diff options
author | Vsevolod Stakhov <vsevolod@highsecure.ru> | 2018-05-23 18:14:15 +0100 |
---|---|---|
committer | Vsevolod Stakhov <vsevolod@highsecure.ru> | 2018-05-23 18:14:15 +0100 |
commit | 714eb56e1760fdfb26afccde92664d3a2f1e8435 (patch) | |
tree | 84d1399acbb92f852b4bd64f9ea5412680b0c6ab /contrib/lpeg/lpcode.c | |
parent | 220a51ff68013dd668a45b78c60a7b8bfc10f074 (diff) | |
download | rspamd-714eb56e1760fdfb26afccde92664d3a2f1e8435.tar.gz rspamd-714eb56e1760fdfb26afccde92664d3a2f1e8435.zip |
[Minor] Move lua contrib libraries to lua- prefix
Diffstat (limited to 'contrib/lpeg/lpcode.c')
-rw-r--r-- | contrib/lpeg/lpcode.c | 986 |
1 files changed, 0 insertions, 986 deletions
diff --git a/contrib/lpeg/lpcode.c b/contrib/lpeg/lpcode.c deleted file mode 100644 index 6feefeb43..000000000 --- a/contrib/lpeg/lpcode.c +++ /dev/null @@ -1,986 +0,0 @@ -/* -** $Id: lpcode.c,v 1.23 2015/06/12 18:36:47 roberto Exp $ -** Copyright 2007, Lua.org & PUC-Rio (see 'lpeg.html' for license) -*/ - -#include <limits.h> - - -#include "lua.h" -#include "lauxlib.h" - -#include "lptypes.h" -#include "lpcode.h" - - -/* signals a "no-instruction */ -#define NOINST -1 - - - -static const Charset fullset_ = - {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}; - -static const Charset *fullset = &fullset_; - -/* -** {====================================================== -** Analysis and some optimizations -** ======================================================= -*/ - -/* -** Check whether a charset is empty (returns IFail), singleton (IChar), -** full (IAny), or none of those (ISet). When singleton, '*c' returns -** which character it is. (When generic set, the set was the input, -** so there is no need to return it.) -*/ -static Opcode charsettype (const byte *cs, int *c) { - int count = 0; /* number of characters in the set */ - int i; - int candidate = -1; /* candidate position for the singleton char */ - for (i = 0; i < CHARSETSIZE; i++) { /* for each byte */ - int b = cs[i]; - if (b == 0) { /* is byte empty? */ - if (count > 1) /* was set neither empty nor singleton? */ - return ISet; /* neither full nor empty nor singleton */ - /* else set is still empty or singleton */ - } - else if (b == 0xFF) { /* is byte full? */ - if (count < (i * BITSPERCHAR)) /* was set not full? */ - return ISet; /* neither full nor empty nor singleton */ - else count += BITSPERCHAR; /* set is still full */ - } - else if ((b & (b - 1)) == 0) { /* has byte only one bit? */ - if (count > 0) /* was set not empty? */ - return ISet; /* neither full nor empty nor singleton */ - else { /* set has only one char till now; track it */ - count++; - candidate = i; - } - } - else return ISet; /* byte is neither empty, full, nor singleton */ - } - switch (count) { - case 0: return IFail; /* empty set */ - case 1: { /* singleton; find character bit inside byte */ - int b = cs[candidate]; - *c = candidate * BITSPERCHAR; - if ((b & 0xF0) != 0) { *c += 4; b >>= 4; } - if ((b & 0x0C) != 0) { *c += 2; b >>= 2; } - if ((b & 0x02) != 0) { *c += 1; } - return IChar; - } - default: { - assert(count == CHARSETSIZE * BITSPERCHAR); /* full set */ - return IAny; - } - } -} - - -/* -** A few basic operations on Charsets -*/ -static void cs_complement (Charset *cs) { - loopset(i, cs->cs[i] = ~cs->cs[i]); -} - -static int cs_equal (const byte *cs1, const byte *cs2) { - loopset(i, if (cs1[i] != cs2[i]) return 0); - return 1; -} - -static int cs_disjoint (const Charset *cs1, const Charset *cs2) { - loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;) - return 1; -} - - -/* -** If 'tree' is a 'char' pattern (TSet, TChar, TAny), convert it into a -** charset and return 1; else return 0. -*/ -int tocharset (TTree *tree, Charset *cs) { - switch (tree->tag) { - case TSet: { /* copy set */ - loopset(i, cs->cs[i] = treebuffer(tree)[i]); - return 1; - } - case TChar: { /* only one char */ - assert(0 <= tree->u.n && tree->u.n <= UCHAR_MAX); - loopset(i, cs->cs[i] = 0); /* erase all chars */ - setchar(cs->cs, tree->u.n); /* add that one */ - return 1; - } - case TAny: { - loopset(i, cs->cs[i] = 0xFF); /* add all characters to the set */ - return 1; - } - default: return 0; - } -} - - -/* -** Check whether a pattern tree has captures -*/ -int hascaptures (TTree *tree) { - tailcall: - switch (tree->tag) { - case TCapture: case TRunTime: - return 1; - case TCall: - tree = sib2(tree); goto tailcall; /* return hascaptures(sib2(tree)); */ - case TOpenCall: assert(0); - default: { - switch (numsiblings[tree->tag]) { - case 1: /* return hascaptures(sib1(tree)); */ - tree = sib1(tree); goto tailcall; - case 2: - if (hascaptures(sib1(tree))) return 1; - /* else return hascaptures(sib2(tree)); */ - tree = sib2(tree); goto tailcall; - default: assert(numsiblings[tree->tag] == 0); return 0; - } - } - } -} - - -/* -** Checks how a pattern behaves regarding the empty string, -** in one of two different ways: -** A pattern is *nullable* if it can match without consuming any character; -** A pattern is *nofail* if it never fails for any string -** (including the empty string). -** The difference is only for predicates and run-time captures; -** for other patterns, the two properties are equivalent. -** (With predicates, &'a' is nullable but not nofail. Of course, -** nofail => nullable.) -** These functions are all convervative in the following way: -** p is nullable => nullable(p) -** nofail(p) => p cannot fail -** The function assumes that TOpenCall is not nullable; -** this will be checked again when the grammar is fixed. -** Run-time captures can do whatever they want, so the result -** is conservative. -*/ -int checkaux (TTree *tree, int pred) { - tailcall: - switch (tree->tag) { - case TChar: case TSet: case TAny: - case TFalse: case TOpenCall: - return 0; /* not nullable */ - case TRep: case TTrue: - return 1; /* no fail */ - case TNot: case TBehind: /* can match empty, but can fail */ - if (pred == PEnofail) return 0; - else return 1; /* PEnullable */ - case TAnd: /* can match empty; fail iff body does */ - if (pred == PEnullable) return 1; - /* else return checkaux(sib1(tree), pred); */ - tree = sib1(tree); goto tailcall; - case TRunTime: /* can fail; match empty iff body does */ - if (pred == PEnofail) return 0; - /* else return checkaux(sib1(tree), pred); */ - tree = sib1(tree); goto tailcall; - case TSeq: - if (!checkaux(sib1(tree), pred)) return 0; - /* else return checkaux(sib2(tree), pred); */ - tree = sib2(tree); goto tailcall; - case TChoice: - if (checkaux(sib2(tree), pred)) return 1; - /* else return checkaux(sib1(tree), pred); */ - tree = sib1(tree); goto tailcall; - case TCapture: case TGrammar: case TRule: - /* return checkaux(sib1(tree), pred); */ - tree = sib1(tree); goto tailcall; - case TCall: /* return checkaux(sib2(tree), pred); */ - tree = sib2(tree); goto tailcall; - default: assert(0); return 0; - } -} - - -/* -** number of characters to match a pattern (or -1 if variable) -** ('count' avoids infinite loops for grammars) -*/ -int fixedlenx (TTree *tree, int count, int len) { - tailcall: - switch (tree->tag) { - case TChar: case TSet: case TAny: - return len + 1; - case TFalse: case TTrue: case TNot: case TAnd: case TBehind: - return len; - case TRep: case TRunTime: case TOpenCall: - return -1; - case TCapture: case TRule: case TGrammar: - /* return fixedlenx(sib1(tree), count); */ - tree = sib1(tree); goto tailcall; - case TCall: - if (count++ >= MAXRULES) - return -1; /* may be a loop */ - /* else return fixedlenx(sib2(tree), count); */ - tree = sib2(tree); goto