aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/ankerl/svector.h
diff options
context:
space:
mode:
authorVsevolod Stakhov <vsevolod@rspamd.com>2022-07-17 16:43:47 +0100
committerVsevolod Stakhov <vsevolod@rspamd.com>2022-07-17 16:43:47 +0100
commit969902f04569ab12e69e0d57ef1f6e9f0c42f855 (patch)
tree2d4ae6f19a613c4327e94da917aa89694dd2ff00 /contrib/ankerl/svector.h
parent93022e6207ed15f8dd231ad43511d7c9e3f2eee8 (diff)
downloadrspamd-969902f04569ab12e69e0d57ef1f6e9f0c42f855.tar.gz
rspamd-969902f04569ab12e69e0d57ef1f6e9f0c42f855.zip
[Rework] Use another version of hash table from the same author
Diffstat (limited to 'contrib/ankerl/svector.h')
-rw-r--r--contrib/ankerl/svector.h993
1 files changed, 993 insertions, 0 deletions
diff --git a/contrib/ankerl/svector.h b/contrib/ankerl/svector.h
new file mode 100644
index 000000000..b6ef1ad68
--- /dev/null
+++ b/contrib/ankerl/svector.h
@@ -0,0 +1,993 @@
+// ┌─┐┬ ┬┌─┐┌─┐┌┬┐┌─┐┬─┐ Compact SVO optimized vector C++17 or higher
+// └─┐└┐┌┘├┤ │ │ │ │├┬┘ Version 1.0.0
+// └─┘ └┘ └─┘└─┘ ┴ └─┘┴└─ https://github.com/martinus/svector
+//
+// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
+// SPDX-License-Identifier: MIT
+// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ANKERL_SVECTOR_H
+#define ANKERL_SVECTOR_H
+
+// see https://semver.org/spec/v2.0.0.html
+#define ANKERL_SVECTOR_VERSION_MAJOR 1 // incompatible API changes
+#define ANKERL_SVECTOR_VERSION_MINOR 0 // add functionality in a backwards compatible manner
+#define ANKERL_SVECTOR_VERSION_PATCH 0 // backwards compatible bug fixes
+
+// API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/
+#define ANKERL_SVECTOR_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch
+#define ANKERL_SVECTOR_VERSION_CONCAT(major, minor, patch) ANKERL_SVECTOR_VERSION_CONCAT1(major, minor, patch)
+#define ANKERL_SVECTOR_NAMESPACE \
+ ANKERL_SVECTOR_VERSION_CONCAT(ANKERL_SVECTOR_VERSION_MAJOR, ANKERL_SVECTOR_VERSION_MINOR, ANKERL_SVECTOR_VERSION_PATCH)
+
+#include <algorithm>
+#include <array>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <new>
+#include <stdexcept>
+#include <type_traits>
+#include <utility>
+
+namespace ankerl {
+inline namespace ANKERL_SVECTOR_NAMESPACE {
+namespace detail {
+
+template <typename Condition, typename T = void>
+using enable_if_t = typename std::enable_if<Condition::value, T>::type;
+
+template <typename It>
+using is_input_iterator = std::is_base_of<std::input_iterator_tag, typename std::iterator_traits<It>::iterator_category>;
+
+constexpr auto round_up(size_t n, size_t multiple) -> size_t {
+ return ((n + (multiple - 1)) / multiple) * multiple;
+}
+
+template <typename T>
+constexpr auto cx_min(T a, T b) -> T {
+ return a < b ? a : b;
+}
+
+template <typename T>
+constexpr auto cx_max(T a, T b) -> T {
+ return a > b ? a : b;
+}
+
+template <typename T>
+constexpr auto alignment_of_svector() -> size_t {
+ return cx_max(sizeof(void*), std::alignment_of_v<T>);
+}
+
+/**
+ * @brief Calculates sizeof(svector<T, N>) for a given type and inline capacity
+ */
+template <typename T>
+constexpr auto size_of_svector(size_t min_inline_capacity) -> size_t {
+ // + 1 for one byte size in direct mode
+ return round_up(sizeof(T) * min_inline_capacity + 1, alignment_of_svector<T>());
+}
+
+/**
+ * @brief Calculates how many T we can actually store inside of an svector without increasing its sizeof().
