summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAlexander Moisseev <moiseev@mezonplus.ru>2018-04-14 13:30:27 +0300
committerAlexander Moisseev <moiseev@mezonplus.ru>2018-04-14 13:30:27 +0300
commit2bf916f1dff4c6b734c54dc47ff76f6db82d6647 (patch)
treed685123efe045acb9953e33d1c0e598f530c4d41
parent21084c05f73672d0edb9d52ae05d3c8dc53a2abb (diff)
downloadrspamd-2bf916f1dff4c6b734c54dc47ff76f6db82d6647.tar.gz
rspamd-2bf916f1dff4c6b734c54dc47ff76f6db82d6647.zip
[Minor] Fix bayes_expiry logging
-rw-r--r--src/plugins/lua/bayes_expiry.lua29
1 files changed, 20 insertions, 9 deletions
diff --git a/src/plugins/lua/bayes_expiry.lua b/src/plugins/lua/bayes_expiry.lua
index dc580a6b3..96f5b5c1c 100644
--- a/src/plugins/lua/bayes_expiry.lua
+++ b/src/plugins/lua/bayes_expiry.lua
@@ -259,16 +259,27 @@ local function expire_step(cls, ev_base, worker)
end
local function log_stat(cycle)
+ local mode = settings.lazy and ' (lazy)' or ''
+ local significant_action = (settings.lazy or cls.expiry < 0) and 'made persistent' or 'extended'
+ local infrequent_action = (cls.expiry < 0) and 'made persistent' or 'ttls set'
+
+ local d = cycle and {
+ 'cycle', mode, c_data[1],
+ c_data[7], c_data[2], significant_action,
+ c_data[6], c_data[3],
+ c_data[8], c_data[9], infrequent_action,
+ math.floor(.5 + c_data[4] / c_data[1]),
+ math.floor(.5 + math.sqrt(c_data[5] / c_data[1]))
+ } or {
+ 'step', mode, data[1],
+ data[7], data[2], significant_action,
+ data[6], data[3],
+ data[8], data[9], infrequent_action,
+ data[4],
+ data[5]
+ }
logger.infox(rspamd_config, 'finished expiry %s%s: %s items checked, %s significant (%s %s), %s common (%s discriminated), %s infrequent (%s %s), %s mean, %s std',
- cycle and 'cycle' or 'step',
- settings.lazy and ' (lazy)' or '',
- c_data[1], c_data[7], c_data[2],
- (settings.lazy or cls.expiry < 0) and 'made persistent' or 'extended',
- c_data[6], c_data[3], data[8], data[9],
- (cls.expiry < 0) and 'made persistent' or 'ttls set',
- cycle and math.floor(.5 + c_data[4] / c_data[1]) or data[4],
- cycle and math.floor(.5 + math.sqrt(c_data[5] / c_data[1])) or data[5]
- )
+ unpack(d))
end
log_stat(false)
if cur == 0 then