tailcall; - case TSeq: { - len = fixedlenx(sib1(tree), count, len); - if (len < 0) return -1; - /* else return fixedlenx(sib2(tree), count, len); */ - tree = sib2(tree); goto tailcall; - } - case TChoice: { - int n1, n2; - n1 = fixedlenx(sib1(tree), count, len); - if (n1 < 0) return -1; - n2 = fixedlenx(sib2(tree), count, len); - if (n1 == n2) return n1; - else return -1; - } - default: assert(0); return 0; - }; -} - - -/* -** Computes the 'first set' of a pattern. -** The result is a conservative approximation: -** match p ax -> x (for some x) ==> a belongs to first(p) -** or -** a not in first(p) ==> match p ax -> fail (for all x) -** -** The set 'follow' is the first set of what follows the -** pattern (full set if nothing follows it). -** -** The function returns 0 when this resulting set can be used for -** test instructions that avoid the pattern altogether. -** A non-zero return can happen for two reasons: -** 1) match p '' -> '' ==> return has bit 1 set -** (tests cannot be used because they would always fail for an empty input); -** 2) there is a match-time capture ==> return has bit 2 set -** (optimizations should not bypass match-time captures). -*/ -static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) { - tailcall: - switch (tree->tag) { - case TChar: case TSet: case TAny: { - tocharset(tree, firstset); - return 0; - } - case TTrue: { - loopset(i, firstset->cs[i] = follow->cs[i]); - return 1; /* accepts the empty string */ - } - case TFalse: { - loopset(i, firstset->cs[i] = 0); - return 0; - } - case TChoice: { - Charset csaux; - int e1 = getfirst(sib1(tree), follow, firstset); - int e2 = getfirst(sib2(tree), follow, &csaux); - loopset(i, firstset->cs[i] |= csaux.cs[i]); - return e1 | e2; - } - case TSeq: { - if (!nullable(sib1(tree))) { - /* when p1 is not nullable, p2 has nothing to contribute; - return getfirst(sib1(tree), fullset, firstset); */ - tree = sib1(tree); follow = fullset; goto tailcall; - } - else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */ - Charset csaux; - int e2 = getfirst(sib2(tree), follow, &csaux); - int e1 = getfirst(sib1(tree), &csaux, firstset); - if (e1 == 0) return 0; /* 'e1' ensures that first can be used */ - else if ((e1 | e2) & 2) /* one of the children has a matchtime? */ - return 2; /* pattern has a matchtime capture */ - else return e2; /* else depends on 'e2' */ - } - } - case TRep: { - getfirst(sib1(tree), follow, firstset); - loopset(i, firstset->cs[i] |= follow->cs[i]); - return 1; /* accept the empty string */ - } - case TCapture: case TGrammar: case TRule: { - /* return getfirst(sib1(tree), follow, firstset); */ - tree = sib1(tree); goto tailcall; - } - case TRunTime: { /* function invalidates any follow info. */ - int e = getfirst(sib1(tree), fullset, firstset); - if (e) return 2; /* function is not "protected"? */ - else return 0; /* pattern inside capture ensures first can be used */ - } - case TCall: { - /* return getfirst(sib2(tree), follow, firstset); */ - tree = sib2(tree); goto tailcall; - } - case TAnd: { - int e = getfirst(sib1(tree), follow, firstset); - loopset(i, firstset->cs[i] &= follow->cs[i]); - return e; - } - case TNot: { - if (tocharset(sib1(tree), firstset)) { - cs_complement(firstset); - return 1; - } - /* else go through */ - } - case TBehind: { /* instruction gives no new information */ - /* call 'getfirst' only to check for math-time captures */ - int e = getfirst(sib1(tree), follow, firstset); - loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */ - return e | 1; /* always can accept the empty string */ - } - default: assert(0); return 0; - } -} - - -/* -** If 'headfail(tree)' true, then 'tree' can fail only depending on the -** next character of the subject. -*/ -static int headfail (TTree *tree) { - tailcall: - switch (tree->tag) { - case TChar: case TSet: case TAny: case TFalse: - return 1; - case TTrue: case TRep: case TRunTime: case TNot: - case TBehind: - return 0; - case TCapture: case TGrammar: case TRule: case TAnd: - tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */ - case TCall: - tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */ - case TSeq: - if (!nofail(sib2(tree))) return 0; - /* else return headfail(sib1(tree)); */ - tree = sib1(tree); goto tailcall; - case TChoice: - if (!headfail(sib1(tree))) return 0; - /* else return headfail(sib2(tree)); */ - tree = sib2(tree); goto tailcall; - default: assert(0); return 0; - } -} - - -/* -** Check whether the code generation for the given tree can benefit -** from a follow set (to avoid computing the follow set when it is -** not needed) -*/ -static int needfollow (TTree *tree) { - tailcall: - switch (tree->tag) { - case TChar: case TSet: case TAny: - case TFalse: case TTrue: case TAnd: case TNot: - case TRunTime: case TGrammar: case TCall: case TBehind: - return 0; - case TChoice: case TRep: - return 1; - case TCapture: - tree = sib1(tree); goto tailcall; - case TSeq: - tree = sib2(tree); goto tailcall; - default: assert(0); return 0; - } -} - -/* }====================================================== */ - - - -/* -** {====================================================== -** Code generation -** ======================================================= -*/ - - -/* -** size of an instruction -*/ -int sizei (const Instruction *i) { - switch((Opcode)i->i.code) { - case ISet: case ISpan: return CHARSETINSTSIZE; - case ITestSet: return CHARSETINSTSIZE + 1; - case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall: - case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit: - return 2; - default: return 1; - } -} - - -/* -** state for the compiler -*/ -typedef struct CompileState { - Pattern *p; /* pattern being compiled */ - int ncode; /* next position in p->code to be filled */ - lua_State *L; -} CompileState; - - -/* -** code generation is recursive; 'opt' indicates that the code is being -** generated as the last thing inside an optional pattern (so, if that -** code is optional too, it can reuse the 'IChoice' already in place for -** the outer pattern). 'tt' points to a previous test protecting this -** code (or NOINST). 'fl' is the follow set of the pattern. -*/ -static void codegen (CompileState *compst, TTree *tree, int opt, int tt, - const Charset *fl); - - -void realloccode (lua_State *L, Pattern *p, int nsize) { - void *ud; - lua_Alloc f = lua_getallocf(L, &ud); - void *newblock = f(ud, p->code, p->codesize * sizeof(Instruction), - nsize * sizeof(Instruction)); - if (newblock == NULL && nsize > 0) - luaL_error(L, "not enough memory"); - p->code = (Instruction *)newblock; - p->codesize = nsize; -} - - -static int nextinstruction (CompileState *compst) { - int size = compst->p->codesize; - if (compst->ncode >= size) - realloccode(compst->L, compst->p, size * 2); - return compst->ncode++; -} - - -#define getinstr(cs,i) ((cs)->p->code[i]) - - -static int addinstruction (CompileState *compst, Opcode op, int aux) { - int i = nextinstruction(compst); - getinstr(compst, i).i.code = op; - getinstr(compst, i).i.aux = aux; - return i; -} - - -/* -** Add an instruction followed by space for an offset (to be set later) -*/ -static int addoffsetinst (CompileState *compst, Opcode op) { - int i = addinstruction(compst, op, 0); /* instruction */ - addinstruction(compst, (Opcode)0, 0); /* open space for offset */ - assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2); - return i; -} - - -/* -** Set the offset of an instruction -*/ -static void setoffset (CompileState *compst, int instruction, int offset) { - getinstr(compst, instruction + 1).offset = offset; -} - - -/* -** Add a capture instruction: -** 'op' is the capture instruction; 'cap' the capture kind; -** 'key' the key into ktable; 'aux' is the optional capture offset -** -*/ -static int addinstcap (CompileState *compst, Opcode op, int cap, int key, - int aux) { - int i = addinstruction(compst, op, joinkindoff(cap, aux)); - getinstr(compst, i).i.key = key; - return i; -} - - -#define gethere(compst) ((compst)->ncode) - -#define target(code,i) ((i) + code[i + 1].offset) - - -/* -** Patch 'instruction' to jump to 'target' -*/ -static void jumptothere (CompileState *compst, int instruction, int target) { - if (instruction >= 0) - setoffset(compst, instruction, target - instruction); -} - - -/* -** Patch 'instruction' to jump to current position -*/ -static void jumptohere (CompileState *compst, int instruction) { - jumptothere(compst, instruction, gethere(compst)); -} - - -/* -** Code an IChar instruction, or IAny if there is an equivalent -** test dominating it -*/ -static void codechar (CompileState *compst, int c, int tt) { - if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar && - getinstr(compst, tt).i.aux == c) - addinstruction(compst, IAny, 0); - else - addinstruction(compst, IChar, c); -} - - -/* -** Add a charset posfix to an instruction -*/ -static void addcharset (CompileState *compst, const byte *cs) { - int p = gethere(compst); - int i; - for (i = 0; i < (int)CHARSETINSTSIZE - 1; i++) - nextinstruction(compst); /* space for buffer */ - /* fill buffer with charset */ - loopset(j, getinstr(compst, p).buff[j] = cs[j]); -} - - -/* -** code a char set, optimizing unit sets for IChar, "complete" -** sets for IAny, and empty sets for IFail; also use an IAny -** when instruction is dominated by an equivalent test. -*/ -static void codecharset (CompileState *compst, const byte *cs, int tt) { - int c = 0; /* (=) to avoid warnings */ - Opcode op = charsettype(cs, &c); - switch (op) { - case IChar: codechar(compst, c, tt); break; - case ISet: { /* non-trivial set? */ - if (tt >= 0 && getinstr(compst, tt).i.code == ITestSet && - cs_equal(cs, getinstr(compst, tt + 2).buff)) - addinstruction(compst, IAny, 0); - else { - addinstruction(compst, ISet, 0); - addcharset(compst, cs); - } - break; - } - default: addinstruction(compst, op, c); break; - } -} - - -/* -** code a test set, optimizing unit sets for ITestChar, "complete" -** sets for ITestAny, and empty sets for IJmp (always fails). -** 'e' is true iff test should accept the empty string. (Test -** instructions in the current VM never accept the empty string.) -*/ -static int codetestset (CompileState *compst, Charset *cs, int e) { - if (e) return NOINST; /* no test */ - else { - int c = 0; - Opcode op = charsettype(cs->cs, &c); - switch (op) { - case IFail: return addoffsetinst(compst, IJmp); /* always jump */ - case IAny: return addoffsetinst(compst, ITestAny); - case IChar: { - int i = addoffsetinst(compst, ITestChar); - getinstr(compst, i).i.aux = c; - return i; - } - case ISet: { - int i = addoffsetinst(compst, ITestSet); - addcharset(compst, cs->cs); - return i; - } - default: assert(0); return 0; - } - } -} - - -/* -** Find the final destination of a sequence of jumps -*/ -static int finaltarget (Instruction *code, int i) { - while (code[i].i.code == IJmp) - i = target(code, i); - return i; -} - - -/* -** final label (after traversing any jumps) -*/ -static int finallabel (Instruction *code, int i) { - return finaltarget(code, target(code, i)); -} - - -/* -** <behind(p)> == behind n; <p> (where n = fixedlen(p)) -*/ -static void codebehind (CompileState *compst, TTree *tree) { - if (tree->u.n > 0) - addinstruction(compst, IBehind, tree->u.n); - codegen(compst, sib1(tree), 0, NOINST, fullset); -} - - -/* -** Choice; optimizations: -** - when p1 is headfail or -** when first(p1) and first(p2) are disjoint, than -** a character not in first(p1) cannot go to p1, and a character -** in first(p1) cannot go to p2 (at it is not in first(p2)). -** (The optimization is not valid if p1 accepts the empty string, -** as then there is no character at all...) -** - when p2 is empty and opt is true; a IPartialCommit can reuse -** the Choice already active in the stack. -*/ -static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt, - const Charset *fl) { - int emptyp2 = (p2->tag == TTrue); - Charset cs1, cs2; - int e1 = getfirst(p1, fullset, &cs1); - if (headfail(p1) || - (!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) { - /* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */ - int test = codetestset(compst, &cs1, 0); - int jmp = NOINST; - codegen(compst, p1, 0, test, fl); - if (!emptyp2) - jmp = addoffsetinst(compst, IJmp); - jumptohere(compst, test); - codegen(compst, p2, opt, NOINST, fl); - jumptohere(compst, jmp); - } - else if (opt && emptyp2) { - /* p1? == IPartialCommit; p1 */ - jumptohere(compst, addoffsetinst(compst, IPartialCommit)); - codegen(compst, p1, 1, NOINST, fullset); - } - else { - /* <p1 / p2> == - test(first(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */ - int pcommit; - int test = codetestset(compst, &cs1, e1); - int pchoice = addoffsetinst(compst, IChoice); - codegen(compst, p1, emptyp2, test, fullset); - pcommit = addoffsetinst(compst, ICommit); - jumptohere(compst, pchoice); - jumptohere(compst, test); - codegen(compst, p2, opt, NOINST, fl); - jumptohere(compst, pcommit); - } -} - - -/* -** And predicate -** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n -** (valid only when 'p' has no captures) -*/ -static void codeand (CompileState *compst, TTree *tree, int tt) { - int n = fixedlen(tree); - if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) { - codegen(compst, tree, 0, tt, fullset); - if (n > 0) - addinstruction(compst, IBehind, n); - } - else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */ - int pcommit; - int pchoice = addoffsetinst(compst, IChoice); - codegen(compst, tree, 0, tt, fullset); - pcommit = addoffsetinst(compst, IBackCommit); - jumptohere(compst, pchoice); - addinstruction(compst, IFail, 0); - jumptohere(compst, pcommit); - } -} - - -/* -** Captures: if pattern has fixed (and not too big) length, use -** a single IFullCapture instruction after the match; otherwise, -** enclose the pattern with OpenCapture - CloseCapture. -*/ -static void codecapture (CompileState *compst, TTree *tree, int tt, - const Charset *fl) { - int len = fixedlen(sib1(tree)); - if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) { - codegen(compst, sib1(tree), 0, tt, fl); - addinstcap(compst, IFullCapture, tree->cap, tree->key, len); - } - else { - addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0); - codegen(compst, sib1(tree), 0, tt, fl); - addinstcap(compst, ICloseCapture, Cclose, 0, 0); - } -} - - -static void coderuntime (CompileState *compst, TTree *tree, int tt) { - addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0); - codegen(compst, sib1(tree), 0, tt, fullset); - addinstcap(compst, ICloseRunTime, Cclose, 0, 0); -} - - -/* -** Repetition; optimizations: -** When pattern is a charset, can use special instruction ISpan. -** When pattern is head fail, or if it starts with characters that -** are disjoint from what follows the repetions, a simple test -** is enough (a fail inside the repetition would backtrack to fail -** again in the following pattern, so there is no need for a choice). -** When 'opt' is true, the repetition can reuse the Choice already -** active in the stack. -*/ -static void coderep (CompileState *compst, TTree *tree, int opt, - const