+ *
+ * E.g. svector<char, 1> could store 7 bytes even though 1 is specified. This makes sure we don't waste any
+ * of the padding.
+ */
+template <typename T>
+constexpr auto automatic_capacity(size_t min_inline_capacity) -> size_t {
+ return cx_min((size_of_svector<T>(min_inline_capacity) - 1U) / sizeof(T), size_t(127));
+}
+
+/**
+ * Holds size & capacity, a glorified struct.
+ */
+class header {
+ size_t m_size{};
+ size_t const m_capacity;
+
+public:
+ inline explicit header(size_t capacity)
+ : m_capacity{capacity} {}
+
+ [[nodiscard]] inline auto size() const -> size_t {
+ return m_size;
+ }
+
+ [[nodiscard]] inline auto capacity() const -> size_t {
+ return m_capacity;
+ }
+
+ inline void size(size_t s) {
+ m_size = s;
+ }
+};
+
+/**
+ * @brief Holds header (size+capacity) plus an arbitrary number of T.
+ *
+ * To make storage compact, we don't actually store a pointer to T. We don't have to
+ * because we know exactly at which location it begins.
+ */
+template <typename T>
+struct storage : public header {
+ static constexpr auto alignment_of_t = std::alignment_of_v<T>;
+ static constexpr auto max_alignment = std::max(std::alignment_of_v<header>, std::alignment_of_v<T>);
+ static constexpr auto offset_to_data = detail::round_up(sizeof(header), alignment_of_t);
+ static_assert(max_alignment <= __STDCPP_DEFAULT_NEW_ALIGNMENT__);
+
+ explicit storage(size_t capacity)
+ : header(capacity) {}
+
+ auto data() -> T* {
+ auto ptr_to_data = reinterpret_cast<std::byte*>(this) + offset_to_data;
+ return std::launder(reinterpret_cast<T*>(ptr_to_data));
+ }
+
+ /**
+ * @brief Allocates space for storage plus capacity*T objects.
+ *
+ * Checks to make sure that allocation won't overflow.
+ *
+ * @param capacity Number of T to allocate.
+ * @return storage<T>*
+ */
+ static auto alloc(size_t capacity) -> storage<T>* {
+ // make sure we don't overflow!
+ auto mem = sizeof(T) * capacity;
+ if (mem < capacity) {
+ throw std::bad_alloc();
+ }
+ if (offset_to_data + mem < mem) {
+ throw std::bad_alloc();
+ }
+ mem += offset_to_data;
+ if (static_cast<uint64_t>(mem) > static_cast<uint64_t>(std::numeric_limits<std::ptrdiff_t>::max())) {
+ throw std::bad_alloc();
+ }
+
+ void* ptr = ::operator new(offset_to_data + sizeof(T) * capacity);
+ if (nullptr == ptr) {
+ throw std::bad_alloc();
+ }
+ // use void* to ensure we don't use an overload for T*
+ return new (ptr) storage<T>(capacity);
+ }
+};
+
+} // namespace detail
+
+template <typename T, size_t MinInlineCapacity>
+class svector {
+ static_assert(MinInlineCapacity <= 127, "sorry, can't have more than 127 direct elements");
+ static constexpr auto N = detail::automatic_capacity<T>(MinInlineCapacity);
+
+ enum class direction { direct, indirect };
+
+ /**
+ * A buffer to hold the data of the svector Depending on direct/indirect mode, the content it holds is like so:
+ *
+ * direct:
+ * m_data[0] & 1: lowest bit is 1 for direct mode.
+ * m_data[0] >> 1: size for direct mode
+ * Then 0-X bytes unused (padding), and then the actual inline T data.
+ * indirect:
+ * m_data[0] & 1: lowest bit is 0 for indirect mode
+ * m_data[0..7]: stores an uintptr_t, which points to the indirect data.
