aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/kann
diff options
context:
space:
mode:
authorVsevolod Stakhov <vsevolod@highsecure.ru>2019-06-30 09:40:44 +0100
committerVsevolod Stakhov <vsevolod@highsecure.ru>2019-06-30 09:40:44 +0100
commit95edae6494dac4acf6ab19714a45339e515b8c49 (patch)
treecd744272ce0518e0ce06f3d5bd7bbde7e7110ec3 /contrib/kann
parentb0dc1504eb3f788c698001a36b320bdd41a5d287 (diff)
downloadrspamd-95edae6494dac4acf6ab19714a45339e515b8c49.tar.gz
rspamd-95edae6494dac4acf6ab19714a45339e515b8c49.zip
[Project] Support callback function for train
Diffstat (limited to 'contrib/kann')
-rw-r--r--contrib/kann/kann.c10
1 files changed, 8 insertions, 2 deletions
diff --git a/contrib/kann/kann.c b/contrib/kann/kann.c
index 0af15fb2a..3fbf139cc 100644
--- a/contrib/kann/kann.c
+++ b/contrib/kann/kann.c
@@ -846,7 +846,10 @@ float kann_grad_clip(float thres, int n, float *g)
*** @@XY: simpler API for network with a single input/output ***
****************************************************************/
-int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max_drop_streak, float frac_val, int n, float **_x, float **_y)
+int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch,
+ int max_drop_streak, float frac_val, int n,
+ float **_x, float **_y,
+ kann_train_cb cb, void *ud)
{
int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0;
float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c;
@@ -907,7 +910,9 @@ int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max
n_proc += ms;
}
if (n_val > 0) val_cost /= n_val;
- if (kann_verbose >= 3) {
+ if (cb) {
+ cb(i + 1, train_cost, val_cost, ud);
+#if 0
fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost);
if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train);
if (n_val > 0) {
@@ -915,6 +920,7 @@ int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max
if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val);
}
fputc('\n', stderr);
+#endif
}
if (i >= max_drop_streak && n_val > 0) {
if (val_cost < min_val_cost) {