Charset *fl) { - Charset st; - if (tocharset(tree, &st)) { - addinstruction(compst, ISpan, 0); - addcharset(compst, st.cs); - } - else { - int e1 = getfirst(tree, fullset, &st); - if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) { - /* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */ - int jmp; - int test = codetestset(compst, &st, 0); - codegen(compst, tree, 0, test, fullset); - jmp = addoffsetinst(compst, IJmp); - jumptohere(compst, test); - jumptothere(compst, jmp, test); - } - else { - /* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */ - /* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */ - int commit, l2; - int test = codetestset(compst, &st, e1); - int pchoice = NOINST; - if (opt) - jumptohere(compst, addoffsetinst(compst, IPartialCommit)); - else - pchoice = addoffsetinst(compst, IChoice); - l2 = gethere(compst); - codegen(compst, tree, 0, NOINST, fullset); - commit = addoffsetinst(compst, IPartialCommit); - jumptothere(compst, commit, l2); - jumptohere(compst, pchoice); - jumptohere(compst, test); - } - } -} - - -/* -** Not predicate; optimizations: -** In any case, if first test fails, 'not' succeeds, so it can jump to -** the end. If pattern is headfail, that is all (it cannot fail -** in other parts); this case includes 'not' of simple sets. Otherwise, -** use the default code (a choice plus a failtwice). -*/ -static void codenot (CompileState *compst, TTree *tree) { - Charset st; - int e = getfirst(tree, fullset, &st); - int test = codetestset(compst, &st, e); - if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */ - addinstruction(compst, IFail, 0); - else { - /* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */ - int pchoice = addoffsetinst(compst, IChoice); - codegen(compst, tree, 0, NOINST, fullset); - addinstruction(compst, IFailTwice, 0); - jumptohere(compst, pchoice); - } - jumptohere(compst, test); -} - - -/* -** change open calls to calls, using list 'positions' to find -** correct offsets; also optimize tail calls -*/ -static void correctcalls (CompileState *compst, int *positions, - int from, int to) { - int i; - Instruction *code = compst->p->code; - for (i = from; i < to; i += sizei(&code[i])) { - if (code[i].i.code == IOpenCall) { - int n = code[i].i.key; /* rule number */ - int rule = positions[n]; /* rule position */ - assert(rule == from || code[rule - 1].i.code == IRet); - if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */ - code[i].i.code = IJmp; /* tail call */ - else - code[i].i.code = ICall; - jumptothere(compst, i, rule); /* call jumps to respective rule */ - } - } - assert(i == to); -} - - -/* -** Code for a grammar: -** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2: -*/ -static void codegrammar (CompileState *compst, TTree *grammar) { - int positions[MAXRULES]; - int rulenumber = 0; - TTree *rule; - int firstcall = addoffsetinst(compst, ICall); /* call initial rule */ - int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */ - int start = gethere(compst); /* here starts the initial rule */ - jumptohere(compst, firstcall); - for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { - positions[rulenumber++] = gethere(compst); /* save rule position */ - codegen(compst, sib1(rule), 0, NOINST, fullset); /* code rule */ - addinstruction(compst, IRet, 0); - } - assert(rule->tag == TTrue); - jumptohere(compst, jumptoend); - correctcalls(compst, positions, start, gethere(compst)); -} - - -static void codecall (CompileState *compst, TTree *call) { - int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */ - getinstr(compst, c).i.key = sib2(call)->cap; /* rule number */ - assert(sib2(call)->tag == TRule); -} - - -/* -** Code first child of a sequence -** (second child is called in-place to allow tail call) -** Return 'tt' for