+ */
+ alignas(detail::alignment_of_svector<T>()) std::array<uint8_t, detail::size_of_svector<T>(MinInlineCapacity)> m_data;
+
+ // direct mode ///////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto is_direct() const -> bool {
+ return (m_data[0] & 1U) != 0U;
+ }
+
+ [[nodiscard]] auto direct_size() const -> size_t {
+ return m_data[0] >> 1U;
+ }
+
+ // sets size of direct mode and mode to direct too.
+ constexpr void set_direct_and_size(size_t s) {
+ m_data[0] = (s << 1U) | 1U;
+ }
+
+ [[nodiscard]] auto direct_data() -> T* {
+ return std::launder(reinterpret_cast<T*>(m_data.data() + std::alignment_of_v<T>));
+ }
+
+ // indirect mode /////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto indirect() -> detail::storage<T>* {
+ detail::storage<T>* ptr; // NOLINT(cppcoreguidelines-init-variables)
+ std::memcpy(&ptr, m_data.data(), sizeof(ptr));
+ return ptr;
+ }
+
+ [[nodiscard]] auto indirect() const -> detail::storage<T> const* {
+ return const_cast<svector*>(this)->indirect(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ void set_indirect(detail::storage<T>* ptr) {
+ std::memcpy(m_data.data(), &ptr, sizeof(ptr));
+
+ // safety check to guarantee the lowest bit is 0
+ if (is_direct()) {
+ throw std::bad_alloc(); // LCOV_EXCL_LINE
+ }
+ }
+
+ // helpers ///////////////////////////////////////////////////////////////
+
+ /**
+ * @brief Moves size objects from source_ptr to target_ptr, and destroys what remains in source_ptr.
+ *
+ * Assumes data is not overlapping
+ */
+ static void uninitialized_move_and_destroy(T* source_ptr, T* target_ptr, size_t size) {
+ if constexpr (std::is_trivially_copyable_v<T>) {
+ std::memcpy(target_ptr, source_ptr, size * sizeof(T));
+ } else {
+ std::uninitialized_move_n(source_ptr, size, target_ptr);
+ std::destroy_n(source_ptr, size);
+ }
+ }
+
+ /**
+ * @brief Reallocates all data when capacity changes.
+ *
+ * if new_capacity <= N chooses direct memory, otherwise indirect.
+ */
+ void realloc(size_t new_capacity) {
+ if (new_capacity <= N) {
+ // put everything into direct storage
+ if (is_direct()) {
+ // direct -> direct: nothing to do!
+ return;
+ }
+
+ // indirect -> direct
+ auto* storage = indirect();
+ uninitialized_move_and_destroy(storage->data(), direct_data(), storage->size());
+ set_direct_and_size(storage->size());
+ delete storage;
+ } else {
+ // put everything into indirect storage
+ auto* storage = detail::storage<T>::alloc(new_capacity);
+ if (is_direct()) {
+ // direct -> indirect
+ uninitialized_move_and_destroy(data<direction::direct>(), storage->data(), size<direction::direct>());
+ storage->size(size<direction::direct>());
+ } else {
+ // indirect -> indirect
+ uninitialized_move_and_destroy(data<direction::indirect>(), storage->data(), size<direction::indirect>());
+ storage->size(size<direction::indirect>());
+ delete indirect();
+ }
+ set_indirect(storage);
+ }
+ }
+
+ /**
+ * @brief Doubles starting_capacity until it is >= size_to_fit.
