/* Copyright (C) 2002-2003 RealVNC Ltd. All Rights Reserved. * Copyright (C) 2005 Constantin Kaplinsky. All Rights Reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, * USA. */ // // Hextile encoding function. // // This file is #included after having set the following macro: // BPP - 8, 16 or 32 #include #include #include #include namespace rfb { // CONCAT2E concatenates its arguments, expanding them if they are macros #ifndef CONCAT2E #define CONCAT2(a,b) a##b #define CONCAT2E(a,b) CONCAT2(a,b) #endif #define PIXEL_T rdr::CONCAT2E(U,BPP) #define WRITE_PIXEL CONCAT2E(writeOpaque,BPP) #define HEXTILE_TILE CONCAT2E(HextileTile,BPP) #define HEXTILE_ENCODE CONCAT2E(hextileEncodeBetter,BPP) // // This class analyzes a separate tile and encodes its subrectangles. // class HEXTILE_TILE { public: HEXTILE_TILE (); // // Initialize existing object instance with new tile data. // void newTile(const PIXEL_T *src, int w, int h); // // Flags can include: hextileRaw, hextileAnySubrects and // hextileSubrectsColoured. Note that if hextileRaw is set, other // flags make no sense. Also, hextileSubrectsColoured is meaningful // only when hextileAnySubrects is set as well. // int getFlags() const { return m_flags; } // // Returns the size of encoded subrects data, including subrect count. // The size is zero if flags do not include hextileAnySubrects. // int getSize() const { return m_size; } // // Return optimal background. // int getBackground() const { return m_background; } // // Return foreground if flags include hextileSubrectsColoured. // int getForeground() const { return m_foreground; } // // Encode subrects. This function may be called only if // hextileAnySubrects bit is set in flags. The buffer size should be // big enough to store at least the number of bytes returned by the // getSize() method. // void encode(rdr::U8* dst) const; protected: // // Analyze the tile pixels, fill in all the data fields. // void analyze(); const PIXEL_T *m_tile; int m_width; int m_height; int m_size; int m_flags; PIXEL_T m_background; PIXEL_T m_foreground; int m_numSubrects; rdr::U8 m_coords[256 * 2]; PIXEL_T m_colors[256]; private: bool m_processed[16][16]; Palette m_pal; }; HEXTILE_TILE::HEXTILE_TILE() : m_tile(NULL), m_width(0), m_height(0), m_size(0), m_flags(0), m_background(0), m_foreground(0), m_numSubrects(0) { } void HEXTILE_TILE::newTile(const PIXEL_T *src, int w, int h) { m_tile = src; m_width = w; m_height = h; analyze(); } void HEXTILE_TILE::analyze() { assert(m_tile && m_width && m_height); const PIXEL_T *ptr = m_tile; const PIXEL_T *end = &m_tile[m_width * m_height]; PIXEL_T color = *ptr++; while (ptr != end && *ptr == color) ptr++; // Handle solid tile if (ptr == end) { m_background = m_tile[0]; m_flags = 0; m_size = 0; return; } // Compute number of complete rows of the same color, at the top int y = (ptr - m_tile) / m_width; PIXEL_T *colorsPtr = m_colors; rdr::U8 *coordsPtr = m_coords; m_pal.clear(); m_numSubrects = 0; // Have we found the first subrect already? if (y > 0) { *colorsPtr++ = color; *coordsPtr++ = 0; *coordsPtr++ = (rdr::U8)(((m_width - 1) << 4) | ((y - 1) & 0x0F)); m_pal.insert(color, 1); m_numSubrects++; } memset(m_processed, 0, 16 * 16 * sizeof(bool)); int x, sx, sy, sw, sh, max_x; for (; y < m_height; y++) { for (x = 0; x < m_width; x++) { // Skip pixels that were processed earlier if (m_processed[y][x]) { continue; } // Determine dimensions of the horizontal subrect color = m_tile[y * m_width + x]; for (sx = x + 1; sx < m_width; sx++) { if (m_tile[y * m_width + sx] != color) break; } sw = sx - x; max_x = sx; for (sy = y + 1; sy < m_height; sy++) { for (sx = x; sx < max_x; sx++) { if (m_tile[sy * m_width + sx] != color) goto done; } } done: sh = sy - y; // Save properties of this subrect *colorsPtr++ = color; *coordsPtr++ = (rdr::U8)((x << 4) | (y & 0x0F)); *coordsPtr++ = (rdr::U8)(((sw - 1) << 4) | ((sh - 1) & 0x0F)); if (!m_pal.insert(color, 1) || (m_pal.size() > (48 + 2 * BPP))) { // Handle palette overflow m_flags = hextileRaw; m_size = 0; return; } m_numSubrects++; // Mark pixels of this subrect as processed, below this row for (sy = y + 1; sy < y + sh; sy++) { for (sx = x; sx < x + sw; sx++) m_processed[sy][sx] = true; } // Skip processed pixels of this row x += (sw - 1); } } // Save number of colors in this tile (should be no less than 2) int numColors = m_pal.size(); assert(numColors >= 2); m_background = (PIXEL_T)m_pal.getColour(0); m_flags = hextileAnySubrects; int numSubrects = m_numSubrects - m_pal.getCount(0); if (numColors == 2) { // Monochrome tile m_foreground = (PIXEL_T)m_pal.getColour(1); m_size = 1 + 2 * numSubrects; } else { // Colored tile m_flags |= hextileSubrectsColoured; m_size = 1 + (2 + (BPP/8)) * numSubrects; } } void HEXTILE_TILE::encode(rdr::U8 *dst) const { assert(m_numSubrects && (m_flags & hextileAnySubrects)); // Zero subrects counter rdr::U8 *numSubrectsPtr = dst; *dst++ = 0; for (int i = 0; i < m_numSubrects; i++) { if (m_colors[i] == m_background) continue; if (m_flags & hextileSubrectsColoured) { #if (BPP == 8) *dst++ = m_colors[i]; #elif (BPP == 16) *dst++ = ((rdr::U8*)&m_colors[i])[0]; *dst++ = ((rdr::U8*)&m_colors[i])[1]; #elif (BPP == 32) *dst++ = ((rdr::U8*)&m_colors[i])[0]; *dst++ = ((rdr::U8*)&m_colors[i])[1]; *dst++ = ((rdr::U8*)&m_colors[i])[2]; *dst++ = ((rdr::U8*)&m_colors[i])[3]; #endif } *dst++ = m_coords[i * 2]; *dst++ = m_coords[i * 2 + 1]; (*numSubrectsPtr)++; } assert(dst - numSubrectsPtr == m_size); } // // Main encoding function. // void HEXTILE_ENCODE(rdr::OutStream* os, const PixelBuffer* pb) { Rect t; PIXEL_T buf[256]; PIXEL_T oldBg = 0, oldFg = 0; bool oldBgValid = false; bool oldFgValid = false; rdr::U8 encoded[256*(BPP/8)]; HEXTILE_TILE tile; for (t.tl.y = 0; t.tl.y < pb->height(); t.tl.y += 16) { t.br.y = __rfbmin(pb->height(), t.tl.y + 16); for (t.tl.x = 0; t.tl.x < pb->width(); t.tl.x += 16) { t.br.x = __rfbmin(pb->width(), t.tl.x + 16); pb->getImage(buf, t); tile.newTile(buf, t.width(), t.height()); int tileType = tile.getFlags(); int encodedLen = tile.getSize(); if ( (tileType & hextileRaw) != 0 || encodedLen >= t.width() * t.height() * (BPP/8)) { os->writeU8(hextileRaw); os->writeBytes(buf, t.width() * t.height() * (BPP/8)); oldBgValid = oldFgValid = false; continue; } PIXEL_T bg = tile.getBackground(); PIXEL_T fg = 0; if (!oldBgValid || oldBg != bg) { tileType |= hextileBgSpecified; oldBg = bg; oldBgValid = true; } if (tileType & hextileAnySubrects) { if (tileType & hextileSubrectsColoured) { oldFgValid = false; } else { fg = tile.getForeground(); if (!oldFgValid || oldFg != fg) { tileType |= hextileFgSpecified; oldFg = fg; oldFgValid = true; } } tile.encode(encoded); } os->writeU8(tileType); if (tileType & hextileBgSpecified) os->WRITE_PIXEL(bg); if (tileType & hextileFgSpecified) os->WRITE_PIXEL(fg); if (tileType & hextileAnySubrects) os->writeBytes(encoded, encodedLen); } } } #undef PIXEL_T #undef WRITE_PIXEL #undef HEXTILE_TILE #undef HEXTILE_ENCODE }