second child -*/ -static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2, - int tt, const Charset *fl) { - if (needfollow(p1)) { - Charset fl1; - getfirst(p2, fl, &fl1); /* p1 follow is p2 first */ - codegen(compst, p1, 0, tt, &fl1); - } - else /* use 'fullset' as follow */ - codegen(compst, p1, 0, tt, fullset); - if (fixedlen(p1) != 0) /* can 'p1' consume anything? */ - return NOINST; /* invalidate test */ - else return tt; /* else 'tt' still protects sib2 */ -} - - -/* -** Main code-generation function: dispatch to auxiliary functions -** according to kind of tree. ('needfollow' should return true -** only for consructions that use 'fl'.) -*/ -static void codegen (CompileState *compst, TTree *tree, int opt, int tt, - const Charset *fl) { - tailcall: - switch (tree->tag) { - case TChar: codechar(compst, tree->u.n, tt); break; - case TAny: addinstruction(compst, IAny, 0); break; - case TSet: codecharset(compst, treebuffer(tree), tt); break; - case TTrue: break; - case TFalse: addinstruction(compst, IFail, 0); break; - case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break; - case TRep: coderep(compst, sib1(tree), opt, fl); break; - case TBehind: codebehind(compst, tree); break; - case TNot: codenot(compst, sib1(tree)); break; - case TAnd: codeand(compst, sib1(tree), tt); break; - case TCapture: codecapture(compst, tree, tt, fl); break; - case TRunTime: coderuntime(compst, tree, tt); break; - case TGrammar: codegrammar(compst, tree); break; - case TCall: codecall(compst, tree); break; - case TSeq: { - tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */ - /* codegen(compst, p2, opt, tt, fl); */ - tree = sib2(tree); goto tailcall; - } - default: assert(0); - } -} - - -/* -** Optimize jumps and other jump-like instructions. -** * Update labels of instructions with labels to their final -** destinations (e.g., choice L1; ... L1: jmp L2: becomes -** choice L2) -** * Jumps to other instructions that do jumps become those -** instructions (e.g., jump to return becomes a return; jump -** to commit becomes a commit) -*/ -static void peephole (CompileState *compst) { - Instruction *code = compst->p->code; - int i; - for (i = 0; i < compst->ncode; i += sizei(&code[i])) { - redo: - switch (code[i].i.code) { - case IChoice: case ICall: case ICommit: case IPartialCommit: - case IBackCommit: case ITestChar: case ITestSet: - case ITestAny: { /* instructions with labels */ - jumptothere(compst, i, finallabel(code, i)); /* optimize label */ - break; - } - case IJmp: { - int ft = finaltarget(code, i); - switch (code[ft].i.code) { /* jumping to what? */ - case IRet: case IFail: case IFailTwice: - case IEnd: { /* instructions with unconditional implicit jumps */ - code[i] = code[ft]; /* jump becomes that instruction */ - code[i + 1].i.code = IAny; /* 'no-op' for target position */ - break; - } - case ICommit: case IPartialCommit: - case IBackCommit: { /* inst. with unconditional explicit jumps */ - int fft = finallabel(code, ft); - code[i] = code[ft]; /* jump becomes that instruction... */ - jumptothere(compst, i, fft); /* but must correct its offset */ - goto redo; /* reoptimize its label */ - } - default: { - jumptothere(compst, i, ft); /* optimize label */ - break; - } - } - break; - } - default: break; - } - } - assert(code[i - 1].i.code == IEnd); -} - - -/* -** Compile a pattern -*/ -Instruction *compile (lua_State *L, Pattern *p) { - CompileState compst; - compst.p = p; compst.ncode = 0; compst.L = L; - realloccode(L, p, 2); /* minimum initial size */ - codegen(&compst, p->tree, 0, NOINST, fullset); - addinstruction(&compst, IEnd, 0); - realloccode(L, p, compst.ncode); /* set final size */ - peephole(&compst); - return p->code; -} - - -/* }====================================================== */ - |