+ */
+ [[nodiscard]] static auto calculate_new_capacity(size_t size_to_fit, size_t starting_capacity) -> size_t {
+ if (size_to_fit > max_size()) {
+ // not enough space
+ throw std::bad_alloc();
+ }
+
+ if (size_to_fit == 0) {
+ // special handling for 0 so N==0 works
+ return starting_capacity;
+ }
+ // start with at least 1, so N==0 works
+ auto new_capacity = std::max<size_t>(1, starting_capacity);
+
+ // double capacity until its large enough, but make sure we don't overflow
+ while (new_capacity < size_to_fit && new_capacity * 2 > new_capacity) {
+ new_capacity *= 2;
+ }
+ if (new_capacity < size_to_fit) {
+ // got an overflow, set capacity to max
+ new_capacity = max_size();
+ }
+ return std::min(new_capacity, max_size());
+ }
+
+ template <direction D>
+ [[nodiscard]] auto capacity() const -> size_t {
+ if constexpr (D == direction::direct) {
+ return N;
+ } else {
+ return indirect()->capacity();
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto size() const -> size_t {
+ if constexpr (D == direction::direct) {
+ return direct_size();
+ } else {
+ return indirect()->size();
+ }
+ }
+
+ template <direction D>
+ void set_size(size_t s) {
+ if constexpr (D == direction::direct) {
+ set_direct_and_size(s);
+ } else {
+ indirect()->size(s);
+ }
+ }
+
+ void set_size(size_t s) {
+ if (is_direct()) {
+ set_size<direction::direct>(s);
+ } else {
+ set_size<direction::indirect>(s);
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto data() -> T* {
+ if constexpr (D == direction::direct) {
+ return direct_data();
+ } else {
+ return indirect()->data();
+ }
+ }
+
+ template <direction D>
+ [[nodiscard]] auto data() const -> T const* {
+ return const_cast<svector*>(this)->data<D>(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <direction D>
+ void pop_back() {
+ if constexpr (std::is_trivially_destructible_v<T>) {
+ set_size<D>(size<D>() - 1);
+ } else {
+ auto s = size<D>() - 1;
+ (data<D>() + s)->~T();
+ set_size<D>(s);
+ }
+ }
+
+ /**
+ * @brief We need variadic arguments so we can either use copy ctor or default ctor
+ */
+ template <direction D, class... Args>
+ void resize_after_reserve(size_t count, Args&&... args) {
+ auto current_size = size<D>();
+ if (current_size > count) {
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ auto* d = data<D>();
+ std::destroy(d + count, d + current_size);
+ }
+ } else {
+ auto* d = data<D>();
+ for (auto ptr = d + current_size, end = d + count; ptr != end; ++ptr) {
+ new (static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
+ }
+ }
+ set_size<D>(count);
+ }
+
+ // Makes sure that to is not past the end iterator
+ template <direction D>
+ auto erase_checked_end(T const* cfrom, T const* to) -> T* {
+ auto* const erase_begin = const_cast<T*>(cfrom); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ auto* const container_end = data<D>() + size<D>();
+ auto* const erase_end = std::min(const_cast<T*>(to), container_end); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+
+ std::move(erase_end, container_end, erase_begin);
+ auto const num_erased = std::distance(erase_begin, erase_end);
+ std::destroy(container_end - num_erased, container_end);
+ set_size<D>(size<D>() - num_erased);
+ return erase_begin;
+ }
+
+ template <typename It>
+ void assign(It first, It last, std::input_iterator_tag /*unused*/) {
+ clear();
+
+ // TODO this can be made faster, e.g. by setting size only when finished.
+ while (first != last) {
+ push_back(*first);
+ ++first;
+ }
+ }
+
+ template <typename It>
+ void assign(It first, It last, std::forward_iterator_tag /*unused*/) {
+ clear();
+
+ auto s = std::distance(first, last);
+ reserve(s);
+ std::uninitialized_copy(first, last, data());
+ set_size(s);
+ }
+
+ // precondition: all uninitialized
+ void do_move_assign(svector&& other) {
+ if (!other.is_direct()) {
+ // take other's memory, even when empty
+ set_indirect(other.indirect());
+ } else {
+ auto* other_ptr = other.data<direction::direct>();
+ auto s = other.size<direction::direct>();
+ auto* other_end = other_ptr + s;
+
+ std::uninitialized_move(other_ptr, other_end, data<direction::direct>());
+ std::destroy(other_ptr, other_end);
+ set_size(s);
+ }
+ other.set_direct_and_size(0);
+ }
+
+ /**
+ * @brief Shifts data [source_begin, source_end( to the right, starting on target_begin.
