You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /* ******************************************************************
  2. FSE : Finite State Entropy codec
  3. Public Prototypes declaration
  4. Copyright (C) 2013-2016, Yann Collet.
  5. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  6. Redistribution and use in source and binary forms, with or without
  7. modification, are permitted provided that the following conditions are
  8. met:
  9. * Redistributions of source code must retain the above copyright
  10. notice, this list of conditions and the following disclaimer.
  11. * Redistributions in binary form must reproduce the above
  12. copyright notice, this list of conditions and the following disclaimer
  13. in the documentation and/or other materials provided with the
  14. distribution.
  15. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  16. "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  17. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  18. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  19. OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  20. SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  21. LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  22. DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  23. THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. You can contact the author at :
  27. - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
  28. ****************************************************************** */
  29. #ifndef FSE_H
  30. #define FSE_H
  31. #if defined (__cplusplus)
  32. extern "C" {
  33. #endif
  34. /*-*****************************************
  35. * Dependencies
  36. ******************************************/
  37. #include <stddef.h> /* size_t, ptrdiff_t */
  38. /*-****************************************
  39. * FSE simple functions
  40. ******************************************/
  41. /*! FSE_compress() :
  42. Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
  43. 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
  44. @return : size of compressed data (<= dstCapacity).
  45. Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
  46. if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
  47. if FSE_isError(return), compression failed (more details using FSE_getErrorName())
  48. */
  49. size_t FSE_compress(void* dst, size_t dstCapacity,
  50. const void* src, size_t srcSize);
  51. /*! FSE_decompress():
  52. Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
  53. into already allocated destination buffer 'dst', of size 'dstCapacity'.
  54. @return : size of regenerated data (<= maxDstSize),
  55. or an error code, which can be tested using FSE_isError() .
  56. ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
  57. Why ? : making this distinction requires a header.
  58. Header management is intentionally delegated to the user layer, which can better manage special cases.
  59. */
  60. size_t FSE_decompress(void* dst, size_t dstCapacity,
  61. const void* cSrc, size_t cSrcSize);
  62. /*-*****************************************
  63. * Tool functions
  64. ******************************************/
  65. size_t FSE_compressBound(size_t size); /* maximum compressed size */
  66. /* Error Management */
  67. unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
  68. const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
  69. /*-*****************************************
  70. * FSE advanced functions
  71. ******************************************/
  72. /*! FSE_compress2() :
  73. Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
  74. Both parameters can be defined as '0' to mean : use default value
  75. @return : size of compressed data
  76. Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
  77. if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
  78. if FSE_isError(return), it's an error code.
  79. */
  80. size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
  81. /*-*****************************************
  82. * FSE detailed API
  83. ******************************************/
  84. /*!
  85. FSE_compress() does the following:
  86. 1. count symbol occurrence from source[] into table count[]
  87. 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
  88. 3. save normalized counters to memory buffer using writeNCount()
  89. 4. build encoding table 'CTable' from normalized counters
  90. 5. encode the data stream using encoding table 'CTable'
  91. FSE_decompress() does the following:
  92. 1. read normalized counters with readNCount()
  93. 2. build decoding table 'DTable' from normalized counters
  94. 3. decode the data stream using decoding table 'DTable'
  95. The following API allows targeting specific sub-functions for advanced tasks.
  96. For example, it's possible to compress several blocks using the same 'CTable',
  97. or to save and provide normalized distribution using external method.
  98. */
  99. /* *** COMPRESSION *** */
  100. /*! FSE_count():
  101. Provides the precise count of each byte within a table 'count'.
  102. 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
  103. *maxSymbolValuePtr will be updated if detected smaller than initial value.
  104. @return : the count of the most frequent symbol (which is not identified).
  105. if return == srcSize, there is only one symbol.
  106. Can also return an error code, which can be tested with FSE_isError(). */
  107. size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
  108. /*! FSE_optimalTableLog():
  109. dynamically downsize 'tableLog' when conditions are met.
  110. It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
  111. @return : recommended tableLog (necessarily <= 'maxTableLog') */
  112. unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
  113. /*! FSE_normalizeCount():
  114. normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
  115. 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
  116. @return : tableLog,
  117. or an errorCode, which can be tested using FSE_isError() */
  118. size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
  119. /*! FSE_NCountWriteBound():
  120. Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
  121. Typically useful for allocation purpose. */
  122. size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
  123. /*! FSE_writeNCount():
  124. Compactly save 'normalizedCounter' into 'buffer'.
  125. @return : size of the compressed table,
  126. or an errorCode, which can be tested using FSE_isError(). */
  127. size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
  128. /*! Constructor and Destructor of FSE_CTable.
