
  610. {
  611. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  612. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  613. p+=4;
  614. }
  615. while (p<bEnd)
  616. {
  617. h32 += (*p) * PRIME32_5;
  618. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  619. p++;
  620. }
  621. h32 ^= h32 >> 15;
  622. h32 *= PRIME32_2;
  623. h32 ^= h32 >> 13;
  624. h32 *= PRIME32_3;
  625. h32 ^= h32 >> 16;
  626. #if 0
  627. XXH32_freeState((XXH32_state_t *)state_in);
  628. #endif
  629. return h32;
  630. }
  631. U32 XXH32_digest (const XXH32_state_t* state_in)
  632. {
  633. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  634. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  635. return XXH32_digest_endian(state_in, XXH_littleEndian);
  636. else
  637. return XXH32_digest_endian(state_in, XXH_bigEndian);
  638. }
  639. FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  640. {
  641. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  642. const BYTE* p = (const BYTE*)input;
  643. const BYTE* const bEnd = p + len;
  644. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  645. if (input==NULL) return XXH_ERROR;
  646. #endif
  647. state->total_len += len;
  648. if (state->memsize + len < 32) // fill in tmp buffer
  649. {
  650. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  651. state->memsize += (U32)len;
  652. return XXH_OK;
  653. }
  654. if (state->memsize) // some data left from previous update
  655. {
  656. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  657. {
  658. const U64* p64 = state->mem64;
  659. state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
  660. state->v1 = XXH_rotl64(state->v1, 31);
  661. state->v1 *= PRIME64_1;
  662. p64++;
  663. state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
  664. state->v2 = XXH_rotl64(state->v2, 31);
  665. state->v2 *= PRIME64_1;
  666. p64++;
  667. state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
  668. state->v3 = XXH_rotl64(state->v3, 31);
  669. state->v3 *= PRIME64_1;
  670. p64++;
  671. state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
  672. state->v4 = XXH_rotl64(state->v4, 31);
  673. state->v4 *= PRIME64_1;
  674. p64++;
  675. }
  676. p += 32-state->memsize;
  677. state->memsize = 0;
  678. }
  679. if (p+32 <= bEnd)
  680. {
  681. const BYTE* const limit = bEnd - 32;
  682. U64 v1 = state->v1;
  683. U64 v2 = state->v2;
  684. U64 v3 = state->v3;
  685. U64 v4 = state->v4;
  686. do
  687. {
  688. v1 += XXH_readLE64(p, endian) * PRIME64_2;
  689. v1 = XXH_rotl64(v1, 31);
  690. v1 *= PRIME64_1;
  691. p+=8;
  692. v2 += XXH_readLE64(p, endian) * PRIME64_2;
  693. v2 = XXH_rotl64(v2, 31);
  694. v2 *= PRIME64_1;
  695. p+=8;
  696. v3 += XXH_readLE64(p, endian) * PRIME64_2;
  697. v3 = XXH_rotl64(v3, 31);
  698. v3 *= PRIME64_1;
  699. p+=8;
  700. v4 += XXH_readLE64(p, endian) * PRIME64_2;
  701. v4 = XXH_rotl64(v4, 31);
  702. v4 *= PRIME64_1;
  703. p+=8;
  704. }
  705. while (p<=limit);
  706. state->v1 = v1;
  707. state->v2 = v2;
  708. state->v3 = v3;
  709. state->v4 = v4;
  710. }
  711. if (p < bEnd)
  712. {
  713. XXH_memcpy(state->mem64, p, bEnd-p);
  714. state->memsize = (int)(bEnd-p);
  715. }
  716. return XXH_OK;
  717. }
  718. XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  719. {
  720. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  721. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  722. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  723. else
  724. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  725. }
  726. FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
  727. {
  728. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  729. const BYTE * p = (const BYTE*)state->mem64;
  730. BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
  731. U64 h64;
  732. if (state->total_len >= 32)
  733. {
  734. U64 v1 = state->v1;
  735. U64 v2 = state->v2;
  736. U64 v3 = state->v3;
  737. U64 v4 = state->v4;
  738. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  739. v1 *= PRIME64_2;
  740. v1 = XXH_rotl64(v1, 31);
  741. v1 *= PRIME64_1;
  742. h64 ^= v1;
  743. h64 = h64*PRIME64_1 + PRIME64_4;
  744. v2 *= PRIME64_2;
  745. v2 = XXH_rotl64(v2, 31);
  746. v2 *= PRIME64_1;
  747. h64 ^= v2;
  748. h64 = h64*PRIME64_1 + PRIME64_4;
  749. v3 *= PRIME64_2;
  750. v3 = XXH_rotl64(v3, 31);
  751. v3 *= PRIME64_1;
  752. h64 ^= v3;
  753. h64 = h64*PRIME64_1 + PRIME64_4;
  754. v4 *= PRIME64_2;
  755. v4 = XXH_rotl64(v4, 31);
  756. v4 *= PRIME64_1;
  757. h64 ^= v4;
  758. h64 = h64*PRIME64_1 + PRIME64_4;
  759. }
  760. else
  761. {
  762. h64 = state->seed + PRIME64_5;
  763. }
  764. h64 += (U64) state->total_len;
  765. while (p+8<=bEnd)
  766. {
  767. U64 k1 = XXH_readLE64(p, endian);
  768. k1 *= PRIME64_2;
  769. k1 = XXH_rotl64(k1,31);
  770. k1 *= PRIME64_1;
  771. h64 ^= k1;
  772. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  773. p+=8;
  774. }
  775. if (p+4<=bEnd)
  776. {
  777. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  778. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  779. p+=4;
  780. }
  781. while (p<bEnd)
  782. {
  783. h64 ^= (*p) * PRIME64_5;
  784. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  785. p++;
  786. }
  787. h64 ^= h64 >> 33;
  788. h64 *= PRIME64_2;
  789. h64 ^= h64 >> 29;
  790. h64 *= PRIME64_3;
  791. h64 ^= h64 >> 32;
  792. #if 0
  793. XXH64_freeState((XXH64_state_t *)state_in);
  794. #endif
  795. return h64;
  796. }
  797. unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  798. {
  799. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  800. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  801. return XXH64_digest_endian(state_in, XXH_littleEndian);
  802. else
  803. return XXH64_digest_endian(state_in, XXH_bigEndian);
  804. }