+ *
+ * Preconditions:
+ * * contiguous memory
+ * * source_begin <= target_begin
+ * * source_end onwards is uninitialized memory
+ *
+ * Destroys then empty elements in [source_begin, source_end(
+ */
+ static auto shift_right(T* source_begin, T* source_end, T* target_begin) {
+ // 1. uninitialized moves
+ auto const num_moves = std::distance(source_begin, source_end);
+ auto const target_end = target_begin + num_moves;
+ auto const num_uninitialized_move = std::min(num_moves, std::distance(source_end, target_end));
+ std::uninitialized_move(source_end - num_uninitialized_move, source_end, target_end - num_uninitialized_move);
+ std::move_backward(source_begin, source_end - num_uninitialized_move, target_end - num_uninitialized_move);
+ std::destroy(source_begin, std::min(source_end, target_begin));
+ }
+
+ template <direction D>
+ [[nodiscard]] auto make_uninitialized_space_new(size_t s, T* p, size_t count) -> T* {
+ auto target = svector();
+ // we know target is indirect because we're increasing capacity
+ target.reserve(s + count);
+
+ // move everything [begin, pos[
+ auto* target_pos = std::uninitialized_move(data<D>(), p, target.template data<direction::indirect>());
+
+ // move everything [pos, end]
+ std::uninitialized_move(p, data<D>() + s, target_pos + count);
+
+ target.template set_size<direction::indirect>(s + count);
+ *this = std::move(target);
+ return target_pos;
+ }
+
+ template <direction D>
+ [[nodiscard]] auto make_uninitialized_space(T const* pos, size_t count) -> T* {
+ auto* const p = const_cast<T*>(pos); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ auto s = size<D>();
+ if (s + count > capacity<D>()) {
+ return make_uninitialized_space_new<D>(s, p, count);
+ }
+
+ shift_right(p, data<D>() + s, p + count);
+ set_size<D>(s + count);
+ return p;
+ }
+
+ // makes space for uninitialized data of cout elements. Also updates size.
+ [[nodiscard]] auto make_uninitialized_space(T const* pos, size_t count) -> T* {
+ if (is_direct()) {
+ return make_uninitialized_space<direction::direct>(pos, count);
+ }
+ return make_uninitialized_space<direction::indirect>(pos, count);
+ }
+
+ void destroy() {
+ auto const is_dir = is_direct();
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ T* ptr = nullptr;
+ size_t s = 0;
+ if (is_dir) {
+ ptr = data<direction::direct>();
+ s = size<direction::direct>();
+ } else {
+ ptr = data<direction::indirect>();
+ s = size<direction::indirect>();
+ }
+ std::destroy_n(ptr, s);
+ }
+ if (!is_dir) {
+ delete indirect();
+ }
+ }
+
+ // performs a const_cast so we don't need this implementation twice
+ template <direction D>
+ auto at(size_t idx) -> T& {
+ if (idx >= size<D>()) {
+ throw std::out_of_range{"svector: idx out of range"};
+ }
+ auto* ptr = const_cast<T*>(data<D>() + idx); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ return *ptr;
+ } // LCOV_EXCL_LINE why is this single } marked as not covered? gcov bug?