  129. Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
  130. typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
  131. FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
  132. void FSE_freeCTable (FSE_CTable* ct);
  133. /*! FSE_buildCTable():
  134. Builds `ct`, which must be already allocated, using FSE_createCTable().
  135. @return : 0, or an errorCode, which can be tested using FSE_isError() */
  136. size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
  137. /*! FSE_compress_usingCTable():
  138. Compress `src` using `ct` into `dst` which must be already allocated.
  139. @return : size of compressed data (<= `dstCapacity`),
  140. or 0 if compressed data could not fit into `dst`,
  141. or an errorCode, which can be tested using FSE_isError() */
  142. size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
  143. /*!
  144. Tutorial :
  145. ----------
  146. The first step is to count all symbols. FSE_count() does this job very fast.
  147. Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
  148. 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
  149. maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
  150. FSE_count() will return the number of occurrence of the most frequent symbol.
  151. This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
  152. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
  153. The next step is to normalize the frequencies.
  154. FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
  155. It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
  156. You can use 'tableLog'==0 to mean "use default tableLog value".
  157. If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
  158. which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
  159. The result of FSE_normalizeCount() will be saved into a table,
  160. called 'normalizedCounter', which is a table of signed short.
  161. 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
  162. The return value is tableLog if everything proceeded as expected.
  163. It is 0 if there is a single symbol within distribution.
  164. If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
  165. 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
  166. 'buffer' must be already allocated.
  167. For guaranteed success, buffer size must be at least FSE_headerBound().
  168. The result of the function is the number of bytes written into 'buffer'.
  169. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
  170. 'normalizedCounter' can then be used to create the compression table 'CTable'.
  171. The space required by 'CTable' must be already allocated, using FSE_createCTable().
  172. You can then use FSE_buildCTable() to fill 'CTable'.
  173. If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
  174. 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
  175. Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
  176. The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
  177. If it returns '0', compressed data could not fit into 'dst'.
  178. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
  179. */
  180. /* *** DECOMPRESSION *** */
  181. /*! FSE_readNCount():
  182. Read compactly saved 'normalizedCounter' from 'rBuffer'.
  183. @return : size read from 'rBuffer',
  184. or an errorCode, which can be tested using FSE_isError().
  185. maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
  186. size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
  187. /*! Constructor and Destructor of FSE_DTable.
  188. Note that its size depends on 'tableLog' */
  189. typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
  190. FSE_DTable* FSE_createDTable(unsigned tableLog);
  191. void FSE_freeDTable(FSE_DTable* dt);
  192. /*! FSE_buildDTable():
  193. Builds 'dt', which must be already allocated, using FSE_createDTable().
  194. return : 0, or an errorCode, which can be tested using FSE_isError() */
  195. size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
  196. /*! FSE_decompress_usingDTable():
  197. Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
  198. into `dst` which must be already allocated.
  199. @return : size of regenerated data (necessarily <= `dstCapacity`),
  200. or an errorCode, which can be tested using FSE_isError() */
  201. size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
  202. /*!
  203. Tutorial :
  204. ----------
  205. (Note : these functions only decompress FSE-compressed blocks.
  206. If block is uncompressed, use memcpy() instead
  207. If block is a single repeated byte, use memset() instead )
  208. The first step is to obtain the normalized frequencies of symbols.
  209. This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
  210. 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
  211. In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
  212. or size the table to handle worst case situations (typically 256).
  213. FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
  214. The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
  215. Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
  216. If there is an error, the function will return an error code, which can be tested using FSE_isError().
  217. The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
  218. This is performed by the function FSE_buildDTable().
  219. The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
  220. If there is an error, the function will return an error code, which can be tested using FSE_isError().
  221. `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
  222. `cSrcSize` must be strictly correct, otherwise decompression will fail.
  223. FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
  224. If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
  225. */
  226. #ifdef FSE_STATIC_LINKING_ONLY
  227. /* *** Dependency *** */
  228. #include "bitstream.h"
  229. /* *****************************************
  230. * Static allocation
  231. *******************************************/
  232. /* FSE buffer bounds */
  233. #define FSE_NCOUNTBOUND 512
  234. #define FSE_BLOCKBOUND(size) (size + (size>>7))
  235. #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
  236. /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
  237. #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
  238. #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
  239. /* *****************************************
  240. * FSE advanced API
  241. *******************************************/
  242. size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
  243. /**< same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
  244. unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
  245. /**< same as FSE_optimalTableLog(), which used `minus==2` */
  246. size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
  247. /**< build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
  248. size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
  249. /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
  250. size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
  251. /**< build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
  252. size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
  253. /**< build a fake FSE_DTable, designed to always generate the same symbolValue */
  254. /* *****************************************
  255. * FSE symbol compression API
  256. *******************************************/
  257. /*!