+
+public:
+ using value_type = T;
+ using size_type = size_t;
+ using difference_type = std::ptrdiff_t;
+ using reference = value_type&;
+ using const_reference = value_type const&;
+ using pointer = T*;
+ using const_pointer = T const*;
+ using iterator = T*;
+ using const_iterator = T const*;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+
+ svector() {
+ set_direct_and_size(0);
+ }
+
+ svector(size_t count, T const& value)
+ : svector() {
+ resize(count, value);
+ }
+
+ explicit svector(size_t count)
+ : svector() {
+ reserve(count);
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count);
+ } else {
+ resize_after_reserve<direction::indirect>(count);
+ }
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ svector(InputIt first, InputIt last)
+ : svector() {
+ assign(first, last);
+ }
+
+ svector(svector const& other)
+ : svector() {
+ auto s = other.size();
+ reserve(s);
+ std::uninitialized_copy(other.begin(), other.end(), begin());
+ set_size(s);
+ }
+
+ svector(svector&& other) noexcept
+ : svector() {
+ do_move_assign(std::move(other));
+ }
+
+ svector(std::initializer_list<T> init)
+ : svector(init.begin(), init.end()) {}
+
+ ~svector() {
+ destroy();
+ }
+
+ void assign(size_t count, T const& value) {
+ clear();
+ resize(count, value);
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ void assign(InputIt first, InputIt last) {
+ assign(first, last, typename std::iterator_traits<InputIt>::iterator_category());
+ }
+
+ void assign(std::initializer_list<T> l) {
+ assign(l.begin(), l.end());
+ }
+
+ auto operator=(svector const& other) -> svector& {
+ if (&other == this) {
+ return *this;
+ }
+
+ assign(other.begin(), other.end());
+ return *this;
+ }
+
+ auto operator=(svector&& other) noexcept -> svector& {
+ if (&other == this) {
+ // It doesn't seem to be required to do self-check, but let's do it anyways to be safe
+ return *this;
+ }
+ destroy();
+ do_move_assign(std::move(other));
+ return *this;
+ }
+
+ auto operator=(std::initializer_list<T> l) -> svector& {
+ assign(l.begin(), l.end());
+ return *this;
+ }
+
+ void resize(size_t count) {
+ if (count > capacity()) {
+ reserve(count);
+ }
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count);
+ } else {
+ resize_after_reserve<direction::indirect>(count);
+ }
+ }
+
+ void resize(size_t count, T const& value) {
+ if (count > capacity()) {
+ reserve(count);
+ }
+ if (is_direct()) {
+ resize_after_reserve<direction::direct>(count, value);
+ } else {
+ resize_after_reserve<direction::indirect>(count, value);
+ }
+ }
+
+ auto reserve(size_t s) {
+ auto old_capacity = capacity();
+ auto new_capacity = calculate_new_capacity(s, old_capacity);
+ if (new_capacity > old_capacity) {
+ realloc(new_capacity);
+ }
+ }
+
+ [[nodiscard]] auto capacity() const -> size_t {
+ if (is_direct()) {
+ return capacity<direction::direct>();
+ }
+ return capacity<direction::indirect>();
+ }
+
+ [[nodiscard]] auto size() const -> size_t {
+ if (is_direct()) {
+ return size<direction::direct>();
+ }
+ return size<direction::indirect>();
+ }
+
+ [[nodiscard]] auto data() -> T* {
+ if (is_direct()) {
+ return direct_data();
+ }
+ return indirect()->data();
+ }
+
+ [[nodiscard]] auto data() const -> T const* {
+ return const_cast<svector*>(this)->data(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <class... Args>
+ auto emplace_back(Args&&... args) -> T& {
+ size_t c; // NOLINT(cppcoreguidelines-init-variables)
+ size_t s; // NOLINT(cppcoreguidelines-init-variables)
+ bool is_dir = is_direct();
+ if (is_dir) {
+ c = capacity<direction::direct>();
+ s = size<direction::direct>();
+ } else {
+ c = capacity<direction::indirect>();
+ s = size<direction::indirect>();
+ }
+
+ if (s == c) {
+ auto new_capacity = calculate_new_capacity(s + 1, c);
+ realloc(new_capacity);
+ // reallocation happened, so we definitely are now in indirect mode
+ is_dir = false;
+ }
+
+ T* ptr; // NOLINT(cppcoreguidelines-init-variables)
+ if (is_dir) {
+ ptr = data<direction::direct>() + s;
+ set_size<direction::direct>(s + 1);
+ } else {
+ ptr = data<direction::indirect>() + s;
+ set_size<direction::indirect>(s + 1);
+ }
+ return *new (static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
+ }
+
+ void push_back(T const& value) {
+ emplace_back(value);
+ }
+
+ void push_back(T&& value) {
+ emplace_back(std::move(value));
+ }
+
+ [[nodiscard]] auto operator[](size_t idx) const -> T const& {
+ return *(data() + idx);
+ }
+
+ [[nodiscard]] auto operator[](size_t idx) -> T& {
+ return *(data() + idx);
+ }
+
+ auto at(size_t idx) -> T& {
+ if (is_direct()) {
+ return at<direction::direct>(idx);
+ }
+ return at<direction::indirect>(idx);
+ }
+
+ auto at(size_t idx) const -> T const& {
+ return const_cast<svector*>(this)->at(idx); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ [[nodiscard]] auto begin() const -> T const* {
+ return data();
+ }
+
+ [[nodiscard]] auto cbegin() const -> T const* {
+ return begin();
+ }
+
+ [[nodiscard]] auto begin() -> T* {
+ return data();
+ }
+
+ [[nodiscard]] auto end() -> T* {
+ if (is_direct()) {
+ return data<direction::direct>() + size<direction::direct>();
+ }
+ return data<direction::indirect>() + size<direction::indirect>();
+ }
+
+ [[nodiscard]] auto end() const -> T const* {
+ return const_cast<svector*>(this)->end(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ [[nodiscard]] auto cend() const -> T const* {
+ return end();
+ }
+
+ [[nodiscard]] auto rbegin() -> reverse_iterator {
+ return reverse_iterator{end()};
+ }
+
+ [[nodiscard]] auto rbegin() const -> const_reverse_iterator {
+ return crbegin();
+ }
+
+ [[nodiscard]] auto crbegin() const -> const_reverse_iterator {
+ return const_reverse_iterator{end()};
+ }
+
+ [[nodiscard]] auto rend() -> reverse_iterator {
+ return reverse_iterator{begin()};
+ }
+
+ [[nodiscard]] auto rend() const -> const_reverse_iterator {
+ return crend();
+ }
+
+ [[nodiscard]] auto crend() const -> const_reverse_iterator {
+ return const_reverse_iterator{begin()};
+ }
+
+ [[nodiscard]] auto front() const -> T const& {
+ return *data();
+ }
+
+ [[nodiscard]] auto front() -> T& {
+ return *data();
+ }
+
+ [[nodiscard]] auto back() -> T& {
+ if (is_direct()) {
+ return *(data<direction::direct>() + size<direction::direct>() - 1);
+ }
+ return *(data<direction::indirect>() + size<direction::indirect>() - 1);
+ }
+
+ [[nodiscard]] auto back() const -> T const& {
+ return const_cast<svector*>(this)->back(); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ void clear() {
+ if constexpr (!std::is_trivially_destructible_v<T>) {
+ std::destroy(begin(), end());
+ }
+
+ if (is_direct()) {
+ set_size<direction::direct>(0);
+ } else {
+ set_size<direction::indirect>(0);
+ }
+ }
+
+ [[nodiscard]] auto empty() const -> bool {
+ return 0U == size();
+ }
+
+ void pop_back() {
+ if (is_direct()) {
+ pop_back<direction::direct>();
+ } else {
+ pop_back<direction::indirect>();
+ }
+ }
+
+ [[nodiscard]] static auto max_size() -> size_t {
+ return std::numeric_limits<std::ptrdiff_t>::max();
+ }
+
+ void swap(svector& other) {
+ // TODO we could try to do the minimum number of moves
+ std::swap(*this, other);
+ }
+
+ void shrink_to_fit() {
+ // per the standard we wouldn't need to do anything here. But since we are so nice,
+ // let's do the shrink.
+ auto const c = capacity();
+ auto const s = size();
+ if (s >= c) {
+ return;
+ }
+
+ auto new_capacity = calculate_new_capacity(s, N);
+ if (new_capacity == c) {
+ // nothing change!