  258. This API consists of small unitary functions, which highly benefit from being inlined.
  259. You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
  260. Visual seems to do it automatically.
  261. For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
  262. If none of these solutions is applicable, include "fse.c" directly.
  263. */
  264. typedef struct
  265. {
  266. ptrdiff_t value;
  267. const void* stateTable;
  268. const void* symbolTT;
  269. unsigned stateLog;
  270. } FSE_CState_t;
  271. static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
  272. static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
  273. static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
  274. /**<
  275. These functions are inner components of FSE_compress_usingCTable().
  276. They allow the creation of custom streams, mixing multiple tables and bit sources.
  277. A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
  278. So the first symbol you will encode is the last you will decode, like a LIFO stack.
  279. You will need a few variables to track your CStream. They are :
  280. FSE_CTable ct; // Provided by FSE_buildCTable()
  281. BIT_CStream_t bitStream; // bitStream tracking structure
  282. FSE_CState_t state; // State tracking structure (can have several)
  283. The first thing to do is to init bitStream and state.
  284. size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
  285. FSE_initCState(&state, ct);
  286. Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
  287. You can then encode your input data, byte after byte.
  288. FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
  289. Remember decoding will be done in reverse direction.
  290. FSE_encodeByte(&bitStream, &state, symbol);
  291. At any time, you can also add any bit sequence.
  292. Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
  293. BIT_addBits(&bitStream, bitField, nbBits);
  294. The above methods don't commit data to memory, they just store it into local register, for speed.
  295. Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
  296. Writing data to memory is a manual operation, performed by the flushBits function.
  297. BIT_flushBits(&bitStream);
  298. Your last FSE encoding operation shall be to flush your last state value(s).
  299. FSE_flushState(&bitStream, &state);
  300. Finally, you must close the bitStream.
  301. The function returns the size of CStream in bytes.
  302. If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
  303. If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
  304. size_t size = BIT_closeCStream(&bitStream);
  305. */
  306. /* *****************************************
  307. * FSE symbol decompression API
  308. *******************************************/
  309. typedef struct
  310. {
  311. size_t state;
  312. const void* table; /* precise table may vary, depending on U16 */
  313. } FSE_DState_t;
  314. static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
  315. static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
  316. static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
  317. /**<
  318. Let's now decompose FSE_decompress_usingDTable() into its unitary components.
  319. You will decode FSE-encoded symbols from the bitStream,
  320. and also any other bitFields you put in, **in reverse order**.
  321. You will need a few variables to track your bitStream. They are :
  322. BIT_DStream_t DStream; // Stream context
  323. FSE_DState_t DState; // State context. Multiple ones are possible
  324. FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
  325. The first thing to do is to init the bitStream.
  326. errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
  327. You should then retrieve your initial state(s)
  328. (in reverse flushing order if you have several ones) :
  329. errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
  330. You can then decode your data, symbol after symbol.
  331. For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
  332. Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
  333. unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
  334. You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
  335. Note : maximum allowed nbBits is 25, for 32-bits compatibility
  336. size_t bitField = BIT_readBits(&DStream, nbBits);
  337. All above operations only read from local register (which size depends on size_t).
  338. Refueling the register from memory is manually performed by the reload method.
  339. endSignal = FSE_reloadDStream(&DStream);
  340. BIT_reloadDStream() result tells if there is still some more data to read from DStream.
  341. BIT_DStream_unfinished : there is still some data left into the DStream.
  342. BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
  343. BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
  344. BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
  345. When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
  346. to properly detect the exact end of stream.