+ return;
+ }
+
+ realloc(new_capacity);
+ }
+
+ template <class... Args>
+ auto emplace(const_iterator pos, Args&&... args) -> iterator {
+ auto* p = make_uninitialized_space(pos, 1);
+ return new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
+ }
+
+ auto insert(const_iterator pos, T const& value) -> iterator {
+ return emplace(pos, value);
+ }
+
+ auto insert(const_iterator pos, T&& value) -> iterator {
+ return emplace(pos, std::move(value));
+ }
+
+ auto insert(const_iterator pos, size_t count, T const& value) -> iterator {
+ auto* p = make_uninitialized_space(pos, count);
+ std::uninitialized_fill_n(p, count, value);
+ return p;
+ }
+
+ template <typename It>
+ auto insert(const_iterator pos, It first, It last, std::input_iterator_tag /*unused*/) {
+ if (!(first != last)) {
+ return const_cast<T*>(pos); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ // just input_iterator_tag makes this very slow. Let's do the same as the STL.
+ if (pos == end()) {
+ auto s = size();
+ while (first != last) {
+ emplace_back(*first);
+ ++first;
+ }
+ return begin() + s;
+ }
+
+ auto tmp = svector(first, last);
+ return insert(pos, std::make_move_iterator(tmp.begin()), std::make_move_iterator(tmp.end()));
+ }
+
+ template <typename It>
+ auto insert(const_iterator pos, It first, It last, std::forward_iterator_tag /*unused*/) {
+ auto* p = make_uninitialized_space(pos, std::distance(first, last));
+ std::uninitialized_copy(first, last, p);
+ return p;
+ }
+
+ template <typename InputIt, typename = detail::enable_if_t<detail::is_input_iterator<InputIt>>>
+ auto insert(const_iterator pos, InputIt first, InputIt last) -> iterator {
+ return insert(pos, first, last, typename std::iterator_traits<InputIt>::iterator_category());
+ }
+
+ auto insert(const_iterator pos, std::initializer_list<T> l) -> iterator {
+ return insert(pos, l.begin(), l.end());
+ }
+
+ auto erase(const_iterator pos) -> iterator {
+ return erase(pos, pos + 1);
+ }
+
+ auto erase(const_iterator first, const_iterator last) -> iterator {
+ if (is_direct()) {
+ return erase_checked_end<direction::direct>(first, last);
+ }
+ return erase_checked_end<direction::indirect>(first, last);
+ }
+};
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator==(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::equal(a.begin(), a.end(), b.begin(), b.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator!=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a == b);
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator<(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator>=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a < b);
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator>(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return std::lexicographical_compare(b.begin(), b.end(), a.begin(), a.end());
+}
+
+template <typename T, size_t NA, size_t NB>
+[[nodiscard]] auto operator<=(svector<T, NA> const& a, svector<T, NB> const& b) -> bool {
+ return !(a > b);
+}
+
+} // namespace ANKERL_SVECTOR_NAMESPACE
+} // namespace ankerl
+
+// NOLINTNEXTLINE(cert-dcl58-cpp)
+namespace std {
+inline namespace ANKERL_SVECTOR_NAMESPACE {
+
+template <class T, size_t N, class U>
+constexpr auto erase(ankerl::svector<T, N>& sv, U const& value) -> typename ankerl::svector<T, N>::size_type {
+ auto* removed_begin = std::remove(sv.begin(), sv.end(), value);
+ auto num_removed = std::distance(removed_begin, sv.end());
+ sv.erase(removed_begin, sv.end());
+ return num_removed;
+}
+
+template <class T, size_t N, class Pred>
+constexpr auto erase_if(ankerl::svector<T, N>& sv, Pred pred) -> typename ankerl::svector<T, N>::size_type {
+ auto* removed_begin = std::remove_if(sv.begin(), sv.end(), pred);
+ auto num_removed = std::distance(removed_begin, sv.end());
+ sv.erase(removed_begin, sv.end());
+ return num_removed;
+}
+
+} // namespace ANKERL_SVECTOR_NAMESPACE
+} // namespace std
+
+#endif