  347. After each decoded symbol, check if DStream is fully consumed using this simple test :
  348. BIT_reloadDStream(&DStream) >= BIT_DStream_completed
  349. When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
  350. Checking if DStream has reached its end is performed by :
  351. BIT_endOfDStream(&DStream);
  352. Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
  353. FSE_endOfDState(&DState);
  354. */
  355. /* *****************************************
  356. * FSE unsafe API
  357. *******************************************/
  358. static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
  359. /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
  360. /* *****************************************
  361. * Implementation of inlined functions
  362. *******************************************/
  363. typedef struct {
  364. int deltaFindState;
  365. U32 deltaNbBits;
  366. } FSE_symbolCompressionTransform; /* total 8 bytes */
  367. MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
  368. {
  369. const void* ptr = ct;
  370. const U16* u16ptr = (const U16*) ptr;
  371. const U32 tableLog = MEM_read16(ptr);
  372. statePtr->value = (ptrdiff_t)1<<tableLog;
  373. statePtr->stateTable = u16ptr+2;
  374. statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
  375. statePtr->stateLog = tableLog;
  376. }
  377. /*! FSE_initCState2() :
  378. * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
  379. * uses the smallest state value possible, saving the cost of this symbol */
  380. MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
  381. {
  382. FSE_initCState(statePtr, ct);
  383. { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
  384. const U16* stateTable = (const U16*)(statePtr->stateTable);
  385. U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
  386. statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
  387. statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
  388. }
  389. }
  390. MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
  391. {
  392. const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
  393. const U16* const stateTable = (const U16*)(statePtr->stateTable);
  394. U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
  395. BIT_addBits(bitC, statePtr->value, nbBitsOut);
  396. statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
  397. }
  398. MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
  399. {
  400. BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
  401. BIT_flushBits(bitC);
  402. }
  403. /* ====== Decompression ====== */
  404. typedef struct {
  405. U16 tableLog;
  406. U16 fastMode;
  407. } FSE_DTableHeader; /* sizeof U32 */
  408. typedef struct
  409. {
  410. unsigned short newState;
  411. unsigned char symbol;
  412. unsigned char nbBits;
  413. } FSE_decode_t; /* size == U32 */
  414. MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
  415. {
  416. const void* ptr = dt;
  417. const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
  418. DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
  419. BIT_reloadDStream(bitD);
  420. DStatePtr->table = dt + 1;
  421. }
  422. MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
  423. {
  424. FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
  425. return DInfo.symbol;
  426. }
  427. MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
  428. {
  429. FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
  430. U32 const nbBits = DInfo.nbBits;
  431. size_t const lowBits = BIT_readBits(bitD, nbBits);
  432. DStatePtr->state = DInfo.newState + lowBits;
  433. }
  434. MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
  435. {
  436. FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
  437. U32 const nbBits = DInfo.nbBits;
  438. BYTE const symbol = DInfo.symbol;
  439. size_t const lowBits = BIT_readBits(bitD, nbBits);
  440. DStatePtr->state = DInfo.newState + lowBits;
  441. return symbol;
  442. }
  443. /*! FSE_decodeSymbolFast() :
  444. unsafe, only works if no symbol has a probability > 50% */
  445. MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
  446. {
  447. FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
  448. U32 const nbBits = DInfo.nbBits;
  449. BYTE const symbol = DInfo.symbol;
  450. size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
  451. DStatePtr->state = DInfo.newState + lowBits;
  452. return symbol;
  453. }
  454. MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
  455. {
  456. return DStatePtr->state == 0;
  457. }
  458. #ifndef FSE_COMMONDEFS_ONLY
  459. /* **************************************************************
  460. * Tuning parameters
  461. ****************************************************************/
  462. /*!MEMORY_USAGE :
  463. * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
  464. * Increasing memory usage improves compression ratio
  465. * Reduced memory usage can improve speed, due to cache effect
  466. * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
  467. #define FSE_MAX_MEMORY_USAGE 14
  468. #define FSE_DEFAULT_MEMORY_USAGE 13
  469. /*!FSE_MAX_SYMBOL_VALUE :
  470. * Maximum symbol value authorized.
  471. * Required for proper stack allocation */
  472. #define FSE_MAX_SYMBOL_VALUE 255
  473. /* **************************************************************
  474. * template functions type & suffix
  475. ****************************************************************/
  476. #define FSE_FUNCTION_TYPE BYTE
  477. #define FSE_FUNCTION_EXTENSION
  478. #define FSE_DECODE_TYPE FSE_decode_t
  479. #endif /* !FSE_COMMONDEFS_ONLY */
  480. /* ***************************************************************
  481. * Constants
  482. *****************************************************************/
  483. #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
  484. #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
  485. #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
  486. #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
  487. #define FSE_MIN_TABLELOG 5
  488. #define FSE_TABLELOG_ABSOLUTE_MAX 15
  489. #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
  490. # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
  491. #endif
  492. #define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
  493. #endif /* FSE_STATIC_LINKING_ONLY */
  494. #if defined (__cplusplus)
  495. }
  496. #endif
  497. #endif